
Fatigue of polycrystalline silicon for
microelectromechanical system applications: crack growth

and stability under resonant loading conditions

C.L. Muhlstein a, R.T. Howe b, R.O. Ritchie c,*

a Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA
b Department of Electrical Engineering and Computer Science, The Berkeley Sensors and Actuators Center,

University of California, Berkeley, CA 94720, USA
c Materials Sciences Division, Lawrence Berkeley National Laboratory, Department of Materials Science and Engineering,

University of California, Berkeley, CA 94720, USA

Received 15 June 2002; received in revised form 27 July 2002

Abstract

Although bulk silicon is not known to exhibit susceptibility to cyclic fatigue, micron-scale structures made from

silicon films are known to be vulnerable to degradation by fatigue in ambient air environments, a phenomenon that has

been recently modeled in terms of a mechanism of sequential oxidation and stress-corrosion cracking of the native oxide

layer. To date, most stress-life (S=N ) fatigue tests on such silicon films have been conducted using resonant-loaded
specimens. Consequently, there is a need to establish the interaction between the dynamic loading and the driving force

for fatigue-crack growth. In this paper, finite element models are used to establish the relationship between natural

frequency, specimen compliance, and linear-elastic stress–intensity factor for a commonly used micron-scale, micro-

mechanical fatigue characterization structure. These results are then incorporated into a general, lumped parameter

model to evaluate the stability of fatigue cracks in resonant-loaded structures. It is well known that the applied stress

amplitude and corresponding driving force for crack advance depend on the system damping, as well as sample geo-

metry. Consequently, changes in damping caused by cycling in different environments can have a significant mechanical

effect on the stability of fatigue cracks. In the case of the fatigue characterization structure used by the authors, the

models show that tests conducted at atmospheric pressure subject cracks to a monotonically increasing driving force for

crack advance. However, when the damping in the system is reduced (e.g., by testing in vacuo) fatigue cracks may

arrest, independent of environmental effects on crack growth. Therefore, testing of structures loaded in resonance at a

fixed natural frequency in vacuum should not be considered equivalent to an ‘‘inert’’ atmosphere. Finally, the finite

element models are applied to polycrystalline silicon structural films to determine the critical crack lengths (�5.5–66
nm) and an average fracture toughness (�0.85 MPapm) from specimens subjected to fatigue cycling at stress am-

plitudes ranging from �2.2 to 3.5 GPa.
� 2003 Published by Elsevier Science Ltd.

Keywords: Fatigue; MEMS; Resonance; Polycrystalline silicon; Crack stability

*Corresponding author. Tel.: +1-814-865-1523; fax: +1-814-865-2917.

E-mail addresses: clm28@psu.edu (C.L. Muhlstein), howe@eecs.berkeley.edu (R.T. Howe), roritchie@lbl.gov (R.O. Ritchie).

0167-6636/03/$ - see front matter � 2003 Published by Elsevier Science Ltd.

doi:10.1016/S0167-6636(03)00028-0

Mechanics of Materials xxx (2003) xxx–xxx

www.elsevier.com/locate/mechmat

ARTICLE IN PRESS

mail to: clm28@psu.edu


1. Introduction

For the characterization of fatigue behavior

with either total-life or fracture-mechanics meth-

odologies, there is a need to simulate cyclic stres-
ses, fatigue lifetimes (i.e., cycles to failure), and

crack-growth rates in the laboratory. This requires

the application of cyclic forces to test specimens at

reasonably high frequencies. In actuality, the

loading frequency sets practical limits on the

maximum fatigue lives and minimum crack-

growth rates that can be measured (ASTM, 2001a;

ASTM, 2001b; Saxena and Muhlstein, 1996).
Where large numbers of cycles are required, elec-

tromechanical and resonant systems are often

employed; indeed, with the developing emphasis

on ‘‘gigacycle’’ fatigue (Stanzl-Tschegg and

Mayer, 2001) and microelectromechanical systems

(MEMS), there has been a renewed interest in such

testing. Macroscale resonant fatigue testing sys-

tems utilize axial fatigue and fracture mechanics-
style specimens, and have been used for both

stress-life and crack-growth studies (e.g., Mayer,

1999). In contrast, the micromechanical fatigue

systems used for micron-scale fatigue testing gen-

erally behave like simple harmonic oscillators

consisting of an elastic specimen (i.e., a spring)

attached to a mass. Indeed, the micromechanical

resonant fatigue characterization structure shown
in Fig. 1 has been widely used to evaluate the fa-

tigue behavior of thin structural films of mono and

polycrystalline silicon for MEMS applications

(Allameh et al., 2000; Brown et al., 1997; Muhl-

stein et al., 2000, 2001a,b, 2002a,b; Van Arsdell,

1997; Van Arsdell and Brown, 1999).

Despite its poor damage tolerance and low

fracture toughness (�1 MPapm (Ballarini et al.,

1997; Chen and Leipold, 1980; Kahn et al., 2000;
St. John, 1975; Wong and Holbrook, 1987)), sili-

con has emerged as the dominant structural ma-

terial for MEMS. Given the absence of plasticity

and crack-tip shielding phenomena at room tem-

perature, one would not anticipate thin-film silicon

to be vulnerable to failure via traditional ductile or

brittle material fatigue mechanisms (Ritchie, 1999;

Suresh, 1998). However, using micromechanical
resonant fatigue characterization structures similar

to that shown in Fig. 1, a number of investigations

have demonstrated that micron-scale silicon ex-

hibits ‘‘metal-like’’ stress-life (S=N ) fatigue be-
havior in ambient air (Brown et al., 1997; Kahn

et al., 1999; Kapels et al., 1999; Muhlstein et al.,

2000, 2001a,b). Our recent studies have indicated

that the fatigue degradation process occurs via
mechanisms confined to the SiO2 native oxide

layer that forms upon exposure to the atmosphere

(Muhlstein et al., 2002a,b); specifically, this reac-

tion-layer fatigue process involves the sequential,

stress-assisted oxidation and stress-corrosion

cracking of the native oxide, as described in

Muhlstein et al. (2002b). However, to understand

how such fatigue damage accumulates in these
S=N fatigue tests, it is necessary to fully charac-

terize the micromechanical fatigue testing struc-

Fig. 1. SEM of the micron-scale fatigue characterization structure containing a notched cantilever-beam specimen. The (a) mass, (b)

comb drive actuator, (c) capacitive displacement sensor, and (d) notched cantilever-beam specimen are shown. The nominal dimen-

sions of the specimen are as indicated in the schematic.
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ture, and in particular to calculate the driving

force for crack advance under resonant loading

conditions.

During micromechanical fatigue characteriza-

tion of silicon films, the compliance of the speci-

men increases as fatigue damage accumulates in
the form of incipient crack growth. This degra-

dation induces a corresponding decrease in the

natural frequency of the structure. Much like

macroscopic fracture-mechanics-based investiga-

tions (e.g., Chati et al., 1997; Chondros et al.,

1998; Mahmoud et al., 1999; McGuire et al., 1995;

Yokoyama and Chen, 1998), this change in spec-

imen compliance can be correlated with crack
growth through analytical or numerically based

models. What is less obvious is that this change in

natural frequency can lead to a rapid reduction in

the stress amplitude, as depicted schematically

in Fig. 2. Thus, the driving force for fatigue failure

depends not only on the specimen geometry, but

also on the damping in the system. Accordingly,

the development of appropriate models of the fa-

tigue characterization structure is a crucial step in

understanding fatigue damage accumulation in

polycrystalline silicon.

The primary objectives of this work were to

evaluate the fatigue-crack growth behavior and

fracture toughness of polycrystalline silicon thin
films and to determine the stability of the cracks

under resonant loading conditions used in the fa-

tigue characterization structure shown in Fig. 1.

First, finite element methods were used to evaluate

the dynamic behavior and stress distribution of an

uncracked structure. Similar models of a cracked

structure were then developed to determine the

natural frequency and linear-elastic crack-tip pa-
rameter, K. These models were then employed in a
lumped, dynamic model of the micromechanical

fatigue characterization structure to evaluate the

stability of fatigue cracks. Finally, the finite element

and lumped parameter numerical models of the

structure were applied to experimental data from

previous stress-life fatigue tests to evaluate the

crack-growth rate and fracture toughness behavior
of the nþ-type, thin-film, polycrystalline silicon.

2. Experimental and numerical methods

To determine the natural frequency, compli-

ance, and stress distribution for the fatigue char-

acterization structure shown in Fig. 1, dynamic
and quasi-static finite element models were con-

structed for both uncracked and cracked struc-

tures. In the case of the cracked structure the

relationships between the crack length and the

natural frequency and the stress–intensity-factor,

K, were also determined.

2.1. Micromechanical fatigue testing

The fatigue characterization structure (Fig. 1)

used for thin-film silicon S=N fatigue testing was

originally developed by Van Arsdell (1997). This

structure is square in overall shape (�300 lm on a
side), and is analogous to a specimen, electro-

mechanical load frame, and capacitive displacement

transducer found in a conventional mechanical
testing system. The specimen is a notched canti-

lever beam that is in turn attached to a large,
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Fig. 2. Schematic of the effect of increasing specimen compli-

ance on the applied stress amplitude in a mass-spring system

under loading at a fixed natural frequency. The dashed lines are

the amplitude of stress (displacement) experienced by the simple

harmonic oscillator as defined by Eq. (A.2) in the Appendix A.

The system is excited at the initial natural frequency of the

undamaged system, f0, but as damage accumulates the com-
pliance increases. If the damping in the system is sufficiently

low, the resonant-loaded structure can experience a significant

reduction in the driving force for damage accumulation and

crack advance.
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perforated plate that serves as a resonant mass.

The mass and beam are electrostatically forced to

resonate and the resulting motion is measured

capacitively. On opposite sides of the resonant

mass are interdigitated ‘‘fingers’’ commonly re-

ferred to as ‘‘comb drives’’. One side of these
drives is for electrostatic actuation; the other side

provides capacitive sensing of motion. The reso-

nance generates fully reversed, constant amplitude,

sinusoidal stresses at the notch, i.e., a load ratio, R
(ratio of minimum to maximum load), of )1. The
structure is designed for testing at �40 kHz and is
excited at a fixed frequency that is updated peri-

odically during the test. The notched beam speci-
mens are �40 lm long, 19.5 lm wide, and 2 lm
thick. A 13 lm deep notch is located 9.8 lm from
the base and has a root radius of about 1 lm based
on scanning electron micrographs (SEM) of the

structures. The toroidal plate spanning 60� (inner
radius, rinner ¼ 30 lm, outer radius, router ¼ 300
lm) rotates about the midpoint of the remaining
ligament of the notched beam and serves as a mass
to lower the natural frequency of the structure.

The specimens are tested at a constant applied

electrostatic force amplitude until failure occurs by

complete separation of the beam at the notch.

During the test, the natural frequency of the

structure decreases as fatigue damage accumulates

at the notch. The natural frequency of the struc-

ture is periodically characterized (about every 60 s)
throughout the fatigue test by measuring the am-

plitude of the resonance as the excitation fre-

quency is varied by �50 Hz around the resonant
frequency of the structure, f . The dynamic re-
sponse of the structure is fit with a second-order

polynomial and the maximum is taken as an esti-

mate of the resonant frequency. The fatigue

characterization structure is then excited at this
frequency with a constant force amplitude until

the frequency sweep and curve fit are repeated

(Muhlstein et al., 2001a). The motion is measured

via the rate of change of capacitance, calibrated

using the method detailed in Muhlstein et al.

(2001a), and is monitored during every test. Thus,

the natural frequency as a function of time data

are a record of damage accumulation and a loss of
resonance indicates specimen failure. The applied

stress amplitude and crack-growth behavior are

determined from the finite element methods de-

scribed herein.

In total, 28 specimens of nþ-type polycrystalline

silicon, �2-lm thick films were tested to failure

and the natural frequency as a function of time

monitored. In previous studies, the fracture sur-
faces, crack paths, and microstructure were ex-

amined in detail (Muhlstein et al., 2001a). In this

study, the focus of the work is on the interpreta-

tion of the change in natural frequency and the

stability of cracks in the specimen.

The design of the micromechanical fatigue

characterization structure is amenable to a wide

range of processing techniques and material sys-
tems, and has been used for studies of both silicon

and silicon–germanium structural films. During a

recent fabrication run of a polycrystalline SiGe

surface micromachining process (Franke et al.,

2000), in addition to the ‘‘standard’’ notched

cantilever beam geometry, a new specimen variant

was introduced for characterization of the fatigue

properties of brittle structural films. A �3 lm
square hole was added to the center of the re-

maining ligament of a notched cantilever beam in

order to blunt the crack and, under resonant

loading, to halt motion of the structure. Fig. 3

shows SEM of single- and double-notched speci-

mens with centrally located holes. The polycrys-

talline SiGe was an alloy of approximately 33

atomic percent silicon and 66 atomic percent ger-
manium. The film was in situ doped, pþ-type and

was used in the as-deposited condition with a

polycrystalline germanium sacrificial layer. The

sacrificial layer was removed using 50% H2O2 for

1.5 h followed by drying at 110 �C in air for 2 min.
The structures were excited near the natural fre-

quency of the uncracked structure and the ampli-

tude of the electrostatic excitation was rapidly
increased until the structure ceased to resonate.

After testing, the structures were examined in the

SEM, without the use of conductive coatings

typically employed to improve image contrast of

low conductivity materials.

2.2. Numerical modeling

A series of planar, finite element models were

evaluated using a commercial software package
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(ANSYS v. 5.7). Modal and quasi-static structural
analyses of the uncracked structure were used to

determine the dynamic response of the structure

and the applied stress amplitude for a given dis-

placement. The fatigue characterization structure

was modeled as an elastically isotropic, notched,

cantilever beam and mass, with the geometry de-

termined by SEM of released devices, as summa-

rized in Fig. 1. Six-node, triangular, plane-stress,
solid elements with constant thickness were used in

the model and small elastic deformations were

assumed. The displacements of nodes located at

the base of the notched cantilever beam were set to

zero to achieve the ‘‘built-in’’ boundary conditions

of the structure. The mesh in the vicinity of the

notch was refined until solutions converged. An

average of the Voigt and Reuss bounds for a
random, polycrystalline silicon aggregate (Young�s
modulus, E ¼ 163 GPa, Poisson�s ratio, m ¼ 0:23
(Simmons and Wang, 1971)) was used for the

elastic properties of the elements. The density of

the polycrystalline silicon in the modal analysis
was assumed to be the same as the bulk, single

crystal form (q ¼ 2329 kg/m3 (Tatsumi and Oh-

sake, 1988)). A subspace extraction method was

used to determine the eigenvalues and eigenvectors

for the system, establishing the first in-plane nat-

ural frequency of the structure. An identical,

plane-stress model with unit thickness was used to

establish the degree of nonideality (i.e., the devia-
tion from a mass-spring system) of the structure.

The maximum principal stress at the notch root,

r1, and angular rotation of the structure, h, about
the midpoint of the remaining ligament, (W � D),
due to a unit force applied at the center of mass of

the plate in a direction perpendicular to the long

axis of the beam, were used to determine the re-

lationship between angular rotation and maximum
principal stress.

Modal and quasi-static structural analyses of

cracked, notched, cantilever-beam structures were

performed using the same material properties and

Fig. 3. SEM of (a) single (f0 ¼ 16:88 kHz) and (b) double-notched (f0 ¼ 23:17 kHz) cantilever-beam specimens with centrally located
holes in fatigue characterization structures fabricated using a polycrystalline SiGe surface micromachining process (Franke et al.,

2000). The specimens were excited at a fixed natural frequency and the amplitude rapidly increased until motion of the structure ceased.

Cracks initiated at the notch root and were arrested by the hole, preventing complete separation of the beam (insets), illustrating the

interaction between the resonant loading conditions and crack advance in the structure.
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finite element package. Akin to the uncracked

structures, small deformations and elastic isotropy

were assumed, displacements of nodes at the base

of the cantilever structure were set to zero, and the

material properties of an ideal polycrystalline sili-

con aggregate were used. The model of the fatigue
characterization structure, with a single crack lo-

cated on the centerline of the notch, was con-

structed with six-node, triangular, plane-strain

elements. The singularity at the crack-tip was

modeled with twelve circumferential, unskewed

elements, 1/20 of the crack length in size. The re-

maining element size was refined until model

convergence was achieved. As with the uncracked
structure, a subspace extraction method was used

to determine the eigenvalues and eigenvectors for

the system, establishing the first in-plane natu-

ral frequency and mode shape of the structure.

Structural analyses of the cracked structure were

performed using six-node triangular plane-stress

elements with thickness equal to that of the

structure in a configuration that was otherwise
identical to the models used for the modal ana-

lyses. A unit force was applied at the center of mass

of the plate in a direction perpendicular to the long

axis of the beam and the resulting angular rotation

used to establish the specimen rotational compli-

ance (sh ¼ 1=kh). The stress–intensity was then

calculated from the displacement field immediately

behind the crack-tip (Anderson, 1995; Broek,
1986). The size of the crack was gradually increased

to establish the nondimensional compliance,

sEt, and stress–intensity geometry function,

f ða=ðW � DÞÞ, for the cracked characterization

structure using standard fracture-mechanics pro-

cedures (Anderson, 1995; Broek, 1986).

To evaluate the stability of cracks in structures

under the resonant loading conditions, a lumped
parameter modeling approach was used. The dy-

namic behavior of the system was modeled as a

damped, forced, mass-spring oscillator that was

driven at or near its natural frequency, f0. The
stiffness of the spring, k, and crack-driving force,
K, were determined from fracture-mechanics so-

lutions (e.g., Tada et al., 2000) and the mass of the

model system established by the geometry of the
structure. The amplitude of motion and the asso-

ciated driving force for crack advance were deter-

mined from the relationship between the

amplitude and frequency of the excitation wave-

form and the damping characteristics and natural

frequency of the system (e.g., French, 1971), as

detailed in the Appendix A. The damping of the

system was assumed to be proportional to the
velocity of the mass in the system, as is typical of

many simple systems.

Crack stability under resonant loading was

evaluated by calculating the maximum stress–

intensity, Kmax ¼ DK=ð1� RÞ, where DK is the

stress–intensity range and R is the load ratio, for
an applied force or moment amplitude. From the

system compliance, the natural frequency of the
resonator could then be determined. The crack

was extended, lowering the natural frequency of

the structure, but the excitation frequency re-

mained unchanged. The new stress amplitude was

determined using the revised structure compliance,

thus permitting the associated crack-driving force

to be calculated. The process of extending the

crack and calculating the new stress amplitude was
repeated to generate a plot of the driving force as a

function of crack length. The effect of damping on

the system was investigated by modifying the

quality factor of the initial configuration, Q0, as
defined in the Appendix A.

This general procedure was applied first using

compliance and stress–intensity solutions in the

literature for three common geometries summa-
rized in Table 1 (after Tada et al., 2000): a micron-

scale, edge-cracked beam in bending (t ¼ 2 lm,
W ¼ 19:5 lm), a single-edge-cracked plate in ten-
sion (t ¼ 2 lm, W ¼ 10 lm, L ¼ 20 lm), and a
center-cracked plate in tension (t ¼ 2 lm, W ¼ 5
lm, L ¼ 20 lm), where t is the thickness, W is the

width, and L is the length of the specimen. The
edge-cracked beam in bending was attached to a
mass with a mass-polar moment of inertia the

same as the mass in the structure shown in Fig. 1

(Jh ¼ 1:024	 10�17 kgm2), giving an initial natu-

ral frequency of 96.2 kHz. The edge-cracked and

center-cracked plates in tension were modeled with

a 4.1288	 10�5 kg mass that gave an initial natural
frequency of 14.1 and 10 kHz, respectively. In a

gravitational field, this corresponded to a tensile
preload of �20 MPa, a small fraction of the

strength of silicon structural films (3–5 GPa
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Table 1

Fracture-mechanics solutions for the mode I stress–intensity factor, KI, and compliance, s, of the edge-cracked beam in bending, edge-cracked plate in tension, and the
center-cracked plate in tension geometries (Tada et al., 2000)

Description KI ¼ r
ffiffiffiffiffiffi
pa

p 
 f a
W

� �
s ¼ 1

k

Center-cracked plate in

tension

f a
W

� �
¼ 1� 0:025 a

W

� �2 þ 0:06 a
W

� �4n o ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sec pa

2W

� �q
s a

W

� �
¼ 2a

EWt �1:071þ 0:25 a
W

� �
� 0:357 a

W

� �2 þ 0:121 a
W

� �3 � 0:047 a
W

� �4�

þ0:008 a
W

� �5 � 1:071 
 log 1� a
Wð Þ

a
W

�
þ L
2EWt

Edge-cracked plate in

bending

f a
W

� �
¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 tan pa

2Wð Þ
p
cos pa

2Wð Þ 0:923þ 0:199 1� sin pa
2W

� �
 �4h i
sh a

W

� �
¼ 24

EW 2

a=W
1�a=W

� �2
5:93� 19:69 a

W

� �
þ 37:14 a

W

� �2n

�35:84 a
W

� �3 þ 13:12 a
W

� �4oþ 12L
EW 3 t

Single-edge notched plate

in tension

f a
W

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2W
pa tan

pa
2W

� �q

 0:752þ2:02

a
Wð Þþ0:37 1�sin pa

2Wð Þð Þ3
cos pa

2Wð Þ s a
W

� �
¼ 2a

EWt
a=W

ð1�a=W Þ2

� �
0:99� a

W 1� a
W

� �
1:3� 1:2 a

W

� �
þ 0:7 a

W

� �2� �n o
þ L
2EWt
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(Greek et al., 1999, 1997; Kapels et al., 1999;

Sharpe et al., 1998, 1999; Tsuchiya et al., 1997,

1998)). The lumped model was then applied to the

notched cantilever-beam fatigue structure (Fig. 1)

using results from the finite element models to es-

tablish the appropriate compliance and stress–in-
tensity factors. The mass polar moment of inertia,

Jh, of the micromechanical fatigue characterization

structure was calculated from the geometry of the

plate and found to be 1.024	 10�17 kgm2. This

mass-spring system model corresponds to an initial

natural frequency of �43.5 kHz.
The finite element and lumped-parameter dy-

namic models were applied to experimental results
from previously reported stress-life fatigue data

(Muhlstein et al., 2001a). The linear relationship

between the maximum principal stress, r1, and the
angular rotation of the structure provided the

basis for determining the nominal stress from

the experimentally measured angular rotation. The

dynamic model of the structure was then utilized

to evaluate the crack-growth rates in the structure
using the following procedure. The measured

natural frequency of the structure, fcrack, was
normalized with respect to the initial natural fre-

quency of the structure, f0. A linear interpolation
of the normalized natural frequency as a function

of normalized crack length, a=ðW � DÞ, developed
from the dynamic model was used to determine the

crack length as a function of time. The maximum
stress–intensity immediately prior to failure was

taken as an estimate of the fracture toughness of

the material.

3. Results

3.1. Resonant-loaded beams with holes

Polycrystalline silicon–germanium fatigue

characterization structures similar in geometry to

Fig. 1 were excited with a continuously increasing

stress amplitude at a fixed frequency in laboratory

air until motion ceased. The single notched speci-

men with a centrally located hole had a first in-

plane bending mode natural frequency of 16.88
kHz and failed at an excitation torque of �4.7	
10�10 Nm. The double-notched specimen with a

centrally located hole had a first in-plane bending

mode natural frequency of 23.17 kHz and failed at

an excitation torque of �5.7	 10�10 Nm. In both
cases the specimens were ramped manually and

failure occurred in less than 5 s, corresponding to

excitation ramp rates in excess of 1	 10�10 Nm/s.
Observation of the single and double-notched

beams with centrally located holes using the

scanning electron microscope revealed cracks em-

anating from the root of the notch that terminated

at the hole, as shown in Fig. 3.

3.2. Dynamic and quasi-static finite element ana-

lyses

The dynamic and quasi-static behavior of the

uncracked fatigue characterization structure was

evaluated using the finite element methods de-

scribed above. The first in-plane natural frequency

of the structure, f0, was extracted from the finite

element models and the mode-shape evaluated by

inspection of the exaggerated displacements. The
natural frequency of the uncracked structure was

found to be 43,217 kHz for both the full (t ¼ 1:97
lm) and unit thickness (t ¼ 1 lm) plane-stress
models. The torsional stiffness, kh, of the un-

cracked structure due to a unit force applied at the

center of mass of the toroidal plate in a direction

normal to the long axis of the cantilever beam was

found to be 7.6605	 10�7 Nm/rad. When kh is
combined with the calculated mass polar moment

of inertia, the natural frequency of the mass-spring

system is calculated to be 43,531 kHz. The maxi-

mum principal stress at the root of the notch due

to a unit force applied at the center of mass was

linearly related to the angular rotation of the mass

(1.0107	 1011 Pa/rad). The spatial distribution of
the stresses along the centerline of the notch was
extracted from the finite element solution and are

shown in Fig. 4(a) where the principal stress, r1, is
normalized by the outer fiber principal stress in the

beam remote from the notch, r1;1, and the dis-
tance from the notch root, r, is normalized by the
remaining ligament size, (W � D). The calculated
stress concentration factor, SCF, was found to be

2.04. The maximum principal stress along the
centerline of the notch decreases as 1=r2 for r=ðW�
DÞ < 0:1, as shown by the curve fit in Fig. 4(b).
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Similar to the previous case, the dynamic be-

havior of the cracked fatigue characterization

structure was also evaluated using finite element

methods. The first in-plane natural frequency of

the cracked structure, fcrack, was extracted from the
model and the mode-shape was evaluated by in-

spection of the exaggerated displacements. The

relationship between normalized crack length
ða=ðW � DÞÞ and normalized natural frequency

(fcrack=f0) for the plane-stress model is shown in

Fig. 5 and fit to the ninth-order polynomial shown

in Table 2. Although the relationship is nonlinear,

in the early stages of crack growth a �1 Hz change
in natural frequency corresponds to �1 nm of

crack extension. Interpolation methods should be

used when calculating small normalized crack
lengths, i.e., a=ðW � DÞ < 0:01, since the quality of
the curve fit in this range is poor.

Standard fracture-mechanics analyses were

used to determine the compliance, s, and stress–
intensity factor, K, for the cracked fatigue char-
acterization structure from the plane-strain finite

Fig. 4. Stress-concentration effects of the notch in the cantilever

beam in the fatigue characterization structure. (a) The nor-

malized stress (r1=r1;1) at location, r, along the centerline of
the notch is shown as a function of the remaining ligament

(W � D) of the cantilever-beam structure. The stress concen-

tration factor, SCF, from the finite element model is similar to

general results from (Noda and Takase, 1999). (b) The 1=r2

decay of the maximum principal stress near the root of the

notch.

Fig. 5. (a) The relationship between normalized crack length

ða=ðW � DÞÞ and normalized natural frequency (fcrack=f0) for
the plane-stress (full-thickness) finite element model of the

notched cantilever beam in the fatigue characterization struc-

ture. (b) The behavior for small ða=ðW � DÞÞ and the associated
ninth-order polynomial fit from Table 2 are shown.
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Table 2

Curve fits of the modal and fracture-mechanics solutions for the notched, cantilever beam in the fatigue characterization structure shown in Fig. 1

Description Validity Function

Natural frequency 0 < a
ðW�DÞ 6 0:85

fcrack
f0

¼ 1:004� 0:07804 a
ðW�DÞ

� �
� 8:6569 a

ðW�DÞ

� �2
þ 51:736 a

ðW�DÞ

� �3

�201:93 a
ðW�DÞ

� �4
þ 508:61 a

ðW�DÞ

� �5
� 815:53 a

ðW�DÞ

� �6
þ 801:57 a

ðW�DÞ

� �7

�439:42 a
ðW�DÞ

� �8
þ 102:78 a

ðW�DÞ

� �9

Nondimensional compliance 0 < a
ðW�DÞ 6 0:2 sEt ¼ 3:9856	 1011 þ 2:441	 109 a

ðW�DÞ

� �
þ 1:0302	 1013 a

ðW�DÞ

� �2
� 1:021	 1014 a

ðW�DÞ

� �3

þ9:5484	 1014 a
ðW�DÞ

� �4
� 6:5976	 1015 a

ðW�DÞ

� �5
þ 3:1801	 1016 a

ðW�DÞ

� �6

�9:8133	 1016 a
ðW�DÞ

� �7
þ 1:7071	 1017 a

ðW�DÞ

� �8
� 1:2397	 1017 a

ðW�DÞ

� �9

Nondimensional compliance 0:2 < a
ðW�DÞ 6 0:85 sEt ¼ 3:5995	 1011 þ 4:421	 1012 a

ðW�DÞ

� �
� 1:2201	 1014 a

ðW�DÞ

� �2
þ 1:5956	 1015 a

ðW�DÞ

� �3

�1:0488	 1016 a
ðW�DÞ

� �4
þ 3:9005	 1016 a

ðW�DÞ

� �5
� 8:5419	 1016 a

ðW�DÞ

� �6

þ1:0923	 1017 a
ðW�DÞ

� �7
� 7:5486	 1016 a

ðW�DÞ

� �8
þ 2:182	 1016 a

ðW�DÞ

� �9

Stress–intensity factor geometric

function

0 < a
ðW�DÞ 6 0:85 f a

ðW�DÞ

� �
¼ 1:7672� 12:179 a

ðW�DÞ

� �
þ 86:447 a

ðW�DÞ

� �2
� 310:86 a

ðW�DÞ

� �3

þ291:74 a
ðW�DÞ

� �4
þ 1890:8 a

ðW�DÞ

� �5
� 7699:9 a

ðW�DÞ

� �6
þ 12676 a

ðW�DÞ

� �7

�10091 a
ðW�DÞ

� �8
þ 3203 a

ðW�DÞ

� �9
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element model detailed in the previous section.

The compliance of the cracked structure for a

given crack length was determined from the dis-

placement of the center of mass of the toroidal

plate due to a unit force applied at the center of

mass in a direction perpendicular to the long axis
of the beam. The equivalent angular rotation of

the plate about the midpoint of the remaining

ligament of the beam was determined from the

geometry of the structure. From general analytical

solutions, it is known that the crack-tip stresses

and strains are proportional to the linear-elastic

crack parameter, K, and have a general functional
form dependent on the mode of loading (Ander-

son, 1995; Broek, 1986). Thus, the location of, and

stresses (or displacements) at, nodes near the

crack-tip can be used to calculate K for a given
applied force. This strategy was used to calculate

K as a function of crack length for a unit force

applied at the center of mass of the toroidal plate

in a direction perpendicular to the long axis of the

beam. The results of the compliance and stress–

intensity factor analyses were then recast in the

standard functional forms used in fracture me-

chanics. The compliance results are shown in the
standard, nondimensional compliance form ðsEt ¼
Sða=W ÞÞ (Anderson, 1995; Broek, 1986) in Fig. 6
and fit with the ninth-order polynomial shown in

Table 2. Similarly, the geometric function,

f ða=ðW � DÞÞ (Anderson, 1995; Broek, 1986),

for the stress–intensity factor ðK ¼ r
ffiffiffiffiffiffiffiffiffi
p 
 ap 


f a=ðW � DÞð ÞÞ of the cracked, notched, cantilever-
beam structure was determined (Fig. 7) and fit to a
ninth-order polynomial shown in Table 2.
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9th-Order Polynomial Fit

9th-Order Polynomial Fit

Fig. 6. (a) The nondimensional rotational compliance,

Sða=ðW � DÞÞ ¼ sEt, of the cracked fatigue characterization
structure due to a unit point load applied at the center of mass

as a function of normalized crack length, a=ðW � DÞ, deter-
mined from finite element methods. (b) The behavior for small

ða=ðW � DÞÞ and the associated ninth-order polynomial fit from
Table 2 are shown.

Fig. 7. The geometric function, f ða=ðW � DÞÞ, for the stress–
intensity factor, K ¼ r

ffiffiffiffiffiffiffiffiffi
p 
 a

p

 f ða=ðW � DÞÞ, of the cracked,

notched, cantilever beam specimen within the fatigue charac-

terization structure, determined from the displacement of nodes

immediately behind the crack-tip.
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3.3. Lumped dynamic model

The lumped dynamic model described in Sec-

tion 2.2 was applied to the three, micron-scale,

resonant fatigue characterization structures,
namely the edge-cracked plate in bending, single

edge-cracked plate in tension, and center-cracked

plate in tension; the calculated normalized crack-

tip parameters, as a function of normalized crack

length and quality factor, are shown in Fig. 8. The

model was also applied to the cracked, notched

cantilever-beam fatigue characterization structure

(Fig. 1) using the fracture-mechanics solutions

derived above. Results are shown in Fig. 9, where

the driving force for crack advance is presented as

a function of crack length and quality factor. The

results shown in Fig. 9(b) focus on the range of

normalized crack size relevant to polycrystalline
silicon structural films.

3.4. Stress-life (S=N) fatigue data analysis

Previously, 28 polycrystalline silicon specimens

were tested to failure in laboratory air (Muhlstein

Fig. 8. Stability of a fatigue crack in resonant-loaded fatigue characterization structures predicted by the lumped dynamic model. The

normalized driving force for crack advance, Kmax=Kmax;0, as a function of normalized crack length, a=W , is shown for the (a) edge-
cracked plate in bending, (b) edge-cracked plate in tension and (c) center-cracked plate in tension. In heavily damped systems (i.e., low

Q0), the fatigue-crack growth rate will accelerate (dK=dða=W Þ > 0). As the damping in the system is decreased (i.e., increasing Q0), the
crack growth rate will decelerate and possibly arrest (dK=dða=W Þ < 0).
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et al., 2001a). The fatigue lives, Nf , varied from
�10 s to 34 days (3	 105 to 1.2	 1011 cycles) over
an angular rotation amplitude, h, of �0.02 to 0.04

radians at R ¼ �1. The silicon films displayed

‘‘metal-like’’ S=N behavior, with an endurance

strength at 109–1010 cycles of roughly half the

(single-cycle) fracture strength. The relationship

between angular rotation and maximum principal

stress determined using the finite element model
was used to calculate the applied stress amplitude

which ranged from �2.2 to 4.4 GPa (Fig. 10). For
each specimen, the crack length as a function of

accumulated cycles was determined from a linear

interpolation of the finite element model-derived

relationships between natural frequency and crack

length shown in Fig. 5. A representative result of

the calculated crack length as a function of time is
shown in Fig. 11. The final crack lengths measured

immediately prior to failure, af , from the normal-

ized natural frequency for the specimens in Fig. 10

are shown as a function of specimen life, Nf , in Fig.
12. The applied stress amplitude for a given test

and the crack size just prior to failure were used to

estimate the fracture toughness of the material, Kc
(Fig. 13). For the thin-film polysilicon fatigue
tests, calculated critical crack sizes ranged from

�5.5 to 66 nm, depending on the applied stress
amplitude. The average fracture toughness mea-

sured by this technique for failure of the poly-

crystalline silicon films was 0.85 MPa
p
m. These

crack sizes are consistent with those observed ex-

Fig. 9. Stability of a fatigue crack in the resonant-loaded fa-

tigue characterization structure (Fig. 1) predicted by the lumped

dynamic model. (a) The normalized driving force for crack

advance, Kmax=Kmax;0, is shown as a function of normalized
crack length, a=ðW � DÞ, for the notched cantilever-beam

specimen within this structure. Similar to the geometries shown

in Fig. 8, the fatigue-crack growth rate will accelerate (dK=dða=
ðW � DÞÞ > 0) in heavily damped systems (i.e., low Q0) and will
decelerate and possibly arrest ðdK=dða=W Þ < 0) if the damping
in the system is decreased (i.e., high Q0). (b) Results from the

lumped dynamic model for normalized crack lengths relevant to

fatigue characterization of polycrystalline silicon (a=ðW � DÞ <
0:015). Fatigue cracks tested in air (Q0 � 100) are always sub-
jected to increasing driving force gradients. However, when the

damping is reduced (e.g., Q0 � 10; 000 in vacuum) the cracks
may arrest due to purely mechanical effects.

Fig. 10. Typical stress-life (S=N ) fatigue behavior of � 2 lm-
thick, polycrystalline silicon obtained using the micron-scale

fatigue characterization structure under fully reversed, tension-

compression loading at 40 kHz in moist room air (Muhlstein

et al., 2000, 2001a).
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perimentally in the high voltage transmission

electron microscope, as detailed in Muhlstein et al.,

2002a,b.

4. Discussion

The finite element and numerical models pro-

vide important insight into the dynamic behavior

of crack-free structures and the stresses in the vi-

cinity of the notched beam fatigue characterization

specimens. Similarly, the models of the cracked

structure can be used to determine the size and

stability of cracks, as well as the fracture toughness

of the material. The purpose of this section is to

discuss the implications of the models for the be-

havior of the structure and the fatigue resistance of

polycrystalline silicon.
Comparison of the various models of the dy-

namic behavior of the crack-free fatigue charac-

terization structure provides useful insight into the

behavior of the structure. The agreement between

the first in-plane natural frequency predicted by

the unit and full-thickness finite element models of

the fatigue characterization structure and the 0.7%

difference between the plane-stress finite element
and the mass-spring description establish that the

use of a mass-spring idealization is reasonable.

However, there is a marked difference between the

predicted natural frequency of the plane-stress

model (43,217 Hz) and what is typically observed

experimentally (41,693 Hz) (Muhlstein et al.,

2001a). Since the stiffness of the structure is pro-

portional to the elastic modulus, the experimen-
tally observed Young�s modulus appears to be

about 152 GPa, i.e., some 7% below the ideal

polycrystalline value (Simmons and Wang, 1971).

5×10 1×10 2×10 2×10 3×10

Fig. 11. Damage accumulation in polycrystalline silicon, shown

by experimentally measured decrease in resonant frequency,

fcrack, with time during the fatigue test (Nf ¼ 2:19	 1010 cycles
at ra ¼ 2:71 GPa), with the corresponding computed increase in
crack length a.

10 10 10 10 10 10

Fig. 12. Decrease in normalized natural frequency,

1� ðfcrack=f0Þ, and the associated final crack size, af , as a
function of specimen life.
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Fig. 13. Computed fracture toughness, Kc, values determined
from the estimated crack length immediately prior to failure,

i.e., the critical crack size, ac, for the given applied stress am-
plitude. The average fracture toughness (dashed line) was cal-

culated to be 0.85 MPa
p
m.
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It is believed that this is not an anomalously low

elastic modulus, but rather arises from the com-

pliance of the ‘‘anchor’’ at the base of the canti-

lever structure (Van Arsdell, 1997). Consequently,

the use of idealized, polycrystalline aggregate

elastic properties and perfectly clamped boundary
conditions provide a conservative estimate of the

applied stress amplitudes during S=N fatigue test-

ing. While the built-in assumption for the base of

the fatigue characterization structure may intro-

duce up to a 7% error in the calculated stress

amplitude, the general trends observed in S=N and
dynamic behavior should be faithfully represented.

Maximum principal stresses at the root of the
notch, determined from the plane-stress finite ele-

ment model of the crack-free fatigue character-

ization structure, gave values proportional to the

angular rotation of the resonant mass (1.0107	
1011 Pa/rad). The stress field falls off at a rate

proportional to 1=r2 and the effects of the notch
are most important for r=ðW � DÞ < 0:1 (within
0.65 lm of the root) as shown in Fig. 4(b). General
solutions for V-shaped notches in flat plates loa-

ded in bending, developed by Noda et al. (1995),

give an SCF of 2.03 for the present notched can-

tilever beam, which compares favorably with the

finite element solutions in the present study and

the simplified (beam-only) models used previously

(Muhlstein et al., 2001a). While understanding the

notch stress distribution and dynamic behavior of
the structure are important, the behavior of

cracked fatigue specimens is particularly useful.

The loading conditions that develop during

testing of the electrostatically actuated fatigue

characterization structure are inextricably linked

to its dynamic behavior. The objective is to apply

large, sinusoidally varying stresses to the material

to characterize the fatigue behavior. However, the
electrostatic comb drive actuators have a relatively

limited capacity. The typical electrostatic torque

that can be applied to the structure (�5	 10�10
Nm) is insufficient for fracture and fatigue char-

acterization. However, if a time-varying force is

applied to the structure at or near an appropriate

resonant frequency, large, fully reversed stress

amplitudes can be generated due to coupling be-
tween the excitation force and the inertial response

of the system. The amplitude of motion and the

corresponding stress amplitudes are then described

by the equations of motion of the simple harmonic

oscillator as detailed in the Appendix A. These

simple relationships have two key aspects that

must be understood when evaluating the behavior

of the fatigue characterization structure. Firstly,
when the structure is excited at its natural fre-

quency, decreasing the damping of the system (i.e.,

increasing the quality factor, Q) will increase the
amplitude of motion for a given excitation force.

However, a competing effect is at work when the

structure is excited off-resonance. The amplitude

of motion decreases as the excitation frequency

deviates from the natural frequency of the system.
The rate of decrease is much more rapid for sys-

tems with low damping (e.g., high Q). Secondly, an
analogous situation arises if the excitation fre-

quency remains fixed but the stiffness of the system

changes, such as if cracking occurs. The interac-

tion between natural frequency of a cracked

structure and the excitation frequency, depicted

schematically in Fig. 2, was observed experimen-
tally as a loss of resonance in the specimens with

centrally located holes. If a fatigue crack is allowed

to propagate into a hole under the correct loading

conditions (De Rijk, 1970; Van Leeuwen, 1970;

Van Oosten Slingeland and Broek, 1973), the

crack-tip tip radius is effectively ‘‘blunted’’, in the

present case from �AAngstroms to micrometers,

which can lead to arrest. Because the natural fre-
quency of the structure has been radically reduced,

during the next electrostatic cycle the structure is

not excited at resonance since the frequency of the

impulse has remained unchanged. This provides a

‘‘graceful’’ failure mode that prevents shorting of

the electrostatic actuator when the specimen sep-

arates.

In general, under nominally linear-elastic con-
ditions, when a constant force is applied normal to

the crack plane (i.e., mode I loading), an increas-

ing K-gradient results and stable crack growth is
not observed in materials that do not exhibit re-

sistance-curve behavior (Anderson, 1995; Broek,

1986; Lawn, 1993). In contrast, a mode I crack

subjected to a constant displacement will usually

be subjected to a decreasing K-gradient and stable
crack propagation can occur once the applied

driving force reaches the critical stress–intensity,
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Kc. Creative mechanical design can lead to excep-
tions to these general trends (e.g., (Fitzgerald

et al., 1999; Gonzalez and Pantano, 1990)) just as

rapidly varying the applied force or displacement

can, in principle, be used to generate the desired

crack-tip driving force and K-gradient. The ap-
plied stress–intensity range, DK, gives the analo-
gous driving force for fatigue-crack growth in

linear-elastic solids. Fatigue cracks subjected to

increasing DK gradients (dDK=da) accelerate while
decreasing gradients eventually lead to crack ar-

rest. The resonant loading conditions encountered

in micromechanical fatigue testing play an im-

portant role in the stability of cracks in these
structures.

If a micromechanical fatigue system is modeled

as a damped, forced, mass-spring oscillator that is

driven at or near its natural frequency, the stiffness

of and crack-driving force in the ‘‘spring’’ can be

determined from fracture-mechanics solutions that

describe the geometry of the specimen. A wide

variety of solutions are summarized in handbooks,
e.g., (Tada et al., 2000). The range of motion of the

structure can be determined from the relationship

between the amplitude and frequency of the exci-

tation waveform and the damping characteristics

and natural frequency of the system. This general

approach allows the evaluation of fatigue crack

stability for a wide variety of configurations and

reflects the behavior of a variety of mechanical
testing structures used to characterize structural

films used in MEMS. If the system is driven at or

near the natural frequency of the crack-free

structure, the unique loading conditions depicted

schematically in Fig. 2 may develop. A structure

excited at f0 will begin at an amplitude of motion
as defined by Eq. (A.2) in the Appendix A. As the

crack advances, the natural frequency of the
structure decreases. Since the excitation frequency

has remained unchanged, the amplitude of motion

decreases as the coupling between the structure

and excitation force is reduced. If the rate of load

shedding is sufficiently rapid (i.e., high enough Q),
a decreasing DK gradient may develop. What

would seem at first glance to be a force-controlled

configuration is actually limited by the change in
stiffness of the structure. In the case of the mi-

cromechanical resonators for fatigue character-

ization, these force-controlled, displacement-

limited conditions may develop when the damping

in the system is altered by lowering the ambient

pressure of the surrounding environment.

As noted above, the mode I compliance and

stress–intensity factor solutions for edge and cen-
ter-cracked plates in tension and edge-cracked

beams in bending from (Tada et al., 2000) were

used as test cases for the general model of crack

stability under fatigue loading. In heavily damped

(i.e., low Q) systems, the stress amplitude does not
significantly change as the crack advances into the

material and the loading conditions are not unlike

constant force or moment conditions. The crack
grows into an increasing DK gradient, accelerates

and eventually fails when Kmax reaches the fracture
toughness, Kc, of the material (i.e., is unstable).
However, as the level of damping is reduced the

driving force, DK, and its gradient change signifi-
cantly; the lower damping in the system leads to a

rapid decrease in the applied stress amplitude as

the crack advances. Once the quality factor
reaches relatively high values (in excess of 1000),

the gradient is such that the fatigue crack is de-

celerating and will eventually arrest (i.e., is stable).

This phenomenon is quite general, and is observed

with both edge and centrally located cracks loaded

in tension or bending.

The stability of cracks in the micromechanical

fatigue characterization structure is shown as a
function of system damping in Fig. 9. The be-

havior of the structure is similar to the model

systems based on edge and center-cracked plates in

tension and edge-cracked beams in bending. Re-

ducing the system damping can create decreasing

driving forces and driving force gradients for fa-

tigue crack advance. This is pertinent where fa-

tigue testing is required for different environments.
For the case of the fatigue characterization struc-

ture used by the authors, Q increases by several

orders of magnitude for the audio-frequency res-

onator between atmospheric pressure (Q � 100)
and moderate vacuums of around 1 milli-Torr

(Q � 10; 000). Consequently, one would expect the
mechanical loading (as well as the environmental)

conditions to be significantly different for tests
conducted in these two environments. This subtle,

but important, interaction between the resonant
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loading conditions and the driving force for crack

advance can be further clarified by directing at-

tention to the range of normalized crack length

relevant to the fatigue behavior of polycrystalline

silicon structural films (i.e., a=ðW � DÞ < 0:015).
The stability of these small fatigue cracks is shown
as a function of the system damping in Fig. 9(b). It

is well established that small-scale resonant fatigue

tests conducted in air at atmospheric pressure lead

to failure of the micromechanical structure (Fig.

10). This is a direct consequence of the fact that

fatigue cracks in the structure during resonant

loading are subjected to a monotonically increas-

ing gradient in stress–intensity factor range when
the damping in the system is relatively high (e.g.,

Q � 100), as shown in Fig. 9(b). However, if the
damping in the system is reduced by conducting

the test in vacuum, the driving force for fatigue-

crack growth (after an initial increase) decreases as

the crack grows (Fig. 9(b)). This crack arrest

process is a direct result of the rapid unloading of

the resonating specimen that occurs as the com-
pliance increases when the damping in the system

is relatively low (e.g., Q � 10; 000). This phenom-
enon can lead to confusion when interpreting the

results of micromechanical fatigue tests.

Conducting tests in controlled environments is

a crucial aspect of understanding the mechanisms

of fatigue-crack growth. However, the results of

the lumped parameter model establish that great
care must be taken when interpreting microme-

chanical resonant fatigue data generated by testing

in vacuum. Firstly, it is possible to mistake the

transient increase and subsequent decrease in ob-

served fatigue crack-growth rates as an indication

of an interfacial cracking phenomenon involving a

compliant layer on a stiff substrate (Beuth, 1992).

Fortunately, this error can be avoided simply by
evaluating the microstructure of the material.

More importantly, fatigue crack-growth rates

must be lower and fatigue lives must be longer for

tests conducted in vacuum compared to those

performed in air because of the lower stress–

intensity factor amplitude and the decreasing

stress–intensity factor gradient. This behavior

is independent of any environmentally-assisted
crack-growth process. Therefore, there is a critical

distinction that must be made between resonant

fatigue testing in air, ‘‘inert’’ atmospheres, and in

vacuo. Specifically, tests in vacuum not only re-

move active species from the atmosphere, but also

alter the driving force for fatigue-crack growth by

changing the loading conditions.

One should note that analyses of resonant fa-
tigue systems are limited by the ability to ade-

quately model the loading conditions and by the

behavior of the system as the crack becomes an

appreciable fraction of the specimen. For example,

the inhomogeneous distribution of stress in mac-

roscopic resonant fatigue specimens complicates

the evaluation of the stress–intensity factor

(Schoeck, 1982). Fortunately, this is not a problem
in the mass-spring systems used in micromechan-

ical fatigue structures. However, in both continu-

ous and mass-spring systems the load ratio of )1 is
problematic, as the opposing faces of the crack

come into contact during the compression portion

of the loading cycle (and even earlier if crack-clo-

sure phenomena are active). In this study, as with

most fracture-mechanics analyses, this problem is
alleviated by computing the stress intensity in

terms of the tensile portion of the cycle only; for

this reason, the driving force results are presented

in terms of Kmax. Additionally, at long crack

lengths the difference in compliance during the

opening and closing portions of the loading cycle

introduces significant nonlinearity in the cracked

mass-spring oscillator. Furthermore, out-of-plane
bending and torsional modes tend to couple with

the in-plane bending mode at large normalized

crack lengths (Van Arsdell, 1997). These factors

can limit the range of applicability of the lumped

model and finite element results. Fortunately,

cracks observed experimentally in the micro-

mechanical fatigue characterization structure

modeled in this paper are usually very short (e.g.,
with a=ðW � DÞ � 0:1), such that these limitations
are insignificant.

When the finite element and lumped parameter

models are used to interpret the stress-life fatigue

behavior of polysilicon, a variety of important

observations can be made. If the damage accu-

mulation (i.e., the decrease in resonant frequency)

during the fatigue test is assumed to be due to the
formation of a crack, the crack length can be

readily determined as a function of time (Fig. 11).
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While this is a simplification of the fatigue degra-

dation process, experimental observations of

cracks in structures are consistent with the ob-

served changes in natural frequency (Muhlstein

et al., 2002a,b). The crack-growth behavior de-

termined from the change in natural frequency of
the specimen (Fig. 11) suggests that the crack-

growth rates are decreasing as the crack advances.

This behavior has been observed for microstruc-

turally-small cracks, cracks growing under dis-

placement control, cracks growing into residual

stress fields, and cracks approaching interfaces. In

the present case, the effect is likely related to sev-

eral of these factors acting in concert, as detailed in
Muhlstein et al. (2002b). If the crack-driving force

at failure is taken as an estimate of the fracture

toughness, the toughness of the material can be

determined. The crack length estimates at failure

were used with plane-strain models of the stress–

intensity for the notched cantilever beam structure.

Results from the polysilicon fatigue tests (Fig. 13)

give an average fracture toughness of �0.85
MPa

p
m, with critical crack sizes in the range

�5.5–66 nm depending on the applied stress am-

plitude. As prior studies (Muhlstein et al., 2002a,b)

have indicated that the oxide thickness at the

notch is on the order of 100 nm, it is clear that the

crack initiation, growth and final (overload) pro-

cesses during thin-film silicon fatigue all occur

within the native oxide. The measured toughness
value of �0.85 MPapm is thus indicative of the

fracture toughness of the amorphous silica reac-

tion layer.

5. Conclusions

Based on experimental and numerical analyses
of resonating micromechanical fatigue structures

used in micron-scale testing of structural silicon

films, which incorporate experimental observa-

tions and finite element (quasi-static and dynamic)

and lumped dynamic models, the following con-

clusions may be made:

1. The notched cantilever-beam fatigue character-
ization structure behaves as a lumped mass-

spring oscillator (within 0.7%). The idealized

clamped boundary conditions for the structure

introduce error of �7% to the maximum princi-
pal stress at the root of the notch through the

estimate of the specimen compliance.

2. The notch in the cantilever beam of the fatigue
characterization structure influences the compli-

ance and stress–intensity factor solutions. The

influence of the notch on the maximum princi-

pal stress field falls off at a rate proportional

to 1=r2, and the effects of the notch are most im-
portant within 0.65 lm of the root (i.e.,

a=ðW � DÞ < 0:1). This corresponds to the

range of crack lengths generally of interest for
stress-life fatigue characterization in micron-

scale structures made from brittle materials.

3. The dynamic response of the fatigue character-

ization structure is extremely sensitive to crack

length. Although the relationship is nonlinear,

a 1 nm extension in crack length corresponds

to �1 Hz change in natural frequency for short
cracks.

4. The presence of a centrally located hole in

notched micromechanical fatigue characteriza-

tion structures prevents complete separation of

the test specimen by blunting the crack when

the resonator is driven at a fixed excitation fre-

quency.

5. Fatigue crack stability in micromechanical reso-

nators driven at a constant frequency at, or
near, the natural frequency of the structure is

a function of the damping characteristics of

the system. Specimens in micromechanical fa-

tigue characterization structures are subjected

to force-controlled, displacement-limited load-

ing conditions. Lowering the damping in the

system, e.g., by testing in vacuo, can lead to

crack arrest from purely mechanical factors.
This effect must be considered in the evaluation

of results from controlled environment testing

using this test geometry.

6. Fatigue lives measured in vacuo using microme-

chanical fatigue resonators cannot be directly

compared to atmospheric pressure data due to

differences in the gradient of the applied

stress–intensity range. Independent of environ-
mental effects, fatigue crack-growth rates must

be lower and fatigue lives must be longer for mi-

cromechanical resonant fatigue tests conducted
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in vacuum compared to atmospheric pressure

environments.

7. During the fatigue of thin-film polysilicon, cal-

culated critical crack sizes ranged from �5.5
to 66 nm depending on the applied stress ampli-
tude; the average toughness value was found to

be 0.85 MPa
p
m. These results, together with

previous studies, suggest that the processes of

crack initiation, growth and final overload fail-

ure all occur within the native oxide layer.
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Appendix A. Forced, damped, mass-spring system

equations of motion

In contrast to the systems used for macroscopic

ultrasonic fatigue testing, most micromechanical
fatigue characterization structures can be modeled

as forced, damped, mass-spring oscillators (e.g.,

(Van Arsdell, 1997; Van Arsdell and Brown,

1999)). The deformation of the structure is local-

ized to the test specimen and the attached mass, m,
reduces the natural frequency, f0, of the system. If
we assume that the damping in the system is pro-

portional to the velocity of the mass, dx=dt, and
the stiffness of the specimen is given by k, the
motion of the system may be described by the

following second-order differential equation:

d2x
dt2

þ c
dx
dt

þ f 20 x ¼
F0
m
cosðf 
 tÞ;

k
m
¼ f 20 ;

b
m
¼ c;

ðA:1Þ

where x is the position of the center of mass at
time, t, and f is the frequency of the applied force,
F0. The damping parameter, c, is the ratio of the
velocity-dependent resistive force, b, to the mass.
Solutions to this equation are routinely derived in
introductory texts on dynamics (e.g., French,

1971). It is convenient to introduce the quality

factor, Q ¼ f0=c, as a measure of the damping
characteristics of the system. With this added no-

tation, the solution of the amplitude of motion as a

function of excitation frequency, Aðf Þ, is given by

Aðf Þ ¼
F0
m

ðf 20 � f 2Þ þ f 
f0
Q

� �2� �1
2

: ðA:2Þ

For rotational systems, e.g., where the angular

rotation is a function of an applied moment, the

rotational stiffness, kh, and the mass polar moment

of inertia, Jh, are used to describe the stiffness and
mass of the system, respectively.
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