The innate interfacial elastic strain field of a transformable B2 precipitate embedded in an amorphous matrix

Xiaoling Fu1,10✉, Yujun Lin1,10, Mixun Zhu1,10, Kai Wang1, Jiaqing Wu1, Xing Tong2, Wenli Song3,4, Ming Jen Tan5, Yuanzheng Yang1, Jun Shen6, Gang Wang7, Chan Hung Shek8 and Robert O. Ritchie9,10✉

When a transformable B2 precipitate is embedded in an amorphous matrix, it is often experimentally observed that the crystalline-amorphous interface not only serves as an initiation site for the martensitic transformation due to local stress concentrations, but also as an inhibitor to stabilize the transformation, the latter being attributed to the "confinement effect" exerted by the amorphous matrix, according to the Eshelby solution. These two seemingly incongruous factors are examined in this study using molecular dynamics simulations from an atomic interaction perspective. An innate strain gradient in the vicinity of the crystalline-amorphous interface is identified. The actual interface, the compressive/dilatative transition, and the interfacial maximum strain are investigated to differentiate from the conventional "interface" located within a distance of a few nanometers. Our innate interfacial elastic strain field model is applicable for the design of materials with a higher degree of martensitic transformation and controllable stress concentration, even in cryogenic environments.

npj Computational Materials (2023) 9:226; https://doi.org/10.1038/s41524-023-01182-6

INTRODUCTION

To solve the problem of the extreme brittleness of monolithic metallic glasses, one approach has been to add precipitates into the amorphous matrix to impede the propagation of shear bands, thereby delaying the fracture process and achieving better plasticity. However, under tension loading, non-transformable precipitates embedded in an amorphous matrix usually lead to strain softening, although phase transformable (shape-memory) inclusions in bulk metallic-glass composites (BMGCs) do display work hardenability and strain-induced martensitic transformation, leading to enhanced transformed fraction of austenite precipitates embedded in an amorphous matrix. The innate interfacial strain distribution and its impact on the martensitic transformation were simulated to quantitatively examine the intrinsic interfacial elastic stress/strain field distribution responsible for this phenomenon.

RESULTS

Strain fields caused by B2 precipitates of different sizes

The material under investigation was a spherical B2 CuZr precipitate embedded along the crystallographic directions of [100], [010] and [001] in a Cu50Zr50 amorphous matrix with side length of 23 nm (Fig. 1). The model construction is detailed in the Methods section. The intent here is to quantitatively examine the innate interfacial strain distribution and its impact on the martensitic transformation in BMGCs using MD. The yellow colored region in Fig. 1a–c is the crystalline B2, while the blue-colored area represents the amorphous matrix. The configuration of the initial unrelaxed structure and relaxed structure are compared in Fig. 1c. The diameters of the B2 particles after

1School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China. 2Songshan Lake Materials Laboratory, Dongguan 523808, China. 3Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China. 4Spallation Neutron Source Science Center, Dongguan 523803, China. 5Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore. 6School of Materials Science and Engineering, Fujian University of Technology, Fuzhou 350118, China. 7Institute of Materials, Shanghai University, Shanghai 200444, China. 8Department of Materials Science and Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China. 9Department of Materials Science & Engineering, University of California, Berkeley, CA 94720, USA. ✉These authors contributed equally: Xiaoling Fu, Yujun Lin, Mixun Zhu. ✉✉email: fuxiaoling@gdut.edu.cn; roritchie@lbl.gov

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences.
As the matrix embedded with the largest precipitate will expand the most, while the smallest precipitate will contract the most, and the amorphous matrix expands and the B2 precipitate contracts. The detailed information in Fig. 2b is shown in Supplementary Note 4 and Supplementary Fig. 3a. For all BMGCs, the precipitate sizes are described in Supplementary Note 4, Supplementary Table 4, and Supplementary Fig. 2. For all BMGCs, the amorphous matrix expanded and the B2 precipitate contracts. The smallest precipitate will contract the most, while the amorphous matrix embedded with the largest precipitate will expand the most.

After relaxation, the crystalline-amorphous interface (red dashed line in Fig. 1c) shifts towards inside of the B2 nanoparticle (black dashed line in Fig. 1c). The average atomic volume changes of the B2 precipitate, amorphous matrix and BMGCs with various precipitate sizes are described in Supplementary Note 4, Supplementary Table 1 and Supplementary Fig. 2. For all BMGCs, the amorphous matrix expands and the B2 precipitate contracts. The smallest precipitate will contract the most, while the amorphous matrix embedded with the largest precipitate will expand the most. As the \(dL^{-1} \) increased gradually from 0.30 to 0.94, the displacement of atoms near the crystalline-amorphous interface increased from roughly 0.5 Å to 1.0 Å (Fig. 1d). This is similar to the results of Lyu et al.\(^\text{32}\) that the displacement of interfacial atoms increases as a function of the sphere radius. The black arrows indicate that atoms at the interface move towards the interior of the B2 particles. This observed deviation phenomenon of the interfacial atoms from the standard cubic B2 lattice is consistent with Wu et al.\(^\text{33}\) in situ neutron diffraction and simulation work.

Figure 1e, f respectively present contour maps of the atomic stress and strain fields inside the composites. The central atoms of the B2 particles experience a compressive stress/strain, whereas the amorphous region is generally under a tensile stress/strain. The specimen with the smallest precipitate size experiences the highest compressive stress and strain inside the B2 particle (the blue color region in Fig. 1f), while BMGCs containing the largest particles experience the highest tensile strain in the amorphous region (the red color region in Fig. 1f). This is consistent with our average atomic volume estimates. The smallest B2 particle contracts the most and undergoes the highest compressive strain. The amorphous matrix embedded with the largest precipitates expands the most and therefore experiences the highest dilative strain. In general, the area that lies adjacent to, but not exactly at, the crystalline-amorphous interfaces (black dashed line in Fig. 1f) displays a relatively higher strain, which conforms to the highest interfacial displacement being adjacent to the interface (Fig. 1d).

The characteristic points of the strain distribution in Fig. 1f are illustrated in Fig. 2a. We emphasize that the locations of the points of compressive/dilatative and the interfacial maximum strain (\(\varepsilon_{\text{max-interface}} \)) are different from the conventional crystalline-amorphous interface. The distance between the compressive/dilatative point and the interface is designated as “b”, while the span between the interfacial maximum strain and the interface is termed “a”. Figure 2b shows the strain distribution along the central axis in the [\(100 \)]\(_{\text{B2}}\) or [\(010 \)]\(_{\text{B2}}\) direction. The compressive volumetric strain is the largest at the center of the B2 particles, then gradually increases to zero; at the latter point a transition from compression to dilatation can be seen in all specimens a few Angstroms from, or even closer to, the crystalline-amorphous interface. The dilatational strain continuously increases to a maximum value (indicated as \(\varepsilon_{\text{max-inter}} \)) in Fig. 2a), which is also located a few Angstroms from the crystalline-amorphous interface inside the amorphous matrix for all specimens. After reaching a maximum tensile value, the strain fluctuates and tends to recede to the bulk level, although still in the tensile direction.

The detailed information in Fig. 2b is shown in Supplementary Note 5 and Supplementary Fig. 3a–f, which display the strain distribution for various \(dL^{-1} \) values one by one. When \(dL^{-1} \) increases from 0.30 to 0.94, the “b” value gradually decreases from 1.39 nm to −0.06 nm (Supplementary Table 1, Supplementary Fig. 2).
Fig. 2 The relative distances among the compressive/dilatative transition, the exact interface and the interfacial maximum strain. Schematic illustration of the embedded B2 nanoparticle in an amorphous matrix (as sketched at (a)) of configurations with various particle diameters: a is the distance between the interface and the interfacial maximum strain, b is the span between the interface and the position of compressive/dilatative transition; positive (negative) value of “b” indicates that the compressive/dilatative transition is inside the amorphous (crystalline) phase; (b) volumetric strain distributions along [010]B2 or [100]B2 as the atomic strain fluctuates, to have the best visualization effect, the volumetric strain distribution were illustrated along the [010]B2 direction for $dl^{-1} = 0.30$, while the others were along the [100]B2 direction for $dl^{-1} = 0.44, 0.60, 0.75, 0.85$, and 0.94; (c) average potential energy distributions along the central axis in [100]B2 (d) The strain at the interface ($\varepsilon_{\text{interface}}$) and the maximum interfacial strain ($\varepsilon_{\text{max-interface}}$); (e) the ratio of distance “a” to the particle diameter d, ad^{-1}, as a function of the normalized particle size dl^{-1}; (f) the ratio of distance “b” to the particle diameter d, bd^{-1}, as a function of the normalized particle size dl^{-1}. Note that the values of $\varepsilon_{\text{interface}}$, $\varepsilon_{\text{max-interface}}$, a and b were calculated based on the average value of strain along the [100], [010] and [001] directions of the B2 crystal in Fig. 2d–f. $\varepsilon_{\text{max-int.}}$ is the abbreviated form of $\varepsilon_{\text{max-interface}}$. Bars represent standard deviation of the mean.

3a–f), indicating that the compressive/dilatative transition region moves from outside the B2 precipitate (Supplementary Fig. 3a–e) to merge with the “exact” interface, before staying inside the precipitate (Supplementary Fig. 3f). The “a” value decreases from 2.43 nm to 0.64 nm as the “dl^{-1}” increases from 0.30 to 0.94, indicating that the interfacial maximum strain is always a few Ångstroms away from the “exact” interface. The average potential energy for the central axis along the [010]B2 or [100]B2 direction (Fig. 2c and Supplementary Fig. 4) generally matches with the volumetric strain distribution profile displayed in Fig. 2b and Supplementary Fig. 3. This configuration is consistent with the MD results of Shi et al.,

where a is the length between the interface and the position of interfacial maximum strain, and b is the span between the interface and the position of the compressive/dilatative transition. As particle size increases, both $\varepsilon_{\text{interface}}$ and $\varepsilon_{\text{max-interface}}$ increases. The interfacial maximum strain $\varepsilon_{\text{max-interface}}$ is always higher than $\varepsilon_{\text{interface}}$ for all BMGCs (Fig. 2d). Both a and b decrease accordingly as the “dl^{-1}” increases (Fig. 2e, f). When “dl^{-1}” increases from 0.30 to 0.94, the value of “a” reduces from ~1.39 nm to ~0.66 nm, and the value of “b” decreases from 2.43 nm to 0.64 nm. At “$dl^{-1} = −0.91$”, the interfacial strain $\varepsilon_{\text{interface}} = 0$ (Fig. 2c, f), the compressive/dilatative transition merges with the “exact” interface. The rationality of “b” and “a” is presented in Supplementary Note 7.

Temperature-induced martensitic transformation (MT)

The total potential energies on cooling were calculated to obtain M_s (martensite start) temperatures for all specimens (Fig. 3a). In previous investigations for NiTi-based alloys,

where M_s temperature linearly decreases before a “sudden drop” occurs; this drop, which corresponds to M_s, is presented in Fig. 3b. When the particle size “dl^{-1}” decreases from 0.94, 0.86, 0.75, 0.60, 0.44 to 0.30, the M_s temperature declines linearly from 190 K, 178.5 K, 176.5 K, 161.4 K, 154.8 K to 137.0 K, respectively. The enlarged view of this “sudden drop” for small particles (where “dl^{-1}” values are 0.30, 0.43 and 0.60) is presented in Supplementary Fig. 5. Our measured M_s temperatures agree reasonably well with the differential scanning calorimetry and in situ high-energy synchrotron X-ray diffraction (HEXRD) results.
change in free energy for the phase transformation

... stresses of small particles before and after the martensitic

described in Supplementary Note 8. Both the total volumetric
stresses of all crystalline atoms were computed as a function of
percentages of 80.5%, 77.8%, 67.2% and 48.4%. The volumetric

decreased

The lower

DISCUSSION

of Song et al.36. These authors reported measurements of
decreased M_s temperatures from 174.5 K, 172.8 K, 169.5 K to
162.7 K (represented by “red star” symbols in Fig. 3b) for
Cu47.5Zr47.5Al5 composites containing B2 with respective volume
percentages of 80.5%, 77.8%, 67.2% and 48.4%. The volumetric
stresses of all crystalline atoms were computed as a function of
temperature (Fig. 3d), temperature (Fig. 3d) and dL^{-1} (Fig. 3e),
with the detailed methods of calculating volumetric stresses
described in Supplementary Note 8. Both the total volumetric
stresses of small particles before and after the martensitic
transformation (σ_{e}^{0}, σ_{e}^{1}, respectively) show reasonable conformity
with the Eshebly solution37.

Fig. 3 The variations of total potential energy and volumetric stress associated with martensitic transformation behavior. a) Evolution of
total potential energies calculated with various dL^{-1} values; b) M_s temperatures obtained from the total potential energy change (blue triangle
symbols), which were compared with the experimental data (red star symbols) measured by differential scanning calorimetry and in situ
synchrotron X-ray diffraction35; $x_1 = dL^{-1}$, x_2 represents volume fraction of nanocrystals. Note that the x_1 does not have a corresponding
relationship with x_2. c) The rate of the initial B2 austenite to martensite transformation as a function of dL^{-1} after cooling. d) Evolution of
the volumetric stress of all B2 crystalline atoms with different dL^{-1} values from 500 K to 70 K as a function of timestep and temperature. A “sudden drop” phenomenon was observed as the temperature decreases for every specimen. Each starting point of the “sudden drop” of the volumetric stress corresponds to the M_s of the specimens. e) Volumetric stress of all crystal atoms as a function of dL^{-1}. The volumetric stress is
the sum of all atoms of inclusions. It includes all atoms of the crystalline phase, which can be under either compressive or dilatative stress. It is
an estimated comparison with the “hydrostatic pressure” from the Eshebly solution calculated by Sun et al.37 (red dash line). σ_{e}^{0} (= 700 MPa) is
the “hydrostatic pressure” before the martensitic transformation; σ_{e}^{1} (= 37 MPa) is the “hydrostatic pressure” after the martensitic
transformation. Bars represent standard deviation of the mean.

The lower M_s (Fig. 3b) and the lower transformation rate of the
BMGCs with smaller nanocrystals (Fig. 3c), the initiation sites
of martensitic transformation at the interface (Supplementary Fig. 6),
and the remaining austenite adjacent to the crystalline-
amorphous interface (Supplementary Fig. 7) all conform particularly
well with the experimental results of Santamarta et al.38,39
and Waitz et al.40,41 (Supplementary Note 9). The nucleus of a
newly precipitated R phase in nanosized B2 crystals can be
considered as an R inclusion embedded in a small spherical B2
grain which resides inside an amorphous M phase matrix42. The
change in free energy for the phase transformation ΔG_{MT} can be
written as:

$$\Delta G_{MT} = -V\Delta G_{B2-R} + E_{el} - E_{pri}$$

(5)

where ΔG_{B2-R} is the change in free energy per unit volume when
the B2 transforms into the R phase, and V is the volume of the
newly precipitated R phase. E_{el} is the stored energy arising from
the strain energy and interfacial energy produced by the phase
transformation; it generally includes the strain energy in the
individual phases - R (E_{el}^{R}), B2 (E_{el}^{B2}), amorphous matrix M (E_{el}^{M}),
and the interface energies between R - B2 (E_{el}^{R-B2}), and B2-M (E_{el}^{B2-M}) per unit volume. E_{pri} refers to the elastic strain energy in B2 (E_{el}^{B2}), the amorphous matrix M (E_{el}^{M}), and the B2-M (the interfacial
strain energy between B2 and the amorphous matrix M) (E_{el}^{B2-M}),
prior to the phase transformation, respectively.
In Eq. (5), the first term ΔE_{Gibbs}, which is probably dependent on the temperature T and composition C, can be considered to remain constant per unit volume of the transformation from the B2 to the R phase. The second term, $E_{\text{int}} = E^{B2}_{\text{el}} + E^{B2}_{\text{fi}} + E^{M}_{\text{el}} + E^{M}_{\text{fi}}$, should also be constant per unit volume for the transformation process from the B2 to the R phase. The third term, $E_{\text{ext}} = E^{B2}_{\text{ext}} + E^{M}_{\text{ext}} + E^{B2-M}_{\text{ext}}$, consists of three terms: the elastic strain energy in the B2 (E^{B2}_{el}), the elastic strain energy in the amorphous matrix (E^{M}_{el}), and the interfacial strain energy between the B2 and the amorphous matrix (E^{B2-M}_{el}), prior to the phase transformation.

As the crystalline-amorphous interfacial energy E^{B2-M}_{el} acts as a promoter for phase transformation, it is always advantageous to decrease the Gibbs free energy of phase transformation. The absolute value of the interfacial energy increases with enlarged particle sizes (Supplementary Note 10 and Supplementary Fig. 8); therefore the nucleation barrier for bigger particles is much lower than that of the smaller particles. Equation (5) combined with Eq. (7) can be rewritten as Eq. (8), but the elastic strain energy in B2 (E^{B2}_{el}) and the amorphous matrix (E^{M}_{el}) might inhibit or promote phase transformation depending on the innate strain gradient distribution.

For all specimens, the region directly adjacent to the interface of the B2 precipitates always possesses higher strain (Fig. 1f and Supplementary Fig. 3), stress (Fig. 1e) and potential energy (Fig. 2c and Supplementary Fig. 4). Therefore, the martensitic transformation (MT) will always initiate from the interface. When the “dL” increases from 0.30 to 0.75 (Supplementary Fig. 3a-d), 0.85–0.94 (Supplementary Fig. 3e, f, to 0.94–1), the B2 phase and amorphous matrix sustains a large compressive strain (Fig. 4a1); the B2 phase is under 3D-compressive strain and the amorphous matrix experiences a dilatative strain (Fig. 4a2), whereas both the B2 and amorphous matrix adjacent to the interface experience a dilatative strain (Fig. 4a3). Compressive strains in all three dimensions will inhibit atomic shuffling and shape/volume change caused by the MT, while dilatative strains assist the transformation. Accordingly, the compressive strain in the B2 precipitate will act as a prohibiting factor (Fig. 4a1, a2, Eqs. (9), (10)), with the dilatative strain assisting the transformation (Fig. 4a3, Eq. (11)). The compressive strain in the amorphous matrix (Fig. 4a1, Eq. (9)) will also increase the nucleation barrier of the MT, but the dilatative strain in the amorphous matrix can decrease this barrier for the MT (Figs. 4a2, 4a3, Eq. (10), (11)). A detailed description of this phenomenon is given in Supplementary Note 11.

From the above discussion, using Eqs. (9–11), we can summarize that the nucleation barrier for BMGCs with the smallest particles is the highest. The M_s temperature of BMGCs therefore exhibits a decreasing trend as the precipitate size decreases.

A schematic illustration of the innate elastic strain field is shown in Fig. 4. The correlation between the interfacial strain field and the nucleation and growth of the martensitic transformation for different B2 particle sizes is demonstrated in Fig. 4b, c. For BMGCs with smaller precipitates, both the compressive/dilatative transition region and the interfacial maximum strain are located outside the precipitate (Fig. 4a1). The center of the smaller precipitates undergoes higher compressive strain, and the amorphous matrix region surrounded by smaller precipitates encounters the smaller stress (Supplementary Fig. 3a–d and the upper panel in Fig. 4b, c). The nucleation barrier for the transformation is much higher than those with larger inclusions. For BMGCs with medium-sized precipitates, the compressive/dilatative transition region can be merged with the crystalline-amorphous interface (Fig. 4a2), while the interfacial maximum strain remains a few Angstroms away from the interface (Supplementary Fig. 3e, f and middle panel in Fig. 4b, c). The compressive strain in the B2 particle decreases and the dilatative strain in the amorphous matrix increases as the B2 particle size becomes larger. The nucleation barrier for the MT is thus lower than that for BMGCs with smaller particles. For BMGCs with very large precipitates, the location of the compressive/dilatative transition region is very close to, but might still be inside, the B2 precipitate (Fig. 4a3), while the maximum strain stays a few Angstroms away from the interface and lower panel in Fig. 4b,c. The compressive strain in the B2 precipitate is the lowest whereas the dilatative strain in the amorphous matrix is the highest. The MT will be more likely to take place at higher temperatures or lower stresses. The redistribution of the strain field during MT is described in Supplementary Note 12 and Supplementary Fig. 10.

From the model proposed in Fig. 4, we can explain that it is ascribed to an enhanced transformed fraction of austenite precipitates such that shape-memory BMGCs can display even higher strength, better ductility, work-hardenability and impact toughness at cryogenic temperatures. Furthermore, with larger B2 precipitates it is also easier to promote shear band initiation due to the large inborn dilatative stress in the vicinity of the interface from the higher strain. Smaller B2 precipitates cause an oscillation of the shear stress as the location of maximum interfacial strain $E_{\text{max-interfac}}$ for smaller precipitates is further away from the interface compared to that for larger precipitates. If the morphological distribution of precipitates is Gaussian, considering the strain needed to overcome the innate compressive strain is lower for BMGCs embedded with larger precipitates, the first yield point of BMGCs containing particles with larger average diameters will probably occur at a lower stress, as is evident in the experimental work of Wu et al.

In summary, an innate interfacial elastic strain gradient model of a transformable B2 precipitate embedded in an amorphous matrix based on MD simulations has been established. Compared to the Eshelby solution, this model proposes a nanometer scale interfacial region adjacent to the crystalline-amorphous interface which experiences gradients strain transitions from compressive to tensile. In this region, the crystalline-amorphous interface, the compressive/dilatative transition, and the interfacial maximum strain were characterized and differentiated instead of addressing them all as “interface” in a conventional fashion.

When the size of the spherical B2 precipitates gradually increases from small (0.75) to very large precipitates (~0.94), the compressive/dilatative transition region locates from inside the amorphous region to inside the B2 precipitate. The actual interface strain transits from compressive (for $dL < 0.91$) to dilatative (for $dL > 0.91$). The compressive (dilatative) stress state in the B2 precipitate and amorphous matrix serve to prohibit (assist) the initiation of martensitic transformation and increase (decrease) the nucleation barrier of the transformation. The looser (close-packed) interfacial interaction between the B2 precipitate and the amorphous matrix decreases (increases) the nucleation barrier of the transformation, thus increasing the M_s temperature.

The interfacial maximum strain, which is likely related to the “interfacial strain/stress concentration”, is located a few Angstroms away from the interface and inside the amorphous matrix, instead of at the “exact” interface. The value of the “interfacial stress concentration” is always higher than the strain at the “exact” interface and increases as the precipitate size in the BMGCs is enlarged. By properly manipulating the transformation fraction of the martensitic transformation and interfacial stress concentration, the “transformation-mediated work hardening and plasticity” effect can be maximized to overcome the strength-ductility trade-off even at cryogenic temperatures.
Fig. 4 The innate interfacial strain gradient model for various sized precipitate enhanced metallic-glass composites. a Schematic illustration of the elastic strain gradient effect of (a1) small-sized (a2) medium-sized (a3) large-sized spherical-shaped B2 nanoparticles embedded in an amorphous matrix, indicating the relative position of the compressive/dilatative transition, the crystalline-amorphous interface and the interfacial maximum strain ε_{max}-interface. The position of the compressive/dilatative transition moves from (a1) inside amorphous region to (a2) merge with the interface to (a3) inside B2 precipitate; the interfacial maximum strain is always located inside the amorphous matrix. As the particle size increases, the distance between the interfacial maximum strain and the interface becomes smaller. b Illustrations of the initial nucleation sites at the nearby-interface layer inside the B2 precipitate, and (c) the growth processes of the R phase undergoing martensitic transformation.
METHODS
MD simulations
This problem was investigated with MD simulations using the open source LAMMPS package, employing the recently developed Cu-Zr embedded atom method (EAM) potential by Mendeleev et al. The potential is the latest development with some reasonably semi-empirical corrections from previous potentials, which show reproducible results with X-ray diffraction measurement data on amorphous alloys. Indeed, the EAM potential has been successful in elucidating many phase transformation related phenomena. 3D periodic boundary conditions were applied to avoid surface effects. For all simulations, a constant integration time step of 1 fs was used. The isobaric-isothermal (NPT) ensemble at zero external pressure was applied to the system. The Nosé-Hoover thermostat and the Parrinello-Rahman barostat were utilized to control the temperature and pressure. Atomic visualization and analysis were performed using OVITO software, in which the crystal structures were identified by a polyhedral template matching algorithm (PTM).

A Cu₅₀Zr₅₀ single crystal block (~686,000 atoms) was prepared with a cell size of 23 nm along the crystallographic directions of [100], [010] and [001]. To construct the composite (Fig. 1a–c), the sample was divided into two sectors: the spherical area was addressed as the “crystalline region” (yellowed colored area in Fig. 1a–c), with the rest of the composite as the “amorphous region” (blue-red colored area in Fig. 1a–c). The “amorphous region” atoms were selected and melted at 2000 K. After thermalizing at 500 K to 70 K at a rate of 1 Kps, and then annealed at 500 K for 0.3 ns, prior to cooling from 500 K to 70 K at a rate of 0.5 Kps to induce the B2-R martensite transformation. It should be noted that the temperature rise from 300 K to 500 K is unlikely to have a notable impact on the innate strain distribution; these small raises were to assure that the martensitic transformation was observable in this work.

DATA AVAILABILITY
The data that support the findings of this study are available from the corresponding authors upon request.

CODE AVAILABILITY
The computational code used in this study is available upon request from Xiaolong Fu.

Received: 27 August 2023; Accepted: 3 December 2023; Published online: 16 December 2023

REFERENCES

ACKNOWLEDGEMENTS
The work was supported by the National Natural Science Foundation of China (No. 51601019, 52001184, 52071089, 52071217); the Guangdong Major Project of Basic and Applied Basic Research (Grant No.2019B030302010); the Guangdong Basic and Applied Basic Research Foundation (No. 2022A1515010233, 2019A1515110472).

AUTHOR CONTRIBUTIONS
X.F. initiated and conceived the idea. R.O.R. and X.F. supervised the project. Y.L. and M.Z. performed the MD simulations and data analysis with assistance from K.W., J.W. and X.T. X.F. proposed the gradient model with the help from X.T., W.S., M.I.T., Y.Y., J.S., G.W., C.H.S. and R.O.R. X.F. drafted the manuscript together with R.O.R.; these authors additionally revised the manuscript. All authors analyzed and reviewed the results and provided input to this paper.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41524-023-01182-6.

Correspondence and requests for materials should be addressed to Xiaoling Fu or Robert O. Ritchie.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s) 2023