One of the
most difficult problems in materials engineering today is the
development of higher temperature structural materials for use
in applications such as gas-turbine engines. The current
material of choice, single-crystal nickel-based superalloys, has
reached its technological limit; indeed, as these alloys melt at
temperatures between 1200°-1400°C, they are unsuitable for
structural use above ~1100°C (Fig. 1). High
melting-point (>2000°C) materials, based on refractory metals
such as molybdenum, represent a higher-temperature alternative
but have been plagued by oxidation and brittleness
problems. Additions of silicon and boron to
molybdenum to form silicides and borosilicides have shown
promise in improving the oxidation resistance; however, the
silicide compounds are quite brittle and will provide little
fracture resistance for most structural applications without
significant active toughening mechanisms. While several
alloys have been produced containing the more ductile α-molybdenum phase in addition the hard but
brittle intermetallic phases Mo3Si
and Mo5SiB2 (the T2 phase), many of these
show only marginal improvements in toughness relative to the
monolithic intermetallic phases which have fracture toughnesses
of ~ 3 - 4 MPa√m (e.g., Metal.
Mater. Trans., 34A, 2003, p.
225). This suggests that the key to achieving high
fracture resistance in these materials may lie in making more
effective use of the "ductile" α-Mo
phase, in a manner not unlike the way that nickel-based (γ-γ') superalloys obtain high fracture
toughness with a similarly high fraction of intermetallic (γ') precipitates.
Fig. 1: Plot showing the improvement since 1940 in the temperature capacity of metallic alloys, specifically nickel-based superalloys, for gas-turbine engine applications and demonstrating the need for new materials, such as molybdenum based superalloys, in order to achieve further technological gains.
Accordingly,
to achieve improved fracture resistance, the approach currently
being undertaken is to develop alloys where the intermetallic
phases are completely surrounded by a continuous "ductile" α-Mo
phase. Molybdenum-based alloys have been processed with Mo3Si
and T2 particles in a continuous α-Mo matrix using a novel
powder processing route. Specifically, to obtain the
continuous α-Mo phase, ground powders of Mo3Si and T2
phase (composition Mo-20Si-10B at%) were vacuum annealed to
remove silicon from the surface and leave a α-Mo coating on each
particle. These surface-modified powders were then hot
isostatically pressed to achieve alloys with a continuous α-Mo
matrix, reinforced by the intermetallic phases, Mo3Si
and T2 (Fig. 2a). Full processing details may be found in
(Scripta Mater., 46, 2002, p. 217).
Fracture toughness values in excess of 20 MPa√m have been achieved (Metall Mater Trans A 36A (2005)). However, these
toughness values come at the expense of oxidation
resistance.
(a)
(b)
(c)
Fig. 2: (a) Microstructure of a
Mo-Si-B alloy with a continuous α-Mo matrix (~ 46% vol.)
produced by the surface modified powder metallurgy method
(Kruzic alloy). (b) "duplex" microstructure with ~50% vol α-Mo
phase produced via mechanical alloying (ULTMAT alloy). (c)
duplex microstructure produced via reaction synthesis (Middlemas
alloy).
The focus of
this work is to make a significant advance in the development of
Mo-Si-B alloys, specifically by tailoring the composition,
morphology and volume fraction of the major phases of these
alloys (α-Mo, MoSi3 and Mo5SiB2
(T2)) to achieve an optimum balance of low- and high-temperature
damage-tolerance with creep and oxidation resistance.
Unlike Mo-Si-B materials based entirely on intermetallic
compounds, these alloys contain the metallic α-Mo
phase which provides some degree of fracture resistance and
ductility. Furthermore, the silicide and borosilicide phases
provide creep and oxidation resistance, the latter of which is
the result of a borosilicate glass scale which forms in situ
on the metal surface.
Newer
processing routes, such as the mechanical alloying route
developed as part of ONERA's ULTMAT program, produce alloys with
compositions near those of the work above, namely
Mo-3wt%Si-1wt%B. The resulting alloys consist of roughly
50vol% α-Mo
and 50vol% intermetallic phases in a "duplex"
microstructure. See Figure 2b. Grains in this
material are much smaller (15-20 mm) than previous
materials. Nanoscale yttria particles have been dispersed
in the grain boundaries to limit grain growth and impede
creep. See Jehanno et. al., Materials Science
and Engineering A 463 (2007) pgs. 216-223 for full
processing details.
At room temperature, both the ULTMAT and Middlemas alloys have much lower initiation toughnesses (7.8 MPa√m and 7.2 MPa√m) than the comparable Kruzic alloy (12.5 MPa√m). Though the volume fraction of ductile α-Mo is similar (and in fact higher for the newer alloys), neither the ULTMAT nor the Middlemas alloy displayed any stable crack growth. A number of factors reduced the damage tolerance of these alloys. The ultra-fine grains of the ULTMAT and Middlemas alloy did not prove to be a significant impediment to crack advance. Though a large volume fraction of α-Mo would imply a very high probability of the more ductile grains interacting with a moving crack and trapping it, the extremely small grain size provides a pathway by which a crack can avoid the more ductile grains without a large increase in energy. Plastic constraint of the ductile phase by the high volume fraction of hard intermetallic particles also reduced the damage tolerance of these alloys. The much harder intermetallic particles prevented the ductile α-Mo grains from plastically deforming. Instead, the high stresses which developed led to fracture of the a-Mo grains or the surrounding grain boundary material. This effect was exacerbated by segregation of Si into the grain boundaries, reducing their strength. Figs. 3a-c show the location of Si impurities of the fracture surface of the ULTMAT, Middledmas and Kruzic alloys, respectively. Large amounts of Si appear on the grain boundaries, while almost none is present in grain interiors (as depicted by grains which have fractured transgranularly. The amount of Si within the grain boundaries of the ULTMAT and Middlemas alloys was much higher than the Kruzic alloy, as the processing method used to create the Kruzic alloy removes Si in the material that becomes the grain boundaries upon sintering. The critical point here is that at low temperatures, Mo-Si-B alloys are truly brittle materials as the α-Mo phase can only provide for very limited ductility. Brittle materials can only be toughened extrinsically, and as such the coarser microstructures are able to generate toughness (more precisely crack-growth resistance) through such shielding processes as crack deflection and ductile-ligament bridging.
Fig. 3: Auger electron spectroscopy maps of
impurity content on grain boundaries overlaid on the
corresponding room-temperature fracture surfaces for the (a)
Kruzic (b)ULTMAT and (c) Middlemas alloys. Areas of high
silicon content (blue) are shown. Si segregates to grain
boundaries, reducing interfacial strength and increasing the
occurrence of intergranular fracture. Note the high
concentrations of Si in the regions that fractured
intergranularly, while almost no Si is found in regions that
fractured transgranularly. Note the difference in scale
for (a) as the Kruzic alloy had grains more than one order of
magnitude larger than either (b) or (c).
At elevated temperature (1300°C), the alloys are above their ductile-brittle transistion temperature. As a result, the α-Mo phase is much more ductile and can readily plastically deform. Here, the volume fraction of ductile α-Mo becomes more important than its morphology. As a result, the initiation toughnesses of the ULTMAT, Middlemas and Kruzic alloys converged. All three alloys were so ductile that the underlying assumptions of linear-elastic fracture mechanics were violated and J-integrals were estimated based on optical measurement of crack-tip opening displacements. Fig. 4 plots toughness versus temperature for the ULTMAT, Middlemas and Kruzic alloys, as well as the much higher Si content alloys studied by Choe, et al. (Metallurgical and Materials Transactions, 2003, 34A) which consisted of discontinuous islands of α-Mo in an intermetallic matrix.
Fig. 4: Fracture toughness
as a function of temperature for Mo-Si-B alloys.
Crack-initiation toughnesses (closed symbols) are plotted along
with any increases in toughness with crack extension (open
symbols). The highest room temperature toughness value for
the Kruzic alloy was obtained after more than 3 mm of stable
crack growth. At low temperatures, neither the ULTMAT
(mechanically alloyed) nor the Middlemas (reaction synthesized)
alloy exhibited any stable crack growth prior to unstable
fracture. The ductile-brittle transition temperature for
these materials is ~1000°C, so only moderate gains in initiation
toughness are expected below this temperature, as demonstrated
by the ULTMAT alloy. At 1300°C, the enhanced ductility of
the α-Mo phase markedly improves the initiation toughness of
alloys containing ~50 vol.% α-Mo. At this temperature, the
volume fraction of α-Mo becomes a more important factor in
developing toughness (intrinsically from plasticity) than the
distribution and morphology of α-Mo grains (which leads to
extrinsic toughening from mechanisms such as crack bridging).
The design and development of new materials for ultrahigh
temperature applications is invariably a competition between
achieving excellent oxidation resistance and creep strength at
service temperatures and maintaining adequate ductility and
toughness at both low and high temperatures. Unfortunately, the
microstructural requirements to achieve acceptable behavior in
all three categories are generally mutually exclusive.
This is a particularly difficult problem in Mo-Si-B alloys where
the microstructures for optimal oxidation resistance, creep
strength and damage tolerance (strength and toughness) are so
contradictory. Specifically, for oxidation resistance, the
three-phase alloys with very small discontinuous grains are best
as the small grains limit the probability that an α-Mo grain
will be exposed to oxygen; likewise, the small grains provide a
short diffusion pathway allowing for faster passivation than in
coarser-grained alloys. In direct contrast, optimal
room-temperature damage tolerance is afforded by large,
continuous α-Mo grains that promote extrinsic toughening by the
generation of ductile ligament bridges that act to “shield” a
crack tip from the full force of an applied stress, thereby
inhibiting crack advance. Corresponding high-temperature
toughness is also promoted by a high volume fraction of α-Mo as
the ductility of this phase generates extensive plasticity which
toughens the alloy intrinsically. In further contrast,
optimal creep response is provided by alloys with large
intermetallic grains surrounding small islands of α-Mo, which
limits the number of high-diffusivity pathways such as grain
boundaries; a low volume fraction of α-Mo is also
desirable, as the relative ease of deformation of α-Mo at high
temperatures allows individual intermetallic particles to
rearrange easily. Fig. 5 shows schematic illustrations of the
microstructural morphologies necessary to maximize material
response for each property. Steps must be taken to limit
segregation of Si in these alloys and improve the room
temperature ductility of α-Mo. With increased α-Mo
ductility, lower volume fractions of this phase can acheive
comparable toughnesses, thereby improving the oxidation and
creep resistance of Mo-Si-B alloys.
Fig. 5: Schematic
illustrations of the ideal microstructures to improve
oxidation resistance, creep resistance and damage tolerance of
Mo-Si-B alloys. The morphological considerations for
improvement in each area are mutually exclusive, so
optimization of the properties of each phase is
necessary.
J. A.
Lemberg
J.
H. Schneibel (collaborator from ORNL)
M.
R.
Middlemas (collaborator from Georgia Tech)
J. K. Cochran (collaborator from Georgia Tech)
T. Weingärtner (collaborator
from Karlsruhe Institute of Technology)
R. O.
Ritchie
Work on this project conducted at