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Abstract

Analysis has been performed on fracture initiation near a crack in a brittle material with strength described by
Weibull statistics. This nonlocal fracture model allows for a direct correlation between near crack-tip stresses and
failure. Predictions are made for both the toughness and average fracture initiation angle of a crack under mixed-mode
loading. This is pertinent for composites and is especially interesting for functionally graded materials (FGMs), where
the stress and strength fields vary from the homogeneous form away from the crack tip. Both analytic and finite
element analyses of FGMs reveal that gradients in Weibull scaling stress o(x,y) usually lead to a dramatic decrease
of initiation fracture toughness; moreover, gradients normal to the crack result in a crack growing toward the weaker
material. When comparing FGMs with gradients in Young’s modulus in the direction of the crack path, E£(x), and the
same stress-intensity factor K, the crack growing into the steeper negative gradient will be tougher, if m, the Weibull
modulus, is low; with growth in the stiff direction, the effect is opposite. These effects offset the higher-stress inten-
sity for cracks growing into more compliant material, and the crack-tip shielding when growing into a stiffer material
based upon expectations for the applied load. Perpendicular gradients in modulus can cause a far-field mode I
loading to produce mixed-mode loading of the crack tip and other asymmetric adjustments in the stress field; the
gradient induces non-coplanar cracking that depends strongly on m. The distribution of damage near a crack tip will
vary strongly with m. For high m materials, failure is dominated by the very near-tip parameters, and effects of
gradients are minimized. With low m, distributed damage leading to toughening can be exaggerated in FGMs. Finally,
consideration is given to the role of several higher-order terms in the stress field.
© 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Functionally graded materials; Fracture toughness; Crack kinking; Mixed-mode fracture; Weibull statistics

*Corresponding author. Tel.: +1-510-486-5798; fax: +1-510-486-4881.
E-mail address: roritchie@lbl.gov (R.O. Ritchie).

0013-7944/02/$ - see front matter © 2002 Elsevier Science Ltd. All rights reserved.
PII: S0013-7944(02)00047-4


mail to: roritchie@lbl.gov

1522 T.L. Becker Jr. et al. | Engineering Fracture Mechanics 69 (2002) 1521-1555
Nomenclature
x, y, z Cartesian coordinates, crack lies along y = 0 in x-direction
r, 0 polar coordinates
E ¢ coordinate variables
Ou, Oxy, Oy, Stress components referenced to {x,y} coordinate system
Oyield yield strength
a1 maximum principal stress
o0 Hoop stress
a crack length
B characteristic thickness in z direction
Ki, K1 mode I and mode IT stress-intensity factors
K. plane-strain fracture toughness value
G strain energy release rate
G, critical strain energy release rate at fracture
V] phase angle of crack tip, y = tan~!(Ky;/K;)
f', " nondimensional mode I and II functions of 0 for elastic crack stresses
1"’ nondimensional function of 6 and  for elastic crack principal stress
o global failure probability
Ks, Gy probable fracture toughness, K or G, to achieve failure probability @
p(e)  failure probability in limit of small volume
P volume-weighted failure probability in crack-tip field
m Weibull modulus
a9 Weibull scaling stress
oy Weibull cutoff stress
g function to describe dependence of property variation on location
b, ¢ gradient parameter, value at crack tip
E Young’s modulus
v Poisson’s ratio
X,y coordinates of average location of crack initiation site
10) angle of average crack initiation event, tan~'(y/x)
f percentage of fracture initiations occurring between —n and 0,
0r angle defining the fth-percentile of fracture probability
7 average distance of crack initiation
re, ¥, distance of maximum, minimum local failure probability
0 cutoff radius near crack tip
R outer radius of integration for analysis of infinite bodies
F nondimensional mixed-mode toughness function for homogeneous material
0", 0; optimal kink angles for max gy or G criterion
J Jacobian of mapped quadratic finite element
w; Gauss—Legendre integration weights
q Toughness dependence on radial band (p or R) exponent = (M — 4)/2m
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1. Introduction

The earliest report on the relationship between the volume of a brittle material and its measured strength
is credited to Leonardo Da Vinci, who observed that the strength of a wire in tension decreased as its length
increased [1]. Since then, extreme-value Weibull statistics [2] have been developed to model the dependence
of probabilistic failure on both applied stress and affected volume of a bulk material. This dependence can
explain phenomena such as the enhanced measured strengths of brittle materials in bending vs. those in
tension. Similarly, the fracture toughness of material that undergoes a stress-controlled fracture with ex-
tension initiated away from a pre-existent crack tip can be predicted by applying Weibull statistical analysis
to bodies containing cracks or notches.

One area where Weibull statistics can play a descriptive role is in the fracture of composites or layered
materials. Important developing applications in aerospace, power generation, microelectronics and bio-
engineering demand characteristics that are often unobtainable in any single material. Traditional design of
such a material seeks to invoke the desirable characteristics of each of the constituent phases in order to
meet such requirements. However, the internal stresses caused by the elastic and thermal properties mis-
match at an interface of two bulk materials can mitigate the successful implementation of such composites.
To address this problem, FGMs have been developed to satisfy the needs for properties that are unavailable
in any single material and for graded properties to offset adverse effects of discontinuities.

The introduction of gradual compositional changes removes large-scale interface-induced stress singu-
larities and can even result in stress-free material joints. This gradual change in composition over length
scales that are significant compared to the overall dimensions of the body is what distinguishes FGMs from
other composites. The gradient shape is a design parameter determining the behavior of an FGM structure.
Associated complications involving spatially varying elastic constants have demanded re-examination of
the elastic crack problem. Although the fracture mechanics solutions for stress and displacement fields in
homogeneous and continuously graded materials agree in the asymptotic near-tip limit [3], the scope of the
material gradient effects on fracture behavior are not well comprehended.

These crack-induced stresses are affected by modulus gradients, however. For example, far-field tensile
loading on eclastic materials with gradients in modulus can cause mixed-mode (tensile and shear) crack
loading. This will obviously influence the extension criteria for the simple situation of cracks in materials
that grow continuously from the tip, which are known to kink or deflect when loaded in mixed mode.
Alternatively in certain classes of FGMs (e.g., composites), crack extension will entail a nonlocal criteria
involving reinitiation some distance away from the crack tip. In such an FGM, these reinitiations will
depend on the nonlocal stress field that reflects both the stress-intensity factor and the gradient-induced
effects, i.e., an FGM will fracture at a stress intensity, K, different from that in a homogeneous material.
Weibull statistical analysis provides a tool for describing the relationship between the probability of
fracture and the distributions of stresses and strengths near such a crack; the effects on the crack path of the
gradient-induced stresses can also be assessed. Effects on toughness and crack trajectory from gradients in
strength can similarly be explored though this framework.

To describe the mixed-mode crack extension criteria of materials governed by Weibull statistics near a
prior crack, which is the purpose of this work, relationships for the average location of fracture initiation
near an elastic crack tip and for the probable toughness are developed. These relationships are first applied
to infinite, homogeneous bodies and results are compared with classical deterministic behavior for kinking
and extension in response to stresses exactly at the tip. The analysis is then applied to infinite FGMs.
Although the analysis depends on failure initiating at locations away from the crack tip, in both these
applications, effects of higher-order terms in the stress field are not considered. In order to test the de-
pendence on conventional geometry-specific stresses away from the crack tip or on gradient induced,
higher-order terms, two fracture mechanics specimen geometries with various modulus or strength gradi-
ents are examined using the finite element method (FEM).
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2. FGM fracture mechanics

A common, although not universal, feature of FGMs is that they are multiphase composites where the
microstructure can often be described as a particle of one phase embedded in a matrix of another. In such
an FGM, the gradient shape has little influence at small length scales, as the mechanics are dominated by
the size, shape and interface conditions of the particle. Continuum mechanics analyses of an FGM usually
emphasize the large-scale phenomenon and treat the FGM as a smoothly graded material, employing only
“effective” properties of the isotropic homogenized composite at any given location. It is through the
variation of these effective material properties (e.g., elastic modulus) that the nature of the spatial variations
of the constituents is considered to affect the mechanical behavior of an FGM.

For FGMs with compositions including a brittle phase, e.g., ceramic, intermetallic or glass, fracture is an
important design limitation. If an FGM is a brittle/brittle composite (e.g., Mo/SiO, [4], Al,O5/Si3Ny [5],
SiC/TiC [6], ZrO,/Al, 05 [7]), linear-elastic fracture mechanics can be used to characterize such failure,
providing that effects of the gradient in elastic modulus are accounted along with the heterogeneous nature
of the fracture resistance for the multiphase microstructure.
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Fig. 1. Isostress contours for (a) maximum principal stress g, and (b) hoop stress oy for loading phase angles y = 0°, 45°, 90°. Contour
shapes indicate relative stress levels, with larger r corresponding to higher stress at that 6.
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The study of fracture mechanics for FGMs has yielded linear-elastic crack-tip stress field solutions for
various elastic gradients and boundary conditions. A fundamental result is that for locations asymptotically
close to the crack tip, the stress fields for a homogeneous material and an FGM are identical [8,9]. In this

limit, the stresses near the crack tip are described by the singular terms of the classical solution of Williams
[10]

_Kif'(0) " Kuf"(0)
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with

o= (v (2)] e 0§ oS (3]

for ¢ = g, the maximum principal stress. Fig. 1 compares isostress contours for principal and hoop stresses
for a sharp elastic crack with phase angles of y = 0°, 45° and 90° (Kj; = 0, K; = K1, K1 = 0).

As in homogeneous materials, K; and Kjj, the modes I and II stress-intensity factors, characterize the
symmetric and antisymmetric stress fields in the neighborhood of a crack tip; however, their values for a
given geometry and load will differ vs. the homogeneous case in both magnitude, |K| = \/K? + K}, and
phase angle, = tan~' (K /K;) [11].

With variable modulus E(x,y), strains associated with the Williams crack-tip field do not satisfy the
equations of compatibility. At finite distances away from the crack tip (where the elastic modulus differs
from that at the tip), the solution field must take on a different character. Jin and Batra [12] estimated the
size of the near-tip zone over which the stresses of the Williams singularity for homogeneous material will
asymptotically govern (the K-dominant region); this is where (|[VE|/E) < (1/r), (|V?E|/E) < (1/r?).
Therefore, the steeper the gradient in E, the smaller the region wherein Eq. (1) pertains. Outside the K-
dominant regions, the stresses depend on the variation in E, among other factors. However, extant solu-
tions have not been expressed directly in a series form for which the behavior of the next order terms can be
readily appreciated.

The mixed-mode analysis of Erdogan and co-workers [3,11] justified describing the asymptotic stress
field near a crack by pointwise multiplication of the conventional singular terms by the variation in Young’s
modulus, in the form E(x, y)/E(0,0) = e™*») Tt is proposed that more generally: '

E(x,y) KI I KH I
A 10) + Loy, 2
G/ E(O, O) /—an 1/( ) /—an ij ( ) ( )

for any E(x, y) which is a continuous function of position (taking Poisson’s ratio, v, as a constant). £(0, 0) is
the value at the crack tip.

Eq. (2) approximates the effect of modulus variation, E(x,y), on the stress over a wider region than
that in which Eq. (1) pertains. Eq. (2) satisfies the equations of compatibility exactly, although it does
not satisfy the conditions for equilibrium. It will therefore also be limited in its own region of domi-
nance.

The issue of the direction of crack growth in homogeneous materials was first addressed by Erdogan
and Sih [14], who predicted that a crack loaded in mixed mode would kink along an angle, 0, which

! See Becker et al. [13] for a derivation of this type of approximations for FGMs with spatially varying Young’s modulus.
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corresponds to the maximum hoop stress, gy, at the tip. Later analyses that explored the mode-mixity and
strain energy release rate, G, of a kinked crack gave more rigorous results, e.g., the optimal 0 gives
maximum G; these converge with the hoop-stress criteria at small kink angles (see discussions by Cotterell
and Rice [15] and Hutchinson and Suo [16]). The first analysis of crack kinking in FGMs [17] was limited to
application of the first-order homogeneous analysis of Cotterell and Rice [15]; implicit here is the as-
sumption that the gradient in Young’s modulus only affects the crack tip through mode-mixity, . This is
true for crack kinks of infinitesimal length growing continuously from the tip, but these assumptions cannot
be sustained if material inhomogeneity leads to longer kinks or for fracture events that are initiated ahead
of the crack tip in materials with variable strength. Recently, an FEM analysis by Becker et al. [18] revealed
information about adjustments in the stress field that arise from a sigmoidal gradient in elastic modulus
aligned normal to a small crack. In this instance, i changes over a dimension r ~ 1/b, attaining its as-
ymptotic value for rb < 0.2, where b = |VE|/E is the gradient coefficient. In contrast, a 7-like stress term
that adjusts o,,, only emerges at much smaller dimensions, i.e., at » < 1/10b, and does not approach its
asymptotic limit until far smaller values of r; it influenced kink angles, 67,, even for rb ~ 0.01. This gradient-
induced T-stress depends strongly on externally applied shear loading [18], unlike the 7T-stress for homo-
geneous materials that describes an increment in o, that is independent of position [10,19].

3. Ritchie—Knott—Rice fracture modeling
3.1. Weibull statistics

The effects of variability in strength of brittle materials can be described using extreme value statistics [2].
For a body experiencing spatially variable stress o, the probability of failure @, is

<I>:1—exp{/v01—l%:)dV], (3)

where ¥} is a reference volume and p(o) the strength distribution, i.e., the cumulative failure probability in
the small-volume limit. The three-parameter Weibull strength distribution has the form:

m

o1 —0

( ! ") for ¢ — g, > 0,
40

0 for 0 — 0, <0,

(4)

where ¢; is maximum principal stress and a,, oy and m are material constants to be determined by ex-
periment. The lower bound cutoff strength, o, is often set to zero for ceramics and glasses, thus defining the
two-parameter Weibull distribution, where gy is the scaling strength.

The Weibull function expresses the failure probability in terms of both the stress level and the volume
over which stress is distributed. The severity of this volume dependence is largely determined by the Weibull
modulus, 7. % In the limit of a purely deterministic material, as m — oo, failure is dictated by the maximum
stress at any point, with no scatter. For a high-quality engineering ceramic, m is in the range of 20-50.
However, for brittle/brittle composites, the presence of internal interfaces, local residual stresses, and more
microstructural variability often produce greater scatter in strength and so lower Weibull modulus. Indeed,
bend tests of a SiO,/Mo FGM have indicated a Weibull modulus of 4 pertains [20].

2 The cutoff stress o, also can mitigate the effect of volume. When a two-parameter distribution is applied to an infinite body, any
nonzero far-field stress leads to a failure probability of unity. Invoking a cutoff stress allows modeling of failure in an infinite body.
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Fig. 2. Results of Monte Carlo simulations for a brittle material near a sharp elastic crack. Mode 1, ( = 0°, square symbols) and
mixed-mode (i = 45°, circles) cases are displayed for Weibull modulus, m = 7. Points around the crack tip indicate the location of a
simulated fracture initiation. Strong skewing toward the negative y-direction is evident for the mixed-mode case, as is the greater
number of fracture initiations indicating a decreased toughness.

To demonstrate characteristic fracture initiation behavior near a crack in a homogeneous material with
strength described by Weibull statistics using the maximum principal stress, Fig. 2 displays the results of
Monte Carlo simulations (details are in Appendix A). Each point indicates the location of a fracture ini-
tiation for mode I (square symbols) and mixed mode, yy = 45°, (circles) loading. First, for the mode I case,
these data are scattered away from the x-axis, but are roughly symmetric about y = 0, giving a bimodal
distribution with an average angle of 4°. For the mixed-mode case, the data are strongly skewed toward the
negative y-direction, at an average angle of —81°, and failures are found near the crack flank where gy
vanishes. This indicates that, based on averaging several events, there are tendencies for straight-ahead
crack extension under mode I loading and downward growth under positive phase-angle loading. In ad-
dition, for the same number of trials, the number of fracture initiations under mixed-mode loading exceeds
that for mode I loading at the same |K| (764 sites vs. 111). This indicates a lower resistance to fracture
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initiation pertains at a given magnitude of stress intensity. This would result in a lower measured fracture
toughness. A framework for quantifying such expected trends is needed.

3.2. Statistical fracture modeling

Nonlocal, statistical crack extension criteria have been successfully applied for marginally brittle metals
but can be problematic, even if appealing, for purely elastic materials. The near-tip region of a crack is an
extreme example of the competition between stress and volume. At the tip of a sharp elastic crack, stress is
infinite but is experienced over exactly zero volume. Away from the crack tip, an increasing volume is
exposed to decreasing stress. The Ritchie-Knott—Rice (RKR) fracture model [21] in part used this com-
petition to motivate the description of fracture toughness and its variability in low-toughness steels in terms
of the stresses at a “‘characteristic distance” ahead from the crack tip, where fracture of a brittle inclusion or
particle triggers catastrophic crack growth.

The direct substitution of singular fracture mechanics stress fields into Eq. (3) yields an integral that is
not finite for most values of Weibull modulus. ®> This means that for any applied load, the global failure
probability would be unity and the fracture toughness would be zero. A number of arguments or adjust-
ments have been invoked to avoid this nonphysical result.

For materials with sufficient ductility, crack-tip blunting truncates the stresses near the tip and renders
the integral (Eq. (3)) finite. Numerical calculation [23] of a blunted stress field has been performed as well as
pseudo-analytic application [24] of a plastic notch field within the HRR singularity [25,26].

For elastic sharp cracks, special attention must be paid to the physical implications of applying Eq. (3)
near the crack tip. Regardless of the mechanism underlying the statistical fracture process, the charac-
terizing statistical parameters of the strength distribution will depend upon the volume of material tested to
obtain them. When this volume is smaller than can be expected to possess any of the dominant fracture
elements (carbide particle in low-toughness steels, grain boundary, etc.), the subsequent failure will no
longer be described by the same parameters as is the bulk material even if it is statistical in nature. Such
small volumes are likely to be stronger than implied, and may contribute little incremental probability of
failure. The implications of applying the Weibull distribution to the region of small volume and high-stress
gradient near the crack tip led Beremin [27] to invoke a cutoff radius around the crack tip, which was
excluded from the region of integration. Evans [28] ruled out the classical Weibull equation for p(¢) on
related physical grounds and analyzed a sharp crack tip with a substitute p(¢). Alternatively, the explicit
modeling of a notch rather than a sharp crack allows for integration of the stress field over the entire
material region, using Eqgs. (3) and (4) with the results depending the notch size [23,29].

Previous authors (e.g., Refs. [22,24,28]) have investigated the incremental failure probability ahead of a
crack tip, with the distance having the maximum failure probability deemed to be a characterizing pa-
rameter. These analyses utilized the first term of a stress field expansion (either Williams or HRR) within an
infinite body, which also required the use of a far-field cutoff criteria.

3.3. Crack trajectory

For mixed-mode fracture, considering the single distance of maximum failure probability is insufficient
compared to analyzing the full planar stress field. Although analyses of continuous crack kinking use the
hoop stress oy as the determinant of kink angle, 67, and critical load, for initiation of further cracking at a
distance away from the main crack tip, the flaws need not be aligned along lines of constant 0. Thus,

3 For the linear-elastic solution, the integral is not defined for (m > 4). In nonlinear materials, a similar result depends on m and the
strain-hardening coefficient [22].
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the principal stress g is used to determine flaw activation. The mode I elastic stress field possesses maxima
in gy at 0 = £60°; symmetry dictates that mode I crack advance must occur along 0 = 0°, but only sta-
tistically.

The expected location of the activated flaws is described from a spatial average of the failure probability.
With spatially varying stress, the average of such a coordinate & is

o
_ fVol é# dV
&= Tao)' (5)
val 70 dv
When ¢ = x, £ = y, the mean Cartesian coordinates, x and y, of the fracture initiation are obtained. From
these, the angle from the y = 0 plane of the average location can be described as ¢ = tan~'(y/x). Eq. (5)
also yields the mean distance 7 for & = r. (This is, in general, distinct from, and usually exceeds, the radial
coordinate of the average location, /x> + 32.)
It is possible to describe the relative contribution of stress fields laying at different angles to the total
failure probability. The median angle that bisects the angular distribution of failure probability, Os, is
defined through

Jplo)do
S ep(o)do
with f = 50%. Furthermore, bands of probability can similarly be defined, so that the proportion of the

failure probability between two angles is determined, i.e., 90% of failures will be initiated between 05 and
095.

=/, (6)

4. Procedures

Calculations for infinite bodies were performed with stresses derived from Eq. (2). Egs. (5) and (6) were
evaluated with the numerical integration package in Mathematica 3.0 (Wolfram Research, Champaign, IL,
USA). To evaluate finite geometries, the single edge-crack tension (SE(T)) and middle-crack tension
(M(T)) fracture mechanics specimens were modeled by the FEM. A plane-strain linear-elastic finite element
code FEAP 4.2 [30] was modified such that during integration of the stiffness matrix, the elastic constants
were evaluated at each of the Gauss points (3 per direction, 9 total). This allowed for quadratic variation
in modulus to be modeled within a single element.

The crack length, a, was kept constant in the FEM analyses, being equal to half the total width of the
sample in the x-direction, W. The mesh for the M(7T') sample was the same as for the SE(7') sample (Fig. 3),
except it contained an additional row of displacement boundary conditions along x = —a, preventing
displacements in the x-direction. The mesh consisted of 2300 total elements, 9233 nodes, with extensive
refinement using a fan array in the near-tip region, with the smallest element size on the order of @/10°. The
fracture mechanics element of Stern and Becker [31] was used in both meshes to model the first ring of
elements surrounding the crack tip. A second mesh with 4096 elements was also used to estimate the error
via refinement. The difference between the results from the two meshes was negligible, with average initi-
ation angles differing by <0.1°.

Stress-intensity factor calibrations were performed for each geometry and gradient. Pointwise evaluation
of the stress-intensity factors can be obtain through

(- (i o) {260} g

pug
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Fig. 3. Finite element mesh used in study of SE(7) fracture mechanics specimen. A high degree of refinement was used, with a focused
ring of elements surrounding the crack tip. A similar mesh with different boundary conditions was used for the M(T) sample.

Excluding the crack flanks and the first four elements at the crack tip, these values were averaged over
Gauss points within the next five rings of elements (360 elements total, those for —160° < 6 < 160° and
1/10° < /a < 1/10%). The precision of these results found to vary weakly with variance of this fitting
region. The results of Becker et al. [18] elaborate the need to fit in a range of b < 0.01 in order to avoid
effects of higher-order terms (and see Fig. 14).

The statistical modeling used results from each FEM calculation in the probability integral as the sum
over the finite elements, where for a variable ¢,

o de B elems Gauss pts
) —x~— ; ") Jw; | 8
[o(2) e | S| ®

i

where J is the Jacobian of the mapped element (calculated at the Gauss points), w;’s are the weights for
Gauss—Legendre quadrature, and B is an out-of-plane thickness. For a physical sample with a large
thickness, multiple fracture events are sometimes expected to occur along the crack front, with implications
discussed in Section 5.1.

Sigmoidal variation in modulus or strength was employed via a function g(x) or g(»):

g(;> = (c— 1) tanh (b(;>)+c. (9)
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Fig. 4. Sigmoidal gradients modeled. This shape allows for an arbitrarily steep gradient at the crack tip, determined by the parameter b.
The total range of variation within the sample is held constant, with g(c0)/g(—o0) = 20.

At the origin (usually, the crack tip), g(0) = c. A value of ¢ = 10.5 was chosen for the present analyses,
providing a 20-fold change in properties across the sample. As such, b, which was varied, is a measure of the
gradient steepness and (Vg/g(0)) = (b(c — 1)/c¢) = b. In the limit of b — oo, a sharp interface is formed,
with g(00)/g(—oc0) = 2¢ — 1. Fig. 4 displays shapes of the gradient for a range of . The Weibull modulus
was investigated as a variable but kept constant in any sample.

5. Results and discussion
5.1. Homogeneous infinite body analyses

Application of the Weibull crack initiation model to material with a mode I crack permits description of
the fracture toughness using statistical parameters (o, 0o and m) and perhaps other material parameters.
Extending the analysis to mixed-mode situations allows predictions about homogeneous material response
without specific reference to geometry effects.

5.1.1. Mixed-mode fracture toughness

Combining Egs. (1), (3) and (4) and inverting gives an expression for the stress intensity to produce a
given failure probability, Ky:

K(p _ O'O(I/E)/B)l/m\/z_n(_ ln(l _ gp))l/m

T m 1/m ) (loa)
(" /1(0,9)" d0] " F(m, R, p)
2-(m/2) _ 2—(m/2) 7 1/m
{R 5 z } for m # 4,
) i (10b)

CH

where f1(0,%) = o1v/2nr/|K| and can be inferred from Eq. (1). The integration is conducted over an an-
nulus between the inner cutoff radius, p, and the outer radius, R > p, which is still within the K-field (Eq.
(1)). Explicit values of K, scale primarily with a,(¥y/B)"/" p"=*4/2" for large m and a,(Vy/B)"/" /R4 for
small m. That is, for materials with large scatter in strength, toughness is dictated by the large volume of
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Fig. 5. Prediction for the mixed-mode toughness for an infinite body of a homogeneous material based on statistical fracture model for
various values of Weibull modulus (solid lines) compared to the deterministic prediction based on critical hoop stress (dashed line).

low-stress material as » — R; with little scatter, toughness is determined by the small volume of highly
stressed material nearest to the crack tip.

From these results, geometry-independent predictions of the relative fracture toughness for mixed-mode
loading are shown in Fig. 5 in terms of |Ks| or G. These toughnesses (being normalized to the mode I
toughness and thereby independent of the choice of @, for fixed R and p) predict (for a nonlocal, stress-
controlled failure mechanism) a reduction in fracture toughness under mixed-mode loading. Comparing the
isostress contours for iy = 0° and 45° in Fig. 1 explicates this behavior. The area contained within the 45°
contour is plainly larger than that of the 0° contour. This can be interpreted as a larger volume being
exposed to a given stress level at a given G, or an elevation of stress at a fixed distance, r, from the crack tip.
For a material described by initiation at a distance, this lessens the fracture toughness. This reduction in
toughness under mixed-mode conditions at moderate phase angles is stronger than that for a deterministic
analysis based on the maximum gy [14]. Note these |Kp| and G values describe self similar extension of an
unkinked crack; the values plotted for critical gg9 approximate the loading that gives an invariant K. or G,
at the tip of an optimal kink for continuous crack extension.

5.1.2. Mixed-mode initiation angle and distance

Under mixed-mode conditions, a crack will not, in general, grow in a self-similar manner; rather it will
kink off of the y = 0 plane. The average initiation angle ¢ calculated via Eq. (5) as tan~!(y/x) for a crack
sustaining mixed-mode stresses in an infinite homogeneous body is shown in Fig. 6. The predicted average
crack angles from the statistical formulation based on principal stresses are more negative for > 0 and
any m than those derived for the continuous growth of the crack tip along the path of maximum oy, i.e., 0,
[14], or maximum G, i.e., 0 [32], also shown. At higher m, these average initiation angles —¢ increase
toward the trend, also plotted, for the angle of maximum principal stress. However, the behavior would
only replicate this for extremely large m. Median angles, 05y, exhibit similar trends as does ¢.

This behavior is easily related to the mixed-mode stress fields plotted in Fig. 1. With pure mode II loading
(¥ = 90°), the largest principal stress lays along 0 = 180° and locations of average fracture tend toward this
extreme. The boundary conditions dictate that this is the o,, component. Deterministic, continuous-growth
analyses predict opening along radial lines and are restricted to the a49 component, which is zero at the crack
flank. This difference requires careful physical interpretation, as discussed in Section 5.1.3.
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Table 1
Approximate average distances for fracture initiation
m 2 3 4 7 8 10 16

hll

R/2 R/3 R/10 3p 2p 1.5p 1.2p

The mean distances of fracture initiation 7 in an infinite body, also calculated via Eq. (5), are listed in
Table 1; these are combined results for R/p = 10° and 105. With small values of m (2-4), 7 scales with the
outer limit of integration R, 7 ~ R/2 to R/10. For larger values, m > 7, 7 is on the order of the inner cutoff
limit of integration p, 7 ~ p to 3p, as is also depicted in Fig. 2. Results are independent of mode mixity.

For small m, the volume is a determinant, and for m = 2, the failure probability in a thin annulus at a
given r is uniform from the crack tip to infinity in the K-field. Hence, the mean distance is the average of the
integration limits (R + p)/2 ~ R/2. Taking the limit of large m, fracture is dictated simply by the largest
stress, that at {r, 0} = {p, £60°} for y = 0, but even for m > 11, 7 measurably exceeds p (~1.5p). Thus, the
first principal stress o1, not the hoop stress, is still the pertinent determinant for failure, as o, > g9y and
flaws are expected to be oriented randomly, not along 6.

5.1.3. Relevance and physical implications

The present model is formally limited to calculating the behavior of the first activated flaw, but this “first
failure” may or may not cause catastrophic crack growth. For flaw-intolerant materials such as glasses and
fine-grained ceramics, initial flaw growth and catastrophic failure generally are synonymous. However,
there is experience with brittle, polycrystalline or composite materials with low-Weibull modulus that near-
tip microcracked regions can develop [33,34] or especially that cracks bifurcate extensively [35]. Evidently,
flaws exist that are activated by the near-tip stress field, but do not yet possess the driving force necessary to
overcome the next higher-length scale fracture resistance (e.g., after cracking a weak or residually stressed
grain boundary). The statistical initiation analysis (Fig. 6) shows that such a flaw is unlikely to be located
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on the trajectory followed by a crack under the same loading conditions but that is continuously moving
according to the maximum-ayy (or G) condition (i.e., ¢ # 0. for y > 0). Even in the mode I case where the
statistical and continuous-growth analyses agree on the average angle, most of the microcracks will be
initiated at large angles to the crack plane.

When failure ensues from growth of a flaw ahead of the main crack, then further extension will even-
tually involve connection of this flaw and the main crack. The intervening ligament between the main crack
and the microcrack will invariably be fractured or torn under mixed-mode loading requiring much greater
dissipation [36]. Moreover, if various flaws along the crack front are triggered prior to criticality, which is
more likely with larger B and smaller m, they will each surely be at different angles to the crack plane. Thus,
the main crack and the microcracks may not immediately link, but rather a microcrack may next grow
forward whilst the uncracked ligaments act as bridges and further enhance the toughness [37]. By such
interactions and stress shielding, microcracking can be a toughening mechanism in ceramics [38,39] or more
likely serves as a trigger to more potent bridging mechanisms [40,41].

Further analysis of the width of the distribution of initiations can be descriptive of the spatial arrays of
microcracks that can develop and their potential for toughening. For mode I loading, only 50% of the
fracture initiations (075 — 0,5, Eq. (6)) occur in a band that spans 120° symmetrically about 0°. Although
there is little effect of Weibull modulus, it has a much greater effect for mixed-mode loading, with the 50%
band spanning 73° for m = 3 and only 21° for m = 11 as y — 90°. A wide dispersion in angles may be
indicatory of tough material involving rising R-curves, as is ¢ # 0., 0;. However, the problem of treating
subsequent failure after first fracture requires an entirely different statistical formulation and detailed
simulation of a noncontinuum microstructure with crack—crack interactions [42], which exceeds the present
scope.

Thus, very low-m materials, being highly variable locally, can be relatively notch-insensitive globally,
with large volumes of low-stress material dominating the probability analysis. For finite geometries, failure
would be influenced by stresses outside the K-field, so trends illustrated here are semi-quantitative, even for
first fracture, and their application would be geometry dependent. This effect could be somewhat mitigated
by the invocation of a cutoff stress g, in the Weibull strength distribution (Eq. (4)). Indeed the size of flaws
implied by the absence of a cutoff stress becomes unrealistic. This would offset some of the pathological
behavior when analyzing cracks in infinite bodies (K¢ o< R7%, Egs. (10a) and (10b)) and may lead to in-
stances where the important behavior occurs within the K-field and more closely reflects trends predicted
here, i.e., the pertinent outer cutoff radius should vary as R o< 1/a7.

For large m, one would expect the material to behave in a deterministic manner. Nonetheless, the
transition of the fracture mechanism from dictation by o, to gy does not follow simply by taking the limit
of large m for the present formalism. Thus, this statistical fracture model is unlikely to apply for single
phase materials without distributions of internal heterogeneities. Moreover, the nonlocal behavior for
intermediate m may be implausible regarding the strength characteristics implied for small volumes under
high stress, e.g., near a crack. For example, elementary calculations show that for structural ceramics, the
strength implied for small volumes using typical Weibull parameters underestimates the theoretical
strength.

For this model to pertain for an intermediate m (>5) material implies that failure does initiate near or
beyond some nonatomistic cutoff radius and that K¢ o p? behavior does occur. Clearly, for semi-brittle
materials wherein crack-tip blunting leads to diminished stresses in a region within r ~ 2K?/(oyaqE) [43),
the present type of approximation (perhaps using an HRR stress field) may be robust. For more brittle
composites, the lower theoretical strength of impure interfaces [44] and higher internal mismatch stresses
compared to a monolithic ceramic could lead to a small interface flaw (off the main tip, but still influenced
by the stress concentration of it) reaching criticality before the main crack. Then, it may be possible to
conceive p as being related to the volume wherein Egs. (3) and (4) fail, and, moreover, that the quantity
ao(Vy/B)"" pm=4/2m can serve as a useful scaling parameter for K.
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5.2. FGM infinite body analyses

In the prior section, analysis was limited to the classical K-field within homogeneous materials. For
cracks in graded materials, the stress and/or strength field at a distance away from the crack will vary with
the severity of the gradient, and the location and orientation of the crack relative to the gradient. The
fracture of an infinite FGM can be modeled similarly, addressing failure probabilities within the context
of adjusting a region lying within a K-field by introduction of Eq. (2) into the statistical analysis of Egs.
(3)-(6) and using Eq. (9) to describe gradients in E(x,y) and g,. Then, the two-parameter probability
function is

m

{(CE — 1) tanh (bg(¢ — &) + cp

B (CE — 1) tal’lh(bE(éo)) +ce

pla(r)) = [(co — 1) tanh(b,(c — ¢,)) + ¢
(ce — 1) tanh(b,(g,)) + ¢4

it
}00(0)\/2?

This is written to simultaneously allow sigmoidal gradients in both ¢, and E (characterized by b, and ¢, and
br and cg, respectively, but with m invariant for simplification); these are aligned along angles 6, or 0,
respectively, and can be offset from the crack tip by ¢, and &,. Situations of gradients in either oy or E
aligned parallel or normal to the crack plane with the crack tip centered in the gradient (¢,, £, = 0) are
examined first. For these, toughnesses are normalized to that from Egs. (10a) and (10b) using gy (b = 0),
which is ¢, with a strength gradient, and as normalized do not depend .

The exact size of the domain of integration in Eq. (3) need not be specified to assess the initiation angle
and relative mixed-mode toughness for homogeneous material, as these quantities involving integrations
over the classical K-field are independent of the choice of radii. However, determining effects of a strength
or modulus gradient on fracture behavior for an FGM requires specification of these dimensions, as it is
precisely the gradient-induced variations away from the crack tip that alter the fracture characteristics.
Only for sufficiently shallow gradients (low b), or for fracture processes dominated by the very near-tip
fields (high m), will the relevant character of the crack fields be the same as in the homogeneous case.
Several examples with sigmoidal variations in gy or E are examined with two sets of integration limits in the
r-direction, p = R/10* and R/10°, before generalizing results.

5.2.1. Parallel strength gradient, oy(x)

For a graded material with a parallel variation in strength oo(x) and nominal mode I loading, symmetry
dictates a solution with no kinking on average, ¢ = 0. However, the initiation fracture toughness Ky, i.e.,
the stress-intensity factor that will result in a stated first failure probability (say 50% or 90%), is affected by
the gradient strength.

Results for the normalized toughnesses are displayed in Fig. 7, for m from 2 to 11 and b(2R) =
{-=20,20}. For gradients in strength with b < 0, which correspond to cases of cracks growing into weaker
material, there is, as expected, a reduction in predicted initiation toughness. The effect is very strong for
lower m, as the failure behavior is increasingly volume dependent, and farther ahead of the crack tip larger
volumes of weak material are sampled. However, for cracks growing into stronger material (b > 0), a
similar, but smaller, degradation of initiation toughness trend is also evident, except for very small b. This
reduction derives from the sampling of all material in the neighborhood of the crack tip, not just that in
front, x > 0. The material located outside —n/2 < 6 < /2 is weaker than that just ahead of the crack tip,
and the steeper the gradient, the weaker that material. Given that the maximum principal stress at
0 = +114° is the same as it is at 0° (see Fig. 1), this weakness greatly affects the probability integral, al-
though not as much as for a negative gradient.
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Fig. 7. Mode I fracture toughness for an infinite body FGM with oy (x) based on statistical model. Results are displayed for two sets of
integration limits, p and R, with (a) p = R/10° and (b) p = R/10* and m from 2 to 13.

As with homogeneous mixed-mode fracture (Section 5.1), these results must be carefully interpreted.
Although material fracture is expected at a lower applied K than in the homogeneous case, a cracking
event behind the main crack tip is unlikely to trigger total failure of the body, but rather would lead to a
zone of widely distributed damage, or to a discontinuous crack extension that would later produce a
bridged crack.

5.2.2. Infinite body with parallel stiffness gradient, E(x)

Fig. 8 shows the range of predicted toughness for E(x) gradients. The strength, oy, is taken to be con-
stant. Results displayed show a toughening for b < 0 and low values of m. That is, for a given crack-tip K,
failure is less probable for cracks growing into more compliant material. In contrast, large reductions in
toughness are seen for b > 0, but again only for relatively low m.
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Fig. 8. Mode I fracture toughness for an infinite body FGM with E(x) based on statistical model. Stress field is a one-term modification
of the homogeneous field (Eq. (2)). Results are displayed for two sets of integration limits, (a) p = R/10° and (b) p = R/10°, and m

from 2 to 8.

The effect is clearly a result of the form of the stress field, the FGM modification of the classical field (Eq.
(2)). # For cases with elevated stresses ahead of the crack, b > 0, the failure probability is increased, and
thereby the toughness is decreased. The opposite is true of the b < 0 case at modest levels of —b, where
stresses ahead of the crack are lower for a given K.

5.2.3. Infinite body with perpendicular strength gradient, a,(y)
The classical formulae for crack kinking indicate the preferred direction for extension to be along 0° for
mode I loading, but for an FGM with a normal gradient in the Weibull strength, a,(y), the spatial variation

4 Commentary on the accuracy of this approximation can be found in Section 5.3.3.
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Fig. 9. Average initiation angle ¢ for an infinite body FGM with ¢, (y) based on statistical model. Results are displayed for two sets of
integration limits, (a) p = R/10° and (b) p = R/10%, and m from 2 to 15.

in strength results, on average, in a preferred nonzero initiation angle, ¢. Fig. 9 shows the range of pre-
dicted ¢, and as results are an odd function of the gradient strength (¢(b) = —¢(—b)), only for a positive
range of H(2R) = {0,5}. A strong dependence on ay(y) is observed, with the average initiation angle ap-
proaching 80° for very low Weibull modulus (m < 5). Even with higher m, a transition occurs to cracking at
80° although the critical gradient for this transition increases sharply with m.

Note that toughness results for gy(y) exhibit similar trends as for the case of oy(x), degradation of
toughness. The actual curves are more similar to the » < 0 region of Fig. 7. So, not only will the crack tend
to grow into the weaker material with a variation in strength present, oo(y), but fracture will initiate at a
lower applied K than in the homogeneous case.

5.2.4. Infinite body with normal stiffness gradient, E(y)
Crack initiation was studied for infinite bodies with E(y) in two ways, each with o, held constant. First,
the effects of gradient-induced terms in the stress field are examined by using a pure mode I field near the tip
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Fig. 10. K, for infinite body with the modified K-field (Eq. (2)) and a gradient in Young’s modulus normal to the crack, £(y). The near-
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for b > 0 cause the failure probability to be increased for a given K.

with the E(y) modification via Eq. (2). Fig. 10 displays the gradient effect on toughness for 5(2R) = {0,20}.
A degradation of over 25% compared to the homogeneous case is evident for low m (2,3), purely due to the
elevated stress in the regions of material with higher modulus E(y).

In general, the existence of a stiffness gradient normal to the crack plane causes mixed-mode loading at
the crack tip [3]. The FGM stress field depends on the geometry-specific relationship between the modulus
gradient and phase angle. The average initiation angles for an infinite sample with a range of Weibull
moduli, m = {2, 11}, are displayed in Fig. 11 for a range of »(2R) = {0,20} (as ¢ is an odd function of b).
The stress field is again approximated by Eq. (2); however, the phase angles used are increased with b to
match the (b) data of the calibration curve of the SE(7') specimen (subsequently in Fig. 13, Section 5.3.1),
which will facilitate later comparison.

For high m, results for this FGM field agree reasonably well with the cracking angles for a homogeneous
stress field (Fig. 6) at the same /. For instance, for b = 10, = 18.1°, and for m = 9-15, ¢pgm = —50° to
—60°, which is similar to that for homogeneous materials at this 1. At low m, the agreement is poor, with
cracking angles being much nearer to zero for graded materials. This difference arises because for the high
m, small p situation, cracking is dominated by the stresses very near the tip, which, being essentially those of
the classical Williams K-field, are affected by the gradient primarily through the phase angle, iy. As the
gradient is made steeper (from b ~ 10-20), this phase angle nearly plateaus. However, the assumed mul-
tiplicative effect of the modulus field on the stress field, Eq. (2), does not change in form as the gradient
becomes steeper. Thus, from Eq. (2), for a fixed phase angle, an increase in modulus will raise all the stresses
at y > 0 (relative to those in the homogeneous case with the same /). The resulting sampling of the whole
body will recognize this elevated stress level; for sufficiently low m, it will dominate, as implied by the
insensitivity to p for small m. Thus, the near-tip stresses for iy > 0 drive the crack in the negative y-direction
while the far-field stresses drive the crack in the positive y-direction, because the scaling by £(y) dominates
the effect of 1. This also leads to the average initiation angle being notably smaller (less negative) in some
FGMs computed with larger p, i.e., for intermediate m.
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Fig. 11. Average initiation angle ¢, for an infinite body FGM with E(y) based on statistical fracture model. Stress field is the one-term
modification of the homogeneous stress field (Eq. (2)), plus ¥ is increased with b (see text). Results are displayed for two sets of in-
tegration limits with p = R/10° (solid lines) and p = R/10* (dashed lines) and m from 2 to 15.

5.2.5. Implications

Gradients in material properties affect the toughness in several distinct ways, including the initiation
toughness and the crack angle and its dispersion. Both have implications for the final fracture behavior.

The trends depicted previously, as well as the expected behavior for other conditions, can be understood
in terms of the most probable radial distance from the crack tip for cracking to initiate. The local cu-
mulative cracking probability is p(¢) dV /¥, and so the fracture probability in an annulus at a given radial
distance from the tip scales with ffﬂ p(o)rdf. Thus, important trends are revealed by the behavior of the
weighted probability function p*(K, ») = p(a(r))r, based on p(o) as given in Eq. (11), (for which ¢(r) is from
Eq. (2)) and with the gradient aligned along a direction of high stress for the crack, i.e., high f;(0,¥), and b
selected to give relative weakening (high £/gy) ahead of the crack.

In a homogeneous material, cracking frequencies decrease with increasing r for all m > 2 in a linear-
elastic stress field. However, for a sigmoidal gradient in either o, or E, under certain conditions a local
minimum and maximum in p* exist at radial positions r, and r,, respectively, as depicted in Fig. 12. These
occur such that 0 < r, < r,, and they scale with 1/b, as described in Appendix B.

A key issue concerns the strength of the maxima, specifically the relative values of ¢ /0y and especially of
p* at r, vs. at the cutoff distance p. The cases of g((x) with 5(2R) = —20 and of E(x) with b(2R) = 20 for
m =3 and 11 provide an illustrative range of examples to examine. Values for ».» (from Egs. (B.1) and
(B.2)) are listed in Table 2 as are ratios of /g and of p* (at r, vs. at p) (from Egs. (B.4a) and (B.4b)) taking
bp = 107* and 0.01, the limiting conditions for the plots in Figs. 7-11. For most of these cases, maxima
exist for the weighted probability p*, but they span a range from the local peak in o/g, (being low but
relevant) vs. the value at p to o/agy(r,) (being too small to influence the cracking probability).

By extending the arguments made regarding the crack locations in homogeneous materials (Table 1) in
light of information in Table 2 and Figs. 7 and 8, it is argued that for FGMs the predominant region of
failure can be categorized into three situations, at least where the relatively weak region is ahead of the
crack, as is described next.



T.L. Becker Jr. et al. | Engineering Fracture Mechanics 69 (2002) 1521-1555 1541

AL B O B 10°
B N N -
- m=3 ‘ﬂ: 10—2
10*F —
- =10*
10° - .
—-10°
= 100 — -
T el 00 T3
6| o 10 : 16 oo
[ Tond = i
& = 102 &
105
- 10™
108
- 107®
-10 |
10 Lol Lol LN
0.001 0.01 0.10 1.00

Distance from crack tip, r /(2R) .

Fig. 12. Variation of the weighted local failure probability p*(¢) for an infinite body with gy (x) for m = 3 and 11. Gradient parameters
of —b(2R) = {0, 5,10, 20} are displayed. The tendency for fracture to initiate away from the crack tip is apparent as p*(o) can reach a
local maximum with a value exceeding p* at p.

Table 2
Parameters for local maxima in cracking probability
m=3 m=11

For ay(x), c =10 pb=0.01 pb =0.0001 pb=0.01 pb =0.0001
—r.b 3.26 3.26 2.69 2.69
a/al, /o]0, 0.55 0.055 0.61 0.061
p(r)/p(p) 54.4 5.45 1.12 8.65 x 10710
For E(x), c = o0 pb=0.01 pb =0.0001 pb=0.01 pb =0.0001
rb 1.7 1.7 0.6 0.6
a/al, /o]0, 0.14 0.014 0.19 0.019
p(r)/p*(p) 0.475 0.0467 5.56 x 1077 5.50 x 10716

#Inflection only for this condition.

If m < 4, the cracking sites are spread widely throughout the crack-tip stress field as for a homogeneous
material. As can be appreciated from Fig. 12, if p*(r,)/p*(p) > 1, relatively few failures will occur near the
crack-tip region itself. Generally, if m < 4 and cracking frequencies exhibit a local maxima, cracking will
largely be distributed between r, and R. Following the logic leading to Egs. (10a) and (10b), the toughness
will vary as

_oo(3) VR (2= 3)"" (= In(1 = @)™ 6y (00)E©0) / piosmy-1/2 m
e L2 fi(0,)" dg]l/m 00(0)E(00) /R (m < 4). (12a)

This limiting situation implies that virtually all the cracking occurs at » > 2/b, where the tanh functions
are saturated. For exact results in the plots of K4(b)/K4(0) shown in Fig. 7 for o¢(x) with b < 0, and in Fig.
8 for E(x) with b > 0, the relative toughnesses for m = 2 and 3 are approaching, but have not attained, these
limits, ~1/¢, and 1/2, respectively, which are insensitive to » and would obtain for |5(2R)| > 20. Owing to
the relative insensitivity to behavior at r < R, the toughness does not reflect the actual value of p*(r,)/p*(p),
as is verified by comparing the behavior in Table 2 for m = 3, with the exact results in Fig. 7, for » < 0 or in
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Fig. 8, with b > 0, where K4(b)/K4(0) for both is insensitive to the value of p despite the large differences in
p'(r)/p*(p) (Table 2).

For higher m, behavior is determined by whether cracks form just beyond p, as in a homogeneous
material, with K¢ nearly unchanged from Egs. (10a) and (10b) and insensitive to b, or instead are more
widely distributed. In behavior more likely to pertain for intermediate 1, crack locations would be clustered
near r, if b were large enough that p*(r,) > p*(p). From Egs. (B.4a) and (B.4b), this depends on b and ¢ as
well as on the relevant value of p needed to describe the fine-scale microstructural variations. For the cases
involving oy (x) illustrated in Fig. 7, where the curves have begun to decline sharply with increasing —b, the
transition to failure being near r, has initiated. The transition is largely complete at —b(2R) = 20, for
m < 11 with b = 0.01 and for m < 6 with bp = 10~*. This shift cannot occur with a modulus gradient unless
bry > 0. In the limit that most failures occur just at and beyond r,

E 1/m ao(o0) & g (1/2)—(2/m)
Ko x 60<B ) 0(0) E(c0) ( |b] ) (m > 4). o)

Here, the expected toughness decreases with rising || because the stress at the probable cracking location
increases with || for a given level of K; this follows from Eq. (12b) as r,b is nearly constant, as shown in
Appendix B.

Thus, for FGMs loaded to have a region of high ¢/g, ahead of the crack tip, this fracture mechanism
involving nonlocal failure is more likely to apply than for homogeneous materials; nonetheless, this ap-
plicability still depends, in part, on the value of p (or bp), which reflects other details at the crack tip that
preclude direct crack extension being preferable.

The behavior with other gradient alignments or phase angles is more complicated. If a gradient is ori-
ented so that the direction of high E/g is aligned with the region of high f;(6,y) for the stress field, a
reduced toughness results with even modest gradient intensities; moreover, the region of damage will be
much more focused for both degradation regimes (low and intermediate m) with a gradient present. This is
shown in Table 3, which lists the median cracking angles 0sy and the dispersion in cracking angles, ex-
pressed as 0;5 — 0y, for several situations involving gradients in oy with 5(2R) = {—20,0,20} and for
R/p = 10°. In particular, 675 — 05 is smaller if » < 0 and yy = 0.

In contrast, if the gradient alignment is opposite, the toughness may rise with modest gradient levels in
low-m materials, but diminish for more intense gradients even with higher m values. This is clear in Fig. 7
for variations in go(x) and is implied by extrapolating the curves for gradients in £(x) in Fig. 8 to higher
levels of —b. In essence, material beyond the crack by » > 1/b(0 > 0) becomes relatively stronger than
without a gradient, and so total failure probabilities can be reduced for m low enough that cracking at large
r is relevant. However, the degradation in Ky with a steeper gradient entails fracture at the crack flanks

Table 3

Effect of gradient on angular dispersion of first fracture locations
ao(x) m=3 m=11 ao(y) m=3 m=11
b 050 075 - 025 050 075 - 025 b 050 075 - 025 050 075 - 025
l// =0° (90-[’(7\mur = 00)
-20 0° 70° 0° 64° —20° 73° 42° 72° 24°
0 0° 124° 0° 118° 0° 0° 124° 0° 118°
20 0° 244° 0° 124° 20° —73° 42° —72° 24°
l// = 450 (eolul\mm = 520)
-20 —19° 51° —27° 28° —20° +46° 39° —83° 80°
0 —74° 100° —88° 72° 0° —74° 100° —88° 72°

20 —146° 32° —150° 25° 20° —90° 57° —90° 38°
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(which is normally unlikely), as shown in Table 3 for oo(x) at b > 0 for which 6075 — 0,5 has become very
large (244°). From inspection of Fig. 1, it can be seen that if a cracking condition that depended upon the
hoop stress, agy, were pertinent, the tendency of weakening effects to outweigh local strengthening would be
lessened owing to the narrower angular range of singular crack-tip stresses.

Based on the tendency for weakening to predominate, it is not surprising that for nonparallel gradient
alignments, a decline in initiation toughness generally follows, as for £(y) (Fig. 10), for which the toughness
declines with b almost as rapidly as when the gradient is aligned along E(x) with b > 0 (Fig. 8).

The probable angle of crack initiation is obviously shifted by the presence of a gradient. It should be
noted that the angular location of cracking even when it occurs near p can be markedly changed by rel-
atively small levels of b, i.e., at levels having only minimal affects on K. This emerges from comparing the
levels of b that markedly change the crack angle with a gradient in g(y) (Fig. 9) with the much larger levels
of —b needed to alter the toughness with oo(x) (Fig. 7). This obtains because the angular dependence of the
crack-tip stresses, f1(0, ), especially for oy, is rather weak over a wide interval, Fig. 1a, and so the angle of
the highest stress can be shifted even by a shallow material property gradient.

An equally important issue concerns whether the range in probable crack initiation angles, or the dif-
ference in expected initiation angle, ¢, and stable extension angle, 0, is made larger or narrower by the
presence of a gradient. Expected trends are again illustrated in Table 3. For situations in which the range of
initiation angles is raised with increasing gradient, a microcrack or bifurcation zone would be wide, or more
diffuse, especially for low m. This should raise the difference between the loads for first cracking and final
failure, i.e., steepen the R-curve. Where the zone of probable cracking is narrower, i.e., focused, the fracture
surface will be less rough and the R-curve relatively flatter, e.g., for gy (b < 0).

For mixed-mode loading, the expected microcrack zone tends to be less wide (Table 3). However, the
average location depends strongly on m and is unlikely to be on the path of the eventual main crack
(¢ # 07). Tt is assumed that subsequent cracking would statistically tend to be along the path of maximum
G/G.(x,y,0), and the resistance could be heterogeneous as well. When these angles differ, strongly rising R-
curve effects could also be very significant.

Thus, the presence of a strength gradient would almost invariably lower the toughness for first cracking;
however, unless the weak material were largely ahead of the crack, the corollary effect would be to
markedly widen the damage zone perhaps enough to induce a net increase in final toughness if a substantial
trend develops toward first cracking occurring near the crack flanks. For modest modulus gradients, the
effects on first cracking and final cracking would tend to be the same rather than offsetting unless the
gradient were nearly normal to the crack. Thus, situations with some toughening both for first cracking and
from a rising R-curve can exist.

Finally, it should be emphasized that if the position of the crack tip is shifted such that bry ~ 1, the
qualitative differences between gradients in oy and E will be switched (as follows from Egs. (B.1)-(B.3),
(B.4a), (B.4b)). That is more toughening would be accessible with g, gradients and more degradation in
K¢ for initiation could derive with modulus gradients, but accompanied by opportunities for R-curve be-
havior.

5.3. FEA of finite-sized specimens

Although dependencies of the toughness and initiation angle on the modulus gradient emerge for the
infinite body FGM (Section 5.2) due to the gradient-induced modification of the K-field, at finite r, other
deviations from the classical K-field can also be expected. Even in homogeneous materials for cracks in
finite bodies, boundary condition-induced higher-order terms in the Williams expansion will dictate the
stress field at increasing distance from the crack tip. Thus, it should be appreciated that with a nonlocal
fracture criterion, fracture toughness could depend upon the actual specimen size and geometry, especially
for an FGM. By comparing the results for an infinite body (Sections 5.2) and those derived from FEM
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results for a specific specimen geometry, it can be determined how effects of geometry and gradient are
likely to interact or dominate.

After describing the calibration of the single-edge crack tension SE(7) sample, several examples are
given in which failure probabilities are computed based on stresses in the entire graded sample excluding a
zone within either p = a/10° or a/10°. These toughnesses are normalized to that of a homogeneous body
(b = 0) for the finite sample, which differs in detail from that in Eqgs. (10a) and (10b), and are, thereby,
insensitive to the failure probability, @, chosen as a basis for comparison. Samples having gradients in
either oy or E aligned with the crack tip centered in the gradient (g,, £, = 0) are assessed.

5.3.1. Specimen calibration

A modulus gradient parallel to the direction of the crack, £(x), retains the symmetry of the homogeneous
problem so that Kj; = 0. For homogeneous materials with load boundary conditions, the stress-intensity
factor is not influenced by Young’s modulus; however, for an FGM, the magnitude of Kj is increased for
b < 0 and decreased for b > 0 as shown in Fig. 13 for the SE(7) geometry with a = W /2 (Fig. 3). This
behavior is consistent with other observations relating the far-field load and K; for an FGM with E(x) [3].

Deterministic failure comparisons based on applied loads can be directly inferred from the results of Fig.
13. This indicates that cracks growing into positive b gradients are expected to carry higher loads than
homogeneous or negative b materials when fracture is determined by an invariant K. or near tip oy.

The effect of a modulus gradient normal to the crack plane, E(y), is to take a nominally mode I geometry
and load the crack tip in both tension and shear. The mixed-mode calibrations for the stress-intensity
factors, K and Kjj, are also shown in Fig. 13. K is an even function of b, K;(b) = K;(—b) and Kj; is odd.
Both stress-intensity factors are amplified with increasing ||, but with a resulting monotonic growth in the
tip phase angle, = tan~!(Ky;/K;). This trend seems to plateau for 5(2a) > 10, as y shifts from 0° to 18°
while b(2a) goes from 0 to 10 but by only an additional 2° while 5(2a) goes from 10 to 20.

The subsequent results depend on the stress field of the entire sample, not just aspects pertinent to the
asymptotic crack-tip field, Eq. (1). The deviations of the stresses for a homogeneous material from those of

Normalized Stress Intensity Factor, Kva/P

Tip phase angle, ¥°

N
(=]

[N) Lol bbb b Ll H‘H\‘H\’H\‘
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20 -10 0 10
Modulus gradient parameter, b-2a

Fig. 13. Stress-intensity factors, K; and Kj; for the SE(T) fracture mechanics sample for modulus gradients E(x) and E(y) (solid lines).
The gradient in the y-direction results in a shearing of the crack tip, such that that the tensile geometry results in a mixed-mode loading
with y increasing in magnitude for increasing gradient (dashed line).
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Fig. 14. Deviation of yy-stresses ahead of the crack tip from classical K-field values for an SE(T) specimen with E(x) gradient for cases
with b(2a) = {-20,0,20}. Normalized moduli E(x) are plotted for comparison. The approximation in Eq. (2) would appear to better
describe the near-tip stresses, but underestimates the magnitude of the gradient-induced adjustment.

the K-field are displayed in Fig. 14 (curve labeled b = 0). These stresses deviate weakly from those of the K-
field compared to those with an E(x) gradient present, also shown for »(2a) = {20, —20}.

5.3.2. SE(T) with parallel strength gradient, o,(x)

For an SE(T) sample with strength gradients o((x) but homogeneous modulus, E, the variation in the
relative fracture toughness, Ky, is shown in Fig. 15 as a function of strength gradient with b(2a) =
{—20,20}. Fig. 15a displays a reduction in toughness for all gradients when m < 7. With the larger cutoff
region (Fig. 15b), the degradation in toughness occurs for m < 11. The p = a/10° case (Fig. 15a) biases the
results toward the homogeneous situation, which lessens the gradient effects on toughness. It is worth
noting the general agreement between results in Figs. 7 and 15, the latter of which only utilize the modulus-
corrected Williams expansion near the crack tip (but have an outer cutoff R). However, discernable dif-
ferences exist even for intermediate m values for which most cracking occurs between p and r,.

5.3.3. SE(T) with parallel modulus gradient, E(x)

The calculated statistical fracture toughness, Kp, for a range of modulus gradients E(x) and uniform
strength is plotted in Fig. 16. Clearly, for a crack growing into a stiffer material, the toughness of the
structure is decreased for material with low m. Conversely, toughening occurs for cracks growing into a
more compliant material.

These results, obtained via FEM analysis of the SE(7) geometry, utilize the complete stress field, and
effects are due to both the modulus gradient and the finite geometry. Prior calculations with a linear E(x),
rather than a sigmoidal variation, exhibited similar trends, which differed in detail [29]. For either geometry,
it can be seen that the loss of toughness with » > 0, based on the local K, is offset by the modulus shielding
for comparisons based on applied load.

The trends of a large influence of a gradient occurring with low m correspond to the probable location of
fracture initiation shifting away from the crack tip, to where the stress solution deviates most from the
classical singular form, as depicted in Fig. 14 for the yy-component. These results indicate that although K
is a valid scaling parameter for the stress field very near the crack tip for an FGM, the dependence of the
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Fig. 15. Effect of variable strength go(x) on normalized fracture toughness of an SE(7') specimen. Two near-tip cutoff regions are used,
p=a/10° (a) and a/10° (b).

stresses away from the crack on the gradient in E renders Ky to be an inaccurate predictor of failure if it
initiates away from the tip. These effects arise because stresses ahead of the tip, and hence the cracking
probability, are higher with a positive gradient than would exist for a homogeneous material at the same K.

The trends roughly agree in Figs. 8 and 16; however, the infinite body analysis only utilizes one cor-
rection to the singular term in the asymptotic expansion near the crack tip and underestimates the mag-
nitude of gradient effects. The reason can again be seen in Fig. 14. Here the o), stress ahead of the crack tip
(along y = 0) normalized by the K-field value is plotted for b = {—20,0,20}; also plotted are the normalized
variations in the elastic modulus for the same gradients. The homogeneous stress solution deviates slowly
from the classical K-field, with exact agreement as x — 0 (by nature of the fitting routine for K) and 10%
deviation at x/a = 0.1. In contrast, the exact solutions with gradients deviate from the K-field by 10% at
x/a = 0.007, meaning x|b| = 0.13. Eq. (2) describes the stress field in the FGM as that of the homogeneous
field multiplied by the pointwise variation in modulus. Fig. 14 demonstrates that although this method-
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Fig. 16. Effect of variable modulus E(x) on normalized fracture toughness of an SE(T) specimen. Two near-tip cutoff regions are used,
p=a/10° (a) and a/10° (b).

ology yields a better estimate of the stress field than does the Williams K-field, it underestimates the true
change for FGMs, even at x|b| < 1. Evidently, the infinite body analysis of Section 5.2.2 uses a stress field
which varies too weakly with b and, especially for 5 < 0, the overall effect on fracture behavior is under-
estimated. For example, for m = 3 and » = —10 in the infinite body with the larger cutoff region, K¢(b)/
K4(0) = 1.03, and for the SE(T) geometry, Ko(b)/K4(0) = 1.35.

5.3.4. SE(T) with perpendicular strength gradient, a,(y)

For the SE(T) specimen with normal gradients in strength o,(y) varying over b = {0, 5}, the average
initiation angle is displayed in Fig. 17. The results agree well with those in Fig. 9, with a large negative
initiation angle predicted for a positive gradient, ¢b < 0. The lower the value of m, the larger the aver-
age initiation angle will be, until ¢ = 90 at sufficient b. As greater distances from the crack tip participate
in the fracture event at low m, the region with lower strength material will predominate. For high m, (>9 for
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Fig. 17. Average initiation angle for the case of pure mode I loading and oy (y) in an SE(T') specimen. Strength gradient skews average
location of fracture such that nonzero initiation angle is preferred. Two near-tip cutoff regions are used, p = a/10° (a) and /103 (b).

p =a/10°, >15 for p = a/10%), the very near-tip region dominates the calculation for the b levels explored,
where the strength variation is limited and the symmetry of the stress field dictates that ¢ = 0. Overall, the
results are similar to those in Fig. 9; however, the sensitivity to increasing m is notably greater for the finite
sample, indicating a role for the classical T-stresses (as E is uniform here), which are compressive and not
particularly strong for this geometry [45].

5.3.5. SE(T) with perpendicular modulus gradient, E(y)
The average crack initiation angles for the SE(7T') specimen with a modulus gradient E(y) for a range of
m from 2 to 15 are shown in Fig. 18(a). As ¢ is an odd function of gradient strength, only a range of
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Fig. 18. Average initiation angle with a modulus gradient E(y) in (a) single-edge notched tension, SE(7T), and (b) middle-cracked
tension, M(T'), geometries. The gradient induces a positive crack-tip phase angle as seen in Fig. 13, but the gradient-induced higher-
order stresses cause a positive initiation angle for very low m in both geometries.

b ={0,20} is plotted. The dramatic effect of m is evident. First, for high m(>10), positive gradients
yield negative initiation angles, i.e., ¢b < 0. The high-stress near-tip region of the sample, which experi-
ences a shift in phase angle, dominates these results. As seen for the infinite body analysis for both ho-
mogeneous material and FGMs, positive phase angles lead to crack initiation angling downward, ¢ < 0 for
Y > 0.

In contrast, for very low values of m( <4), the average direction of initiation is actually positive for
positive gradients, ¢b > 0. This is, in part, in response to higher stresses associated with the increasing
elastic modulus in the positive y-direction, which are only important when cracking is widely distributed. In
comparison with the results in Fig. 11, this effect of a gradient with low m is more drastic. This is again due
to the fact that Eq. (2) underestimates the effect of E(y) on stresses at finite distances from the crack tip,
including treating all components in proportion.
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5.3.6. M(T) specimen with perpendicular modulus gradient, E(y)

To further elucidate the effect of geometry in the presence of a modulus gradient, a middle-cracked
tension (M(7)) fracture mechanics specimen was also analyzed with a variation £(y). When homogeneous,
this geometry is known to develop a markedly different stress distribution outside of the K-dominant re-
gion. The nonsingular compressive 7-stress in the M(7') sample is nearly five times that in the SE(T) sample
[45]. Also, there is a change in sign in the deviation of the o,, stress from the K-field due to higher-order
geometry terms [46].

The two salient trends, namely tip-dominated, negative angles for m > 7, and positive average initiation
angles for m = 2-4 are evident for both sample geometries. However, the initiation angles for large b are
shifted to about 20° lower values for all m for the M(7T') sample. The other differences are mainly expressed
for the intermediate m where neither tip nor very far-field stresses dominate. It is interesting to note that the
phase angle—gradient relationship for these two samples was found to be very similar, thus indicating that
the differences in Fig. 18 arise on the basis of b through higher-order stress terms and not simply through
W(b) at the tip. At low m, the crack initiation trends in Fig. 18(a) and (b) for the two samples are more
similar, compared to the infinite case, Fig. 11, but differences are notable.

Note that recent FEM calculations for a small crack show that the shift in phase angle induced by a
normal modulus gradient only develops at a dimension of b ~ 1 [18]. If the effect is similar for these large
cracks, then for m < 4 material, where most cracking initiates at rb > 1, the relevant phase angle would be
small and the effect of higher stresses in the stiffer material, at y > 0, would appear to dictate the crack
locations giving ¢ > 0.

5.3.7. Implications for fracture experiments and application to FGMs

Effects with far-field mode I loading of FGMs with variable a¢(x), 6o(y), E(x) and E(y) and the crack tip
centered in the gradient have been explored. For more general cases with far-field mixed-mode loading and
an FGM with arbitrary oo(x,y) and E(x,y), the space of possible combinations is prohibitively large to
survey completely. The results thus far presented for m > 6 indicated that behavior is somewhat similar
between the finite and infinite bodies. For both situations, the gradient is more influential with larger p, and
the general similarities indicate that the trends regarding crack location discussed in Section 5.2.5 pertain
for finite geometries. Therefore, Eq. (2) for analysis of infinite bodies can be used as in Eq. (11) to anticipate
some results of cases not explored here; however, the geometry-induced shifts in phase angle with elastic
modulus gradient must be known. Using Eq. (11), it can be observed that as a plausible approximation for
real materials, oy o< E, and so some of the gradient effects could tend to compensate; nonetheless, large
effects of induced y, Figs. 5 and 6, still pertain, which may ultimately prove to be more influential at higher
m (Figs. 11 and 18).

For lower and intermediate m, the fracture behavior may not be adequately determined by the stresses
even within the gradient-corrected K-field of a finite geometry. Even when failure occurs near the crack tip,
gradient-induced perturbations influence crack angles (see discussion concerning, Figs. 9 and 11, Section
5.2.5). For these cases, the combined effects of near crack tip, gradient induced and geometry determined
stresses must be taken into account. This requires numerical determination of the stress field, e.g., through
FEM analyses, which is a more expensive procedure than the semi-analytic modeling of infinite bodies. It
is reiterated that when such effects yield first fracture locations that are well away from the eventual
crack path for complete failure, various mechanisms may be triggered that can raise the ultimate tough-
ness.

Note that for ductile materials, the nonlinear fracture mechanics is most simply characterized using a
single parameter, J; however, this still leads to an appreciable geometry-to-geometry variability in measured
crack-growth resistance for many materials. In those materials, the 7T-stress (or, nearly equivalently, the
constraint factor, Q) has been evoked to account for the effects of the next term in the nonlinear stress field
expansion about the crack tip [19,47]. This two-parameter characterization allows the description of the
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material not only at the crack tip, but also at finite distances, and thereby is more successful in determining
critical conditions for crack initiation and growth.

The characterization of the stress field in an FGM by the single parameter K has similar limitations. The
approximate formulation (Eq. (2)) alludes to the form of the next higher-order term in the expansion.
Although in the asymptotic near-tip limit one could also assume the existence of a parallel T-stress, this
suffers from the same incompatibility discussed in Section 2. The next-order stress term will therefore not be
strictly constant, but using near-tip stresses in an FGM to calculate an effective 7T-stress may prove to allow
for comparison with known effects in homogeneous materials. In a recent study by the authors [18], a kink-
length effect was found for the preferred (deterministic) kink angle in an FGM. For kink lengths shorter
than the gradient dimension, 1/b, this effect can almost entirely be accounted for in terms of this effective
T-stress, which may depend more on modulus gradient than finite geometry.

It seems clear that the addition of a gradient-induced 7-stress can be used to more accurately describe
the stress field in an FGM and also provide a more powerful two-parameter scheme to predict statistical
crack behavior in different geometries and gradients, at least for the intermediate and high-m material. For
longer kink lengths in the above mentioned study, other factors came strongly into play, in part owing to
the reduction in induced phase angle for b > 1 already mentioned. Thus, for materials with m < 4, in
which cracking occurs over dimensions far exceeding 1/b, further corrections will also be needed. (Actually,
ignoring the modulus induced phase shift in conjunction with using Eq. (2) may be a useful approximation
at lower m.)

Finally, there are situations in which the stress fields decay rapidly as occurs under an indenter. Then,
effects of nonlocal cracking on fracture criteria and causing distributed damage could be great, but using
a description based on an asymptotic stress field will be of limited utility.

6. Summary and conclusions

The application of two-parameter Weibull statistics to near-crack fracture problems has been elaborated
and extended to the case of mixed-mode loading, with predictions made for both the toughness and average
initiation angle of a crack in a brittle material. Conditions have been explored to justify the use of a
nonlocal fracture model for brittle materials. This fracture model allows for the statistical correlation
between near-tip stresses and first fracture for heterogeneous materials, and possibly for predicting the
emergent shape of microcrack damage zones. This is especially interesting for problems in composite-type
graded materials (FGMs), where stress fields vary from the homogeneous form away from the crack tip and
the strengths can be highly variable throughout. A combination of infinite-body and finite geometry an-
alyses reveal that

o For statistically homogeneous materials, the mixed-mode loading of an elastic crack subject to a nonlo-
cal stress-controlled failure criteria yields a reduction of the fracture toughness by up to 30%, depending
on the phase angle y and Weibull modulus m. This is roughly 150% of the effect predicted by mecha-
nisms dictated by g9, usually invoked for continuous kinking.

e The location of microcracks initiated by the main crack stress field do not coincide with the trajectory
determined by maximum energy criteria, usually being at larger angles. Thus, diffuse damage zones and
crack bridging may develop, thereby, expectedly leading to R-curve toughening for materials that fail by
crack initiation away from the main crack.

e Gradients in Weibull scaling stress o lead to a dramatic decrease in initiation toughness for most align-
ments of the gradient. However, for cracks growing into stronger, 5 > 0, materials or with gradients nor-
mal to the crack gy (y), weakening for first fracture will involve crack growth initiating at angles that may
induce R-curve toughening that will offset this drop in toughness for final failure.
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Calibration of effects of gradients in modulus E(x) for a single-edge notched fracture mechanics speci-
men show an increased stress-intensity factor for cracks growing into more compliant materials, and
crack-tip shielding when growing into a stiffer material.

When comparing FGMs with gradients in Young’s modulus, E, and the same crack-tip stress intensity,
the crack growing into the steeper negative gradient, b < 0, will be tougher for moderate gradients;
whereas most other alignments and very steep gradients lead to a loss of initial toughness.

Gradients in modulus E(y) for a SE(T) or M(T') fracture mechanics sample lead to initiation behavior
qualitatively similar to that in homogeneous materials having the same phase angle for m > 5, with the
average angle ¢ < 0 for b > 0; for lower Weibull modulus though, further effects of an elastic modulus
gradient on the stress field cause the average fracture initiation site to be skewed toward the stiffer (high-
er stress) region, ¢ > 0 for b > 0.

Infinite-body analyses predict many of the gradient-induced features seen in a finite geometry. When
comparing two fracture-mechanics specimen geometries, additional gradient effects on crack-initiation
angle were found to be important. There is scope for further analysis that explores the several higher-
order terms indicated to be important in the stress fields for FGMs.

The evolution of damage near a crack tip will vary strongly with the Weibull modulus, m, of the mate-
rial. For low m materials, a distribution of damage is expected before catastrophic crack advance. The
effects of considering ““action-at-a-distance’ are many-fold. Most importantly, the first flaws to be acti-
vated in a mixed-mode loading are most likely not in line with what is considered to be the energetically
most favorable path. Therefore, it is expected that materials with wide distributions of strength will de-
velop diffuse damage zones around the crack tip. At elevated loads, one expects that these microcracks
will link up, or the main crack will jump beyond this damage zone. Under either scenario, the tearing or
bridging that results will act as an R-curve mechanism. These effects could be greater in FGMs than for
nominally homogeneous materials.
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Appendix A. Monte Carlo simulations

To illustrate the effects of the elastic near-tip stress field on a material with strength described by Weibull

statistics, a Monte Carlo simulation was performed. A domain, 200 units square, was considered with a
crack tip at the center {0,0}. For the reasons discussed in Section 3.2, a region (with radius 1 unit) was
excluded surrounding the crack tip. For each loop in the simulation algorithm:

Select random location within the domain (outside of the region of exclusion).

For element with size AV = rr80,centered at {x, y}, compute #*" from Eq. (3) and Williams stress field
(Eq. (1)), 6# = 0.1 unit and 66 = 10°.

Select random {®3" } (between 0 and 1)

test

O < N — “hit”; the value of {x,y} is stored as {x,y}"; NS = NS 4]

test

¢Ax

A > @M — “miss”; the value of {x,y} is discarded
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Fig. 1 displays the results of 5 x 10° runs. From these results, averages can be calculated from the lo-
cation of the “hits”.

1 Nhits Nhits

ave __ hit ave __ hit
o= \hits in yo= \hits Zy i
i=1 i=1

For this average location, the angle is tan~!(y*"¢/x*¢). For the mode I case, this is 4.3°. For a phase angle
of y = 45° case, the angle of the average location is 80.7°. The different mode loading also resulted in a
greater number of “hits” (fracture initiations), with 111 hits for the mode-case and 764 for the mixed-mode
case.

Appendix B. Derivation of the weighted probability function maxima and minima

As discussed in Section 5.2.5, the incremental fracture probability in an annulus at a given radial dis-
tance from the tip depends on [* p(c)rd0. As such, important trends are revealed by the behavior of the
weighted probability function p*(K,r) = p(or)r, where p(a) is given in Eq. (11).

When the gradient is aligned along a direction of high f;(0, ) with b selected to give relative weakening
ahead of the crack, local minima, at r,, and maxima, at r,, in failure probability can occur. The locations
can be found based on dp*/dr =0, and it can be ascertained by inspection that these occur such that
0<r, <r,.

With only a gradient in g, present, along the ray of greatest weakening (6 = —6, and ¢ — —r), the local
minimum and maximum in p*(K, r) are at positions that satisfy
2b(r—r
br — m—2 Cq € (r=r0) +24 (200 - 1) e—Zb(r—ro) . (Bl)
8m e — 1 Co Co

By inspection, it can be shown that for ¢, > 2.3, such a maximum exists for nearly all m > 2; if ry = 0, the
maximum typically occurs where r.b ~ 2-3, being larger at lower m. Instead, with a gradient in E, along a
ray aligned toward the stiffer direction (60 = 0z and & — r), which corresponds to that of rising stress, then
r, and r,, satisfy

_ 2b(r—rp) _
br<m 2>< e )[e Yy e l)e_m_m)} (B.2)

8m cp— 1 CE Ccp

The existence condition for a maximum, derived assuming b(r — ro) = bAr >> 0 (so that exp —bAr ~ 0),
can be expressed as

br > <m4—;12><056—f1)+%—%1n{<m4f’2)(22__11>]. (B.3)

For large ¢ and ry = 0, a maximum exists only if m < 4.51; usually r.b =~ 1-2, being larger at smaller m.

For either type gradient, if m = 2, then r, — 0 and r, — oo. The rise in ¢(r) owing to the change in
E(o0)/E(0) is only (2cg — 1)/cg if rp = 0; so an actual maximum is less likely to occur than with a gradient
in gy where the corresponding ratio is 1/c,. However, with a crack tip displaced back from the gradient
center, bry > 0, the modulus change ahead of the crack tip is greater and the behavior would be more like
that with a gradient in gy and ry = 0, as can be seen better in the following.

One important issue concerns the strength of the maxima, in particular the relative values of ¢/0y and
especially of p* at r, vs. at the cutoff distance p. The latter is described by

* (m/2)—-1 (m/2)—1
P _ (pb Co ~ (PP cr, (B.4a)
P (p) r.b —(¢, — 1) tanh(r,b) + ¢, r.b 4
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P (r) pb \ "7 [ —(cp — 1) tanh(r,b) + cp ) (m/2)-1
== ~o( 22 , (B.4b)
p (p) rxb CE be

respectively, for a gradient in oy and for a gradient in E with ¢z being large.

From Fig. 1a, it can be seen that the major contributions to the angular integrations occur over an
interval often exceeding —2n/3 < 0 < 2n/3 for the principal stress, but this does depend on the gradient
strength. Thus, log-log plots of " p(¢)rd0 vs. r would be similar to that of p* vs. r in Fig. 12, but adjusted
owing to the r- and b-dependence of the angular integration. Specifically, with the gradient aligned parallel
to the crack so as to give relative weakening, these adjustments would reduce the effects of stress variations
at very high angles from the crack plane and so flatten the local maximum somewhat. They would also
slightly increase the distance needed to reach the second asymptotic portion of the curve and would reduce
the level of that portion of the curve for low m by a factor near unity from that expected based on the ratio
of ¢/09|.,/0/00l, along the gradient. Owing to this rather weak sensitivity of the angular term, the results
from Egs. (10a) and (10b) can be applied to give estimates of the limiting toughness for large 4 for two
situations; these are given in Egs. (12a) and (12b) based upon values from Egs. (B.1) and (B.2).

It is unclear, however, how these relations pertain in the limit as b — oo where other pathologies de-
scribed for interface cracks would develop, such as singularities in K (e.g., Refs. [16,48]). However, the form
of the phase shifts for cracking parallel to an interface are quite different than that for the graded material
and a T-stress develops at dimensions small compared to the gradient change that has no counterpart in the
solutions for sharp interface cracks which pertain only for 6 > 1 [18].
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