





D.V. and G.V. Chudnovsky, who have
calculated pi to eight billion digits, plotted the first million as
a random walk in 3D form, shown here. 


Beginning 3.14159..., never cycling, and going on forever, pi's digits
certainly look random. Indeed, everybody "knows" they are, but
nobody has proved it or understands why.
David Bailey may be getting close. Bailey is chief technologist for the
National Energy Research Scientific Computing Center (NERSC) and an innovator
in the field of experimental mathematics  a pursuit that has brought
him and his colleagues tantalizingly close to solving one of the mysteries
of pi.
Bailey was born in Provo, Utah, where his neighbors, mathematicians on
the faculty of Brigham Young University, became his role models. "I
remember learning in the fifth grade that there were formulas you could
use to calculate surfaces and volumes"  for example, that a sphere's
surface area is equal to pi times its diameter squared  "I thought
this was wonderful!"
Armed with curiosity and books from the public library, Bailey taught
himself enough math to win school prizes: one was a reference he still
uses, CRC Standard Mathematical Tables. As an undergraduate at
Brigham Young, his precocity landed him a job assisting his physics professor
in programming computers to do science. "I cut my teeth on computers
at BYU."
When he received his doctorate from Stanford in 1976, the market for
mathematicians was so bad that Ph.D.s were driving cabs and delivering
mail. Bailey's computing experience saved the day. He worked for institutions
like TRW Inc. and SRI International until 1984, when he moved to NASA
Ames Research Center.
There Bailey was in charge of "shaking down" NASA's first Cray2
supercomputer; to test its ability to sustain a long calculation, he had
two of its four processors compute the first 29 million digits of pi.
"Much to the consternation of Seymour Cray, they came up with two
different answers. It took nine months to get the bugs out."
In 1998 Bailey joined NERSC, charged with evaluating supercomputer performance
and improving numerical algorithms for running scientific calculations.
He is coauthor of an extensive library of highprecision software and
heads the Performance Evaluation Research Center, a group funded by the
Department of Energy's Office of Science to improve highperformance computing.
Bailey's collaborations with mathematicians like Jonathan and Peter Borwein,
Richard Crandall, and Helaman Ferguson have yielded important advances.
Among his prizes are the Sidney Fernbach Award for highperformance computing
and the Mathematical Association of America's Chauvenet Prize and Merten
Hasse Prize, awarded to gifted expositors.
Throughout his career, he has never lost his love for pure mathematics.
"To this day I live in two worlds, theoretical
math and scientific computing," Bailey says. "I'm trying to
marry these two by applying advanced computing to problems in pure mathematics.
Experimental mathematics is the outcome."
More about David Bailey
