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SUMMARY

This work concerns the micromechanical constitutive modelling, algorithmic implementation and numer-
ical simulation of polycrystalline superelastic alloys under multiaxial loading. The model is formulated
in finite deformations and incorporates the effect of texture. The numerical implementation is based on
the constrained minimization of the Helmholtz free energy with dissipation. Simulations are conducted
for thin tubes of Nitinol under tension–torsion, as well as for a simplified model of a biomedical
stent. Copyright � 2004 John Wiley & Sons, Ltd.

KEY WORDS: phase transformation; superelasticity; Nitinol; habit plane; texture; constrained mini-
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1. INTRODUCTION

Shape-memory alloys are currently used in a wide array of engineering systems ranging from
microactuators to cell phone antennas. These materials exhibit superelastic behaviour, namely
they can recover their undeformed state upon hysteretic unloading from moderately large strains
at sufficiently high and constant temperature. Superelasticity is microscopically induced by
the displacive solid–solid phase transformation of the crystalline material between a highly-
ordered austenitic and less-ordered martensitic phases, as well as by the stress-induced self-
accommodating reorientation of the martensitic variants, known as twinning. A brief illustrative
description of superelasticity, as well as the related shape-memory effect, can be found in
References [1, 2].

The constitutive characterization of superelasticity has evolved from early one-dimensional
phenomenological models of pure tension [3–5] to fully three-dimensional polycrystalline mod-
els that account, in some form, for the material microstructure [2, 6–8]. In parallel, numerical
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implementations of specific constitutive models have been pursued by several researchers us-
ing techniques from computational plasticity, see, e.g. References [9–11]. The present work
proposes a numerical method for the solution of the constitutive equations resulting from a
generalization of the habit plane model by Siredey et al. [8]. Habit plane models have a distinct
advantage over lattice deformation models, because the habit plane variants are essential ele-
ments in the modelling of the twinning process, see Reference [12]. The numerical method is
based on the constrained minimization of the Helmholtz free energy (with dissipation) and can
handle both forward and reverse transformation. Given that the superelastic plateau in many su-
perelastic alloys can reach strains up to 5–10%, the model is formulated in finite deformations.
Also, the model incorporates the effects of texture, which can dramatically affect the overall
mechanical response of shape-memory alloys. In this paper, the constitutive modelling and
numerical simulations are focused exclusively on Nitinol, a nearly-equiatomic Ni–Ti alloy that
is by far the most popular superelastic material. The multiaxial response of Nitinol is analysed
in connection with a series of recent tension–torsion experiments on thin-walled tubes, which
are the starting material for biomedical stents widely used in angioplasty procedures [13]. In
addition, numerical simulations are presented for a simplified model of such a biomedical stent.

The organization of the article is as follows: Section 2 summarizes essential background
from continuum mechanics and introduces the main ingredients of a plasticity-based theory of
superelasticity. This is followed by the description of the specific model in Section 3 and a
brief discussion of texture characterization for thin-walled tubes in Section 4. The numerical
implementation of the model and a series of numerical simulations are presented in Sections
5 and 6. Concluding remarks appear in Section 7.

2. BALANCE LAWS, THERMODYNAMICS AND CONSTITUTIVE ASSUMPTIONS

2.1. Balance laws and thermodynamics

Let the motion � of a continuum take a typical point X from a fixed reference configuration
to x = �(X, t) at time t . Recall that the velocity and acceleration of X at time t are defined
respectively as v = ��/�t and a = �2�/�t2, while the (relative) deformation gradient is defined
as F = ��/�X. In addition, the Lagrangian strain is given by E = 1

2 (FTF− I), where I is the
referential second-order identity tensor.

The linear and angular momentum balance equations are written in local referential form as

Div(FS)+ �0b= �0a
(1)

S= ST

where S is the second Piola–Kirchhoff stress tensor, �0 is the mass density per unit referential
volume, and b is the body force per unit mass. Likewise, the energy equation can be expressed
as

�0�̇ = �0r − Div q0 + S · Ė (2)

in terms of the internal energy per unit mass �, the heat supply per unit mass r , and the heat
flux vector q0 resolved over the geometry of the reference configuration.
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In this work, the Clausius–Duhem inequality is assumed to hold and be an expression of the
Second Law of Thermodynamics. A local referential statement of this inequality is of the form

�0�̇� � �0r − Div q0 + q0 · Grad �

�
(3)

where � denotes the entropy per unit mass and � the absolute temperature.

2.2. Constitutive assumptions

Although the fundamental physics of martensitic phase transformations in polycrystalline solids
is very different from that of plastic deformation, the underlying structure of plasticity theory is
sufficiently broad to be applicable to the study of superelasticity. This is because in both plastic
and superelastic materials, the macroscopic response during cyclic loading is characterized by
the existence of elastic and inelastic ranges with sharply defined transitions from one to the
other, as well as by strongly dissimilar stress response between loading and unloading at all
inelastic states. For this reason, many models for shape-memory alloys have been developed
or can be interpreted within the framework of plasticity theory, see, e.g. References [8, 10, 14].

This section outlines the main assumptions of a general plasticity-like theory that is broadly
based on the Lagrangian approach advocated by Green and Naghdi [15], and further specialized
to the micromechanical modelling of shape-memory alloys. These are:

(a) The existence of a Lagrangian strain tensor Et which quantifies the inelastic part of the
deformation during phase transformation. This transformation strain tensor is related to
the martensitic volume fraction set

{��} =
{

(�1, �2, . . . , �nv)

∣∣∣∣∣
nv∑

�=1
�� � 1, �� � 0

}
(4)

according to

Et = Êt({��}) (5)

where nv is the total number of martensitic variants which, depending on the crystalline
structure, can be as high as nv = 24. The function Êt is subject to the homogeneity
condition

Êt({0}) = 0 (6)

where {0} denotes the zero element of the set {��}. Unlike classical multi-surface plas-
ticity, the transformation strain itself (as opposed to its rate) is expressed here as an
algebraic function of variables {��}.

(b) The admittance of a stress response function Ŝ, such that

S = Ŝ(E, {��}, �) (7)

The function Ŝ is assumed invertible for fixed {��} and �, namely there exists a function
Ê such that

E = Ê(S, {��}, �) (8)

The invertibility of the stress response permits all constitutive functions to be equivalently
expressed in strain- or stress-space for given {��} and �.
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(c) The existence of transformation functions Ŷ f
� and Ŷ r

� of the form

Y f
� = Ŷ f

� (E, {��}, �), Y r
� = Ŷ r

�(E, {��}, �) (9)

associated with the forward or reverse transformation of variant �. In a state of forward
(respectively reverse) transformation, Y f

� = 0 (respectively Y r
� = 0). These conditions de-

fine the sets of forward (respectively reverse) active variants at given strain and tempera-
ture as Jf(E, �) = {� | Ŷ f

� (E, {��}, �) = 0, �� > 0} and Jr(E, �) = {� | Ŷ r
�(E, {��}, �) =

0, �� > 0}, respectively. In order to guarantee positive dissipation, Y f
� < Y r

� , for all
�. Taking into account (8), the transformation functions can be also expressed in stress
space as

Y f
� = Ỹ f

� (S, {��}, �), Y r
� = Ỹ r

�(S, {��}, �) (10)

(d) The admittance of two sets of transformation conditions signifying the cumulative growth
or shrinkage of the martensitic variants. In particular, the transformation conditions from
a state of forward transformation (Jf �= ∅) are stipulated in the form

∑
�∈Jf

W f
�

�Ŷ f
�

�E
· Ė




> 0 ⇔ forward transformation

= 0 ⇔ neutral forward transformation

< 0 ⇔ elastic unloading

(11)

where W f
� = Ŵ f

�(E, {��}, �) are constitutively specified positive functions. Equation (11)
illustrates that the transformation conditions from a state of forward transformation
depend on a scalar variable which quantifies the orientation of the weighted ‘normal’
vector

∑
�∈Jf W f

��Ŷ f
�/�E relative to the direction Ė of loading in strain space. Likewise,

the transformation conditions from a state of reverse transformation (Jf = ∅, Jr �= ∅)
are taken to be

∑
�∈Jr

W r
�

�Ŷ r
�

�E
· Ė




> 0 ⇔ elastic reloading

= 0 ⇔ neutral reverse transformation

< 0 ⇔ reverse transformation

(12)

in terms of the positive constitutive functions W r
� = Ŵ r

�(E, {��}, �). Equations (11)
and (12) constitute an extension of the loading conditions proposed by Naghdi and Trapp
[16] for single-surface plasticity theory in strain space. Note that Equations (11) and
(12) differ substantially from those of the multi-surface plasticity treatment in Reference
[17, Section 5.1.2], where independent loading/unloading conditions are formulated for
each active yield surface. This is because, unlike plasticity, where plastic strain increases
monotonically with loading, here forward transformation can (and, in fact, often does)
occur by simultaneous growth of certain variants and shrinkage of others. In such a
case, all transforming variants are considered active and contribute to the identification
of the overall transformation state by means of the proposed transformation conditions.

(e) The existence of a representative volume element D of volume VD at each referen-
tial point X, such that macroscopic second Piola–Kirchhoff stress S, Lagrangian strain
E and Lagrangian transformation strains Et are volumetric averages of corresponding
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Figure 1. Schematic representation of a plasticity-like model for shape-memory alloys.

microscopic quantities �, �, and �t , namely

S = 1

VD

∫
D

� dV, E = 1

VD

∫
D

� dV, Et = 1

VD

∫
D

�t dV (13)

The applicability of plasticity-like theory with two sets of yield surfaces is schematically
illustrated in Figure 1 for the special case of single variant superelastic transformation at
constant temperature � above the austenitic finish value Af . During forward transformation
(region (a)–(b)), the yield surface Y f = 0 is active and expands in stress space, while the
material traces the forward transformation plateau. Upon further loading, the material moves
past the final forward yield surface in stress space and behaves elastically (region (b)–(c)).
After elastic unloading back to (d), the material enters the reverse transformation plateau, where
the yield surface Y r = 0 becomes active and contracts in stress space until full recovery of the
austenite phase is attained at point (e).

The superelastic material can be viewed as a parametrized thermoelastic material for given
{��}, see Reference [18] for an analogous argument in the context of thermoplasticity. Indeed,
if � = �̂(E, {��}, �) is the Helmholtz free energy, such that

� = �0(�− ��) (14)
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then Equations (2) and (3) imply that, during a homothermal superelastic process,(
S− ��̂

�E

)
· Ė−

nv∑
�=1

��̂

���
· �̇� � 0 (15)

Given that E and �� can be varied independently due to the existence of elastic processes at
all states, the standard Coleman and Noll argument can be applied to Equation (15), leading to

S = ��̂

�E
(16)

and

Ḋ = −
nv∑

�=1

��̂

���
· �̇� � 0 (17)

Equation (17) shows that the dissipation rate Ḋ, defined as the rate of work done by the totality
of the thermodynamic forces −��̂/���, is non-negative.

During persistent forward transformation under constant temperature, Equation (17) implies
that

∑
�∈Jf

(
−Y f

� −
��̂

���

)
�̇� � 0 (18)

Persistency of forward transformation also necessitates that

Ẏ f
� =

�Ŷ f
�

�E
· Ė− ∑

�∈Jf

Q���̇� = 0 (19)

where Qf
�� is defined as

Qf
�� = −

�Ŷ f
�

���
(20)

and quantifies the coupling between variants in the transformation conditions. It is further
stipulated at this stage that the rate of change of each volume fraction can be uniquely
determined from (19). This, in turn, implies that the matrix [Qf ] with components Qf

�� is
invertible. As a result, during persistent forward transformation of variant �,

�̇� =
∑

�∈Jf

Qf−1
��

�Ŷ f
�

�E
· Ė (21)

where Qf−1
�� are the components of the matrix [Qf ]−1. However, note that �̇� in (21) is not

necessarily positive, as the forward transformation process may require shrinkage of variant
�. Taking into account (18) and (21) it is readily concluded that during persistent forward
transformation

∑
�∈Jf

∑
�∈Jf

Qf−1
��

(
−Y f

� −
��̂

���

)
�Ŷ f

�

�E
· Ė� 0 (22)
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By comparing (22) to (11), it is immediately clear that the Clausius–Duhem inequality yields
a restricted form of the weighting function W f

� as

W f
� =

∑
�∈Jf

Qf−1
��

(
−Y f

� −
��̂

���

)
(23)

An analogous argument can be made for the case of persistent reverse transformation, leading
to counterparts of Equations (18)–(23).

It is common in the materials science literature of solid–solid phase transformations to
describe thermodynamic equilibrium in terms of the Gibbs free energy G = G̃(S, {��}, �). The
latter is obtained from the Helmholtz free energy by a Legendre transform as

G = �− S · E = �0(�− ��)− S · E (24)

where use is made of (14). The Gibbs energy is preferred when experiments are conducted
under constant stress and temperature, as is the case in one-dimensional solid–solid phase
transformation. It is debatable whether constant (or even nearly constant) stress conditions apply
to multi-dimensional solid–solid transformation experiments. On the other hand, the Helmholtz
free energy is the natural choice when formulating constitutive equations of solids for finite
element implementation. This is because, in the majority of finite element methods, the solution
of the constitutive equations takes place at the integration point level under prescribed total
strain history.

3. A SIMPLE MULTI-VARIANT MODEL OF PHASE TRANSFORMATION

This section introduces a simple habit plane-based model within the general assumptions pre-
sented in Section 2.2. This model is a reformulation and extension of an earlier model by
Siredey et al. [8]. Here, the macroscopic Lagrangian transformation strain is assumed to de-
pend linearly on the volume fractions of the martensitic variants, namely

Et =
nv∑

�=1
��E

t
� (25)

where Et
� are variant transformation strain tensors to be defined. The above constitutive choice

is consistent with (5) and well-motivated on micromechanical grounds. Indeed, assume that
the microscopic transformation strain �t vanishes in the austenitic phase and recall that the
microscopic displacement vector of martensitic phase � is expressed at each referential point
X as

un
� = gm�(X · n�) (26)

where m� is the unit vector along the direction of transformation, n� is the outward unit normal
vector to the habit plane, and g is the transformation displacement, see Figure 2. Equation (25)
follows by appealing to (13)3 and arguing that the variant transformation strain is piecewise
constant inside the representative volume element. It is further concluded from (26) that

Et
� = 1

2 g(m� ⊗ n� + n� ⊗m� + gn� ⊗ n�) (27)
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Twinned Martensite

nα

gmα

Figure 2. Kinematic variables in martensitic transformation.

Following Siredey et al. [8], the Helmholtz free energy � is decomposed into an elastic
part consisting of a quadratic isotropic strain energy in E − Et and a linear chemical energy
in �− �0, namely

� = �̂(E, {��}, �) = 1

2

(
E−

nv∑
�=1

��E
t
�

)
· C
(
E−

nv∑
�=1

��E
t
�

)
+ B(�− �0)

nv∑
�=1

�� (28)

where C is the fourth-order isotropic elasticity tensor, B is a constant chemical energy co-
efficient, and �0 is the equilibrium temperature. The linear form of the chemical energy is
easily justified for small variations of the temperature away from its equilibrium value [19].
The proposed Helmholtz free energy ignores the effect of interactions between the marten-
sitic variants. This simplification is justified by the authors’ own experiments in which the
interaction energy does not appear to be of significance, see Section 6.1.1. At the same time,
the standard quadratic form

∑nv
�=1

∑nv
�=1

1
2 ��H���� of the interaction energy renders the local

phase transformation problem ill-defined and requires some form of relaxation to yield a unique
solution. The second Piola–Kirchhoff stress can be shown with the aid of (16) and (28) to be

S = C

(
E−

nv∑
�=1

��E
t
�

)
(29)

Note that stress response function is invertible for fixed {��} for C non-singular, as required
by the general theory (see assumption (b) in Section 2.2). Although it is not employed in the
ensuing algorithmic development, the Gibbs free energy corresponding to (28) is deduced from
(24) with the aid of (29), and recorded here for completeness:

G = G̃(S, {��}, �) = −1

2
S · C−1S− S ·

(
nv∑

�=1
��E

t
�

)
+ B(�− �0)

nv∑
�=1

�� (30)

The yield-like condition associated with forward and reverse transformation of a typical
variant � characterises a state in which the thermodynamic force −��̂/��� acting on the
variant due to the elastic and chemical energy reaches a critical value, see Reference [20]. Due
to symmetry of the variants, this critical value Fc is independent of the particular variant.
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As is widely done in the literature [7, 21], this critical value is also assumed to be the same
for both forward and reverse transformation on the basis of equal resistance of the atoms in
the lattice to A → M and M → A phase changes. It follows that the forward and reverse
transformation functions Y f

� and Y r
� are defined as

Y f
� =−

��̂

���
−Fc = − �G̃

���
−Fc

(31)

Y r
� =−

��̂

���
+Fc = − �G̃

���
+Fc

Using (28), the above functions are expressed as

Y f
� = Ŷ f

� (E, {��}, �) = C

(
E−

nv∑
�=1

��E
t
�

)
· Et

� − (B(�− �0)+Fc)

(32)

Y r
� = Ŷ r

�(E, {��}, �) = C

(
E−

nv∑
�=1

��E
t
�

)
· Et

� − (B(�− �0)−Fc)

Taking into account (20) and (32), the coupling matrices [Qf ] and [Qr] have components

Qf
�� = Qr

�� = Et
� · CEt

� = Q�� (33)

and the transformation conditions (11) and (12) are defined accordingly. It is concluded from
(33) that the matrix [Q](= [Qf ] = [Qr]) is symmetric and of rank at most 6; hence, in general,
it is positive semi-definite. This means that the stipulation in Section 2.2 that [Qf

��] and [Qr
��]

be invertible places a restriction on the cardinality of the active sets Jf and Jr. This point is
further discussed in Section 5.

During persistent forward transformation, Equations (19), (23) and (31)1 imply that the
loading conditions (11)1,2 are equivalent to the condition∑

�∈Jf

�̇� � 0 (34)

The latter simply states that during persistent forward loading, the cumulative martensitic
volume fraction is increasing. Condition (34), as well as its counterpart for persistent reverse
transformation, play an important role in the ensuing algorithmic development. Also during
persistent forward transformation, it follows from Equation (31)1 that

∑
�∈Jf

(
− ��̂

���
−Fc

)
�̇� = 0 (35)

Given that

�2�̂

������
= Q�� (36)
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Equation (35) also implies that, in general, the function �f = � +∑�∈Jf Fc�� attains a
non-unique global minimum at given strain and temperature. Analogous conclusions apply in
the case of reverse transformation to the function �r = �−∑�∈Jr Fc��.

4. TEXTURE ANALYSIS

Texture, understood here as the (generally non-uniform) distribution of orientation in crystals,
has a profound effect on the mechanical response of shape-memory structures, such as poly-
crystalline Nitinol tubes. Texture depends crucially on the manufacturing process. In thin-walled
tubes, such as those used in the authors’ experiments and the ensuing simulations, the drawing
process induces primarily 〈1 1 1〉 {1 1 0}-type sheet texture that is ‘wrapped’ around the cylin-
drical surface, such that the 〈1 1 1〉 austenite lattice direction is aligned with the longitudinal
axis of the tube, see also the work of Gall, Sehitoglu et al. [12, 22]. To characterize the texture
in a cylindrical tube relative to a common fixed right-hand orthonormal basis {E1,E2,E3},
where E3 lies along the longitudinal axis of the cylinder, let

p= cos �E1 + sin �E2

q=− sin �E1 + cos �E2 (37)

r=E3

form a right-hand orthonormal basis of the austenite lattice vectors, see Figure 3. Equations (37)
state that the orthonormal basis {p,q, r} is obtained from {E1,E2,E3} by a (counterclock-wise)
rotation of angle � on the plane of E1 and E2. Subsequently, the wrapping of the plane {1 1 0}
around the cylindrical surface of the tube induces an additional rotation of {p,q, r} by an

Figure 3. Texture distribution over the thin tubular specimen.
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constant angle 	 = 
/4 on the plane of p and q to {p′,q′, r}. These two planar rotations are
expressed in terms of the rotation tensor Q1 with components

[Q1] =




cos(�+ 	) − sin(�+ 	) 0

sin(�+ 	) cos(�+ 	) 0

0 0 1


 (38)

relative to {E1,E2,E3}. Finally, a rotation of {p′,q′, r′} to {p′′,q′′, r′′} by a constant angle
� = cos−1 1/

√
3 on the plane of p′ + q′ and r′ = r directs the vector 〈1 1 1〉 along the

longitudinal axis of the cylinder, and corresponds to rotation tensor Q2 with components

[Q2] =




cos � sin2 �+ cos2 � sin � cos �(1− cos �) sin � sin �

sin � cos �(1− cos �) cos � cos2 �+ sin2 � − sin � cos �

− sin � sin � sin � cos � cos �


 (39)

relative to {E1,E2,E3}. Using (38) and (39), the composite rotation can now be expressed by
means of the tensor Q = Q2Q1 with components

[Q] =




cos � cos 	− sin � sin 	 cos � − cos � sin 	− sin � cos 	 cos � sin � sin �

sin � cos 	+ cos � sin 	 cos � − sin � sin 	+ cos � cos 	 cos � − cos � sin �

sin 	 sin � cos 	 sin � cos �


 (40)

relative to the fixed basis {E1,E2,E3}. Hence, the components of the ‘textured’ transformation
strain Et

texture are related to those of its ‘untextured’ counterpart by

[Et
texture] = [Q][Et][Q]T (41)

Note that materials typically exhibit a variation of the texture (‘wobble’), which is ignored in
this analysis.

5. ALGORITHMIC IMPLEMENTATION

The algorithmic problem at the Gauss point level amounts to the minimization of �̂
f
(E, �, {��})

and �̂
r
(E, �, {��}) at given strain and temperature, as argued in Section 3. This minimization de-

termines the volume fractions {��}, subject to the nv-dimensional polytope conditions �� � 0 and∑nv
�=1 �� � 1, see Figure 4 for nv = 3. Note from (28) that �̂

f
and �̂

r
are quadratic in ��, which

reduces the algorithmic problem to one of quadratic programming, see, e.g. Reference [23].
In typical computational treatments of multi-surface plasticity, a predictor–corrector method

is employed to first identify the active yield surface(s) and, subsequently, solve for the stresses
and plastic strains subject to enforcing the active yield conditions. Here, a somewhat different
approach is advocated. In particular, the elastic loading/unloading and forward transformation
processes are handled in a unified manner by imposing the appropriate constraints on the
functional �f . An analogous unified treatment applies to elastic loading/unloading and reverse

Copyright � 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 60:429–460



440 Y. JUNG, P. PAPADOPOULOS AND R. O. RITCHIE

Figure 4. Polytope constraint in martensitic transformation.

transformation associated with the functional �r. As explained later, an elastic process is handled
in terms of �f or �r depending on the assigned (forward or reverse) state at the current time.

To elaborate on the proposed algorithmic treatment, first note that the constraint conditions
for all states of loading and unloading can be expressed as

−�� � 0, �̄l −
nv∑

�=1
�� � 0,

nv∑
�=1

�� − �̄u � 0 (42)

where �̄l and �̄u are lower and upper values of the total martensitic volume fraction, such
that 0 � �̄l < �̄u � 1. In case of elastic loading/unloading or forward transformation from a
state with initial total martensitic volume fraction �total, it is clear that �̄l = �total and �̄u = 1.
Likewise, in case of elastic loading/unloading or reverse transformation, �̄l = 0 and �̄u = �total.
Figure 5 illustrates the above cases for nv = 3. It is easily seen that, when �̄l = 0, the constraint
in (42)2 becomes redundant. This, in conjunction with the assumption on the admissible values
of �̄l and �̄u, implies that there are at most nv simultaneously active constraints,‡ and that the
constraints in (42)2,3 cannot be both active.

Minimization of �f and �r, subject to the inequality constraints (42) requires that

��̂
f

���
+ �� + �l − �u = 0,

��̂
r

���
+ �� + �l − �u = 0 (43)

Here, ��, � = 1, 2, . . . , nv, �l and �u are non-negative-valued Lagrange multipliers intended to
enforce the constraints in (42), subject to the Kuhn–Tucker condition

nv∑
�=1

��(−��)+ �l

(
�̄l −

nv∑
�=1

��

)
+ �u

(
nv∑

�=1
�� − �̄u

)
= 0 (44)

‡A constraint is termed active if the respective constraint condition in (42) is satisfied as an equality.
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Figure 5. Polytope constraints for forward and reverse transformation.

In particular, taking into account (28), the constraint minimization of �f and �r at time t = tn+1
leads to the forward and reverse conditions

C

(
En+1 −

nv∑
�=1

��,n+1E
t
�

)
· Et

� − (B(�− �0)+Fc)+ ��,n+1 + �l,n+1 − �u,n+1 = 0

(45)

C

(
En+1 −

nv∑
�=1

��,n+1E
t
�

)
· Et

� −
(
B(�− �0)−Fc)+ ��,n+1 + �l,n+1 − �u,n+1 = 0

subject to

nv∑
�=1

��,n+1(−��,n+1)+ �l,n+1

(
�̄l,n+1 −

nv∑
�=1

��,n+1

)
+ �u,n+1

(
nv∑

�=1
��,n+1 − �̄u,n+1

)
= 0 (46)

As noted in Section 3, a restriction needs to be placed on the active sets Jf and Jr

to guarantee the positive-definiteness of [Q], hence the existence of unique global minima
of �f and �r at specified strain and temperature. Such a restriction is also supported by
experimental evidence, where for proportional loading paths only one to three variants appear
to be simultaneously active in each grain [22]. The identification of a specific set of potentially
active variants depends on the loading path, and is discussed in Sections 6.1 and 6.2, in
connection with the two sets of numerical simulations. More general methodologies for selecting
and deselecting potentially active variants are discussed in a forthcoming paper by the authors.
Upon identifying a suitable set of six potentially active variants, the constraint minimization
of �f and �r reduces to classical definite quadratic programming. This, in turn, can be dealt
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with by an active set strategy in which a feasible descent direction for each of the functionals
�f and �r is obtained by gradient projection on the active set of linear constraints rather than
on the entire constraint set, see, e.g. Reference [23].

Preliminary to formulating an active set strategy, define the extended set of Lagrange mul-
tipliers as an eight-dimensional column vector

[�e
n+1] = [�1 · · · �6 �l �u]Tn+1 (47)

and, the set of the corresponding martensitic volume fractions as a six-dimensional column
vector

[�n+1] = [�1 · · · �6]Tn+1 (48)

Then, the Kuhn–Tucker condition (46) can be expressed in matrix form as

[�e
n+1]T([A][�n+1] − [hn+1]) = [0] (49)

where

[A] =




−1 0 0 0 0 0

0 −1 0 0 0 0

. . . . . . . . . . . . . . . . . .

0 0 0 0 0 −1

−1 −1 −1 −1 −1 −1

1 1 1 1 1 1



=




[a1]T

[a2]T

. . .

[a6]T

[a7]T

[a8]T




(50)

and

[hn+1] = [0 0 · · · 0 − �̄l,n+1 �̄u,n+1]T (51)

Also, let [�n+1] be the na × 8-dimensional projection matrix from the eight-dimensional space
of all constraints to the na-dimensional space of all active constraints, where, as argued earlier,
na � 6. It follows that [�̄n+1] = [�n+1][�e

n+1], where [�̄n+1] is the na-dimensional column
vector of the multipliers associated with active constraints. Now, Equations (45) and (46) are
written, respectively, in matrix form as

[Q][�n+1] + ([�n+1][A])T[�̄n+1]=[cn+1]
[�n+1][A][�n+1]=[�n+1][hn+1]

(52)

where the six-dimensional column vector [cn+1] has components

c�,n+1 =
{
Et

� · CEn+1 − (B(�− �0)+ F c) (forward)

Et
� · CEn+1 − (B(�− �0)− F c) (reverse)

(53)
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Since [Q] is positive-definite and [�n+1][A] is a na× 6-dimensional matrix of rank na, the
system (52) can be solved uniquely for [�n+1] and [�̄n+1] in the form

[�n+1] = [�n+1][cn+1] + [�n+1]T[�n+1][hn+1]
(54)

[�̄n+1] = [�n+1][cn+1] −
[
[�n+1][A][Q]−1([�n+1][A])T

]−1 [�n+1][hn+1]

where

[�n+1] = [Q]−1 − [Q]−1([�n+1][A])T
[
[�n+1][A][Q]−1([�n+1][A])T

]−1 [�n+1][A][Q]−1

(55)

and

[�n+1] =
[
[�n+1][A][Q]−1([�n+1][A])T

]−1 [�n+1][A][Q]−1 (56)

The active constraints are determined iteratively using a standard active set strategy, see, e.g.
Reference [23, Chapter 14]. Once the active constraints are specified at an iteration k (hence,
the matrix [�(k)

n+1] is known), they are enforced in equality form as in (52)2. To reduce the
cost of identifying the active constraints, the initial guess for the active set at any given time
is taken to coincide with the active set determined at the previous solution time.

Discrete counterparts of (11) and (12) are employed to distinguish between the various
transformation conditions starting from a state of forward or reverse transformation. Specifically,
recalling that the constraint (42)2 is enforced, the conditions

��f
n =

6∑
�=1

(�f
�,n+1 − ��,n)




> 0 ⇔ forward transformation

= 0 and �l = 0 ⇔ neutral forward transformation

= 0 and �l > 0 ⇔ elastic unloading

(57)

are employed to distinguish between the various states of loading starting from a state of
forward transformation at time tn, where �f

�,n+1 are computed by minimization of �f . Taking
into account (34), it is clear that (57)1 corresponds exactly to (11)1. However, (57)2,3 are
modified in order to account for the explicit enforcement of (42)2. In this case, the distinction
between neutral forward transformation and elastic unloading is made by means of the Lagrange
multiplier corresponding to the constraint (42)2. Likewise, starting from a state of reverse
transformation at time tn, the conditions

��r
n =

6∑
�=1

(�r
�,n+1 − ��,n)



= 0 and �u > 0 ⇔ elastic reloading

= 0 and �u = 0 ⇔ neutral reverse transformation

< 0 ⇔ reverse transformation

(58)

describe the three possible states, where �r
�,n+1 are computed by minimization of �r. In analogy

to the loading case, (58)3 corresponds exactly to (12)3, while the distinction between (58)1,2
is made with the aid of the Lagrange multiplier that enforces the constraint condition (42)3.
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Since the proposed algorithm is based on a unified treatment of elastic and transformation
states, the elastic processes need also be determined by extremization of �f or �r. In order
to guarantee that the algorithm is well-defined at all states, it is essential that both sets of
discrete loading conditions (57) and (58) be checked at each solution step. To this end, a
flag is introduced to keep track of the state at tn and resolve any possible indeterminacies
resulting from checking both sets of loading conditions. This flag is initially set to ‘forward’
and is switched to ‘reverse’ upon satisfaction of (57)3 and (58)3, and is subsequently switched
back to ‘forward’ upon satisfaction of (58)1 and (57)1, etc. The following table summarises
the characterization of the state at tn+1 for all combinations of forward and reverse loading
conditions.

The notation ‘!flag’ in the table denotes switching of the flag. Figure 4 schematically depicts
the feasible volume fraction regions of forward and reverse transformation cases for nv = 3.

A closed-form expression of the algorithmic tangent modulus �En+1Sn+1 consistent with the
constrained minimization method is easily determined as follows: first, use (29) to conclude
that

�En+1Sn+1 = C−
6∑

�=1
CEt

��En+1��,n+1 (59)

Then, appealing to (53) and (54) leads to

�En+1��,n+1 =
6∑

�=1
���,n+1CEt

� (60)

hence

�En+1Sn+1 = C−
6∑

�=1

6∑
�=1

���,n+1(CEt
�)⊗ (CEt

�) (61)

The local algorithmic procedure is summarised in Appendix A.

6. NUMERICAL SIMULATIONS

The constitutive model described in Sections 3 and 4 has been implemented in the finite ele-
ment code FEAP (see References [24, 25]) using the algorithm of Section 5. Selected numerical
simulations have been conducted using 8- and 27-node isoparametric brick elements with the
standard displacement formulation. Material properties were chosen from a particular polycrys-
talline Ni-Ti alloy (Ti 44.5 wt%, Ni 55.5 wt%) that was used by the authors to conduct biaxial
loading experiments on thin-walled tubes [13].
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Table I. Components of the twenty-four habit plane vector pairs (n�,m�) for Nitinol.

No. n m No. n m

1 n1 −n3 n2 m1 −m3 m2 13 −n2 −n1 −n3 −m2 −m1 −m3
2 −n3 n1 −n2 −m3 m1 −m2 14 −n2 n1 n3 −m2 m1 m3
3 −n1 n3 n2 −m1 m3 m2 15 n2 n3 n1 m2 m3 m1
4 n3 −n1 −n2 m3 −m1 −m2 16 n2 −n3 −n1 m2 −m2 m3
5 n1 n3 −n2 m1 m3 −m2 17 −n1 −n2 n3 −m1 −m2 m3
6 n3 n1 n2 m3 m1 m2 18 n1 −n2 −n3 m1 −m2 −m3
7 −n1 −n3 −n2 −m1 −m3 −m2 19 n3 n2 −n1 m3 m2 −m1
8 −n3 −n1 n2 −m3 −m1 m2 20 −n3 n2 n1 −m3 m2 m1
9 n2 −n1 n3 m2 −m1 m3 21 −n1 n2 −n3 −m1 m2 −m3

10 n2 n1 −n3 m2 m1 −m3 22 n1 n2 n3 m1 m2 m3
11 −n2 −n3 n1 −m2 −m3 m1 23 −n3 −n2 −n1 −m3 −m2 −m1
12 −n2 n3 −n1 −m2 −m3 m1 24 n3 −n2 n1 m3 −m2 m1

The elasticity tensor C is assumed isotropic with material parameters E = 38.0 GPa and  =
0.3 estimated in the experiments and corresponding to (initial) polycrystal Young’s modulus
and the Poisson ratio. In the case of Nitinol single crystals, the components of the base
crystallographic vectors n and m are written in component form as

[n] = [−0.88888, 0.21523, 0.40443]T, [m] = [0.43448, 0.75743, 0.48737]T (62)

relative to the austenite lattice, while g = 0.13078, as in Reference [26]. All twenty-four vector
pairs (n�,m�) are generated from the vectors in (62) by appropriate rotations and reflections,
see Table I. In addition, the components of the Lagrangian transformation strain after texture
distribution are listed for the twenty-four variants in Table II using the cylindrical polar co-
ordinates of Figure 6. In this table, the variants are paired together based on common values of
the components Et

rr, Et
��, Et

zz, and Et
�z

, which implies that the two variants in a pair are related
to each other by a rotation with respect to the Er-axis of Figure 6. The remaining relevant
material parameters are chosen to be B = 0.607 MPa/◦C, Fc = 7.5 MPa, and �−�0 = 22.3◦C.

All simulations assume quasi-static loading conditions. After the constitutive equations are
solved locally (i.e. by constrained minimization of �f or �r at each Gauss point), the equilibrium
equations are enforced globally using Newton’s method.

6.1. Uniaxial and biaxial loading of thin-walled tubes

The simulations are supported by direct experimental measurements conducted by the authors’
group [13]. Here, thin-walled tubes of 37.8mm length and 4.65mm outer diameter were initially
ground down in the 25 mm long centre test section to an outer diameter of 4.3 mm in order
to obtain an hourglass shape and minimise end-effects. Thus, the wall thickness in the test
section was reduced to 0.2 mm, resulting in a thickness-to-radius ratio of 1:10.5. The following
loading/unloading programs (referred to respectively as Types A and B) were experimentally
traced:

(A) Load and unload in tension.
(B) Load and unload simultaneously in tension and torsion.
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Table II. Pairs of Nitinol variant in thin-walled tube with sheet texture.

No Et
rr Et

�� Et
zz 2Er� 2Et

�z 2Et
zr

1 −0.2820E−01 0.6314E−01 −0.2980E−01 −0.2720E−01 0.2216E−01 −0.6764E−01
4 −0.2820E−01 0.6314E−01 −0.2980E−01 0.2720E−01 0.2216E−01 0.6764E−01

2 −0.2820E−01 −0.2643E−01 0.5978E−01 0.5470E−01 −0.4118E−01 0.4819E−01
3 −0.2820E−01 −0.2643E−01 0.5978E−01 −0.5470E−01 −0.4118E−01 −0.4819E−01

5 0.1162E−01 −0.2863E−02 −0.3620E−02 −0.1185E+00 −0.5268E−01 −0.3059E−02
8 0.1162E−01 −0.2863E−02 −0.3620E−02 0.1185E+00 −0.5268E−01 0.3059E−02

6 0.1162E−01 0.1302E−01 −0.1950E−01 −0.3662E−01 −0.4145E−01 0.1128E+00
7 0.1162E−01 0.1302E−01 −0.1950E−01 0.3662E−01 −0.4145E−01 −0.1128E+00

9 −0.5056E−01 −0.4070E−02 0.5978E−01 0.2888E−01 −0.2114E−01 0.5976E−01
18 −0.5056E−01 −0.4070E−02 0.5978E−01 −0.2888E−01 −0.2114E−01 −0.5976E−01

10 0.2853E−01 0.6411E−02 −0.2980E−01 0.9270E−01 −0.6965E−01 0.1463E−01
17 0.2853E−01 0.6411E−02 −0.2980E−01 −0.9270E−01 −0.6965E−01 −0.1463E−01

11 −0.3188E−02 −0.5145E−01 0.5978E−01 −0.2582E−01 0.6232E−01 0.1157E−01
19 −0.3188E−02 −0.5145E−01 0.5978E−01 0.2582E−01 0.6232E−01 −0.1157E−01

12 0.5208E−01 −0.1714E−01 −0.2980E−01 0.6550E−01 0.4750E−01 −0.5301E−01
20 0.5208E−01 −0.1714E−01 −0.2980E−01 −0.6550E−01 0.4750E−01 0.5301E−01

13 0.2853E−01 −0.3885E−02 −0.1950E−01 −0.1710E−01 −0.7693E−01 0.9227E−01
22 0.2853E−01 −0.3885E−02 −0.1950E−01 0.1710E−01 −0.7693E−01 −0.9227E−01

14 −0.5056E−01 0.5932E−01 −0.3620E−02 0.4671E−01 0.2369E−01 0.4715E−01
21 −0.5056E−01 0.5932E−01 −0.3620E−02 −0.4671E−01 0.2369E−01 −0.4715E−01

15 −0.3188E−02 0.2783E−01 −0.1950E−01 0.1952E−01 0.1184E+00 −0.2049E−01
23 −0.3188E−02 0.2783E−01 −0.1950E−01 −0.1952E−01 0.1184E+00 0.2049E−01

16 0.5208E−01 −0.4332E−01 −0.3620E−02 −0.7181E−01 0.2899E−01 0.4409E−01
24 0.5208E−01 −0.4332E−01 −0.3620E−02 0.7181E−01 0.2899E−01 −0.4409E−01

Due to the geometry of the specimens and the gripping conditions, all loading paths yield
non-uniform stress and strain distributions. To compare the simulations to the experiments,
all the results are presented in terms of average equivalent Cauchy stress Teq versus average
equivalent Lagrangian strain Eeq, where

Teq =
√

T̄ 2
t + 3T̄ 2

s , Eeq =
√

Ē2
t + 4

3 Ē2
s (63)

In (63), T̄t and T̄s denote the average tensile and shearing Cauchy stress, while Ēt and Ēs the
average tensile and shearing Lagrangian strain, respectively. The average tensile and shearing
Cauchy stress components in the test section are obtained by dividing the measured forces at
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Figure 6. Schematic diagram of the undeformed and deformed thin tube.

Figure 7. Finite element mesh of the thin tubular specimen.

the grips by the current test section area. Appendix B outlines the formulae for the Lagrangian
strains and the average equivalent Lagrangian strain in the thin-walled tube.

The finite element mesh used in simulating the loading of the specimen consists of 8-node
isoparametric bricks and is shown in Figure 7. Since the texture is uniformly distributed and the
austenite lattice vector is aligned with the longitudinal axis of the tube, the centre cross-section
is a symmetry plane.

Each element in this mesh is assumed to correspond to a crystal grain with the proper
texture, as discussed in Section 4. A set of nv = 6 potentially active variants is identified
at the outset as follows: for each of the two loading paths, a series of simulations was run
assuming only a single pair of potentially active variants exhibiting rotational symmetry with
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Figure 8. Comparison of equivalent stress–strain data from experiments and simulation for Type A
loading in thin-walled Nitinol tubes.

respect to the radial direction, see Table II. Given the nearly homogeneous nature of the
deformation, these simulations can be run using a coarser mesh or even a single element. With
reference to Equation (32)1, each of the preliminary runs yields a value for the thermodynamic
force at the onset of forward transformation. The set of potentially active variants is chosen
to include those with the lowest values of this thermodynamic force. In particular, and taking
into account the existing texture, it is deduced here by the preliminary simulations that variant
pairs (2, 3) and (11, 19) exhibit the lowest thermodynamic forces in pure tension, while variant
pairs (15, 23) and (11, 19) exhibit the lowest thermodynamic forces in pure torsion. Therefore,
the potentially active set for all tension and torsion simulations was taken to be comprised of
variants (2, 3), (11, 19), and (15, 23).

6.1.1. Pure tension (Type A). The results of this numerical test are plotted in Figure 8 against
the experimental results in Reference [13]. Notice that three curves are plotted for the experi-
mental results corresponding to three separate tension experiments. Also, the lack of hardening
effect clearly suggests that the interaction energy from the interface between variants does not
contribute significantly to the transformation process. The numerical simulation matches well
with the experiments during both forward and reverse transformation. The small reduction in
stiffness evident in the experimental results during elastic loading is due to the presence of
R-phase which is not modelled here. Also, the slight deviation of the numerical results from
the experimental measurements during elastic unloading is likely due to the difference in elastic
material response between austenite and martensite. Figure 9 illustrates the volume fractions
computed for each variant as a function of equivalent strain, as extracted from an element just
below the centre cross-section. The distribution of T̄t and the four active variants is depicted
in Figures 10 and 11 at 6% equivalent strain. As expected variants 3 and 19 have volume
fraction distributions that are mirror images to those of variants 2 and 11, respectively, relative
to the centre cross-section.
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Figure 9. Volume fraction vs equivalent strain for Type A loading of thin-walled Nitinol tubes.
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Figure 10. Distribution of T̄t for Type A loading at 6% equivalent strain.

Figure 12 depicts two partial loading, unloading and reloading paths in pure tension up to
4.6% strain. The first, denoted as Path 1 in the figure, illustrates elastic unloading from a state
of forward transformation followed by the elastic reloading back to the forward transformation
plateau. The second, denoted as Path 2 in the figure, illustrates elastic reloading from a state of
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Figure 11. Distribution of variants 2, 3, 11 and 19 for Type A loading at 6% equivalent strain.
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Figure 12. Equivalent stress–strain response for partial loading, unloading and reloading path
for pure tension at up to 4.6%.
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Figure 13. Comparison of equivalent stress–strain data from experiments and simulation for Type B
loading in thin-walled Nitinol tubes.

reverse transformation, followed by elastic unloading back to the reverse transformation plateau.
This simulation confirms the correctness of the proposed loading/unloading criteria, as well as
the robustness of the algorithm in selecting and enforcing the appropriate constraints in (42).

6.1.2. Simultaneous tension-torsion (Type B). Figure 13 shows the equivalent stress–strain re-
sponse under simultaneous tension up to 6.0% and torsion up to 2.0%. The volume fractions
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Figure 14. Volume fraction vs equivalent strain for Type B loading of thin-walled Nitinol tubes.

in Figure 14 are again taken from an element just below the centre cross-section and indicate
a reversal in variant dominance from (2, 3) in pure tension to (11, 19) with the presence of
torsion. Notice that the pair (15, 23) is still inactive due to the dominance of tension loading
over torsion. Contrary to the case of pure tension, Figure 14 illustrates that the activation of
variants does not occur simultaneously. In particular, the primary variants (11, 19) are activated
at approximately 0.8% equivalent strain, while the secondary variants are essentially activated
only at slightly above 2.0% equivalent strain. The overall increase in the stress–strain slope
during forward transformation compared to the pure tension case can be attributed to the in-
creased presence of torsion-dominant variants. The distribution of T̄t and the four active variants
is depicted in Figures 15 and 16 at maximum loading.

6.2. Radial expansion of a stent

Stents are small wire-mesh tubes used in a variety of medical applications, including, most
notably, coronary artery angioplasty. Stents are typically manufactured from thin-walled tubes
by precision laser cutting. Nitinol is increasingly used for stents owing to its superelastic
property, biocompatibility, and magnetic resonance compatibility [27]. The stent is first expanded
axisymmetrically to its designed configuration and then ‘annealed’ to yield a new stress-free
reference configuration. In angioplasty, stents are compressed into a catheter and deployed at
the arterial walls. Upon deployment, the stent attempts to extend back to its original reference
configuration. However, due to the superelastic property, the stent applies a smaller pressure
load on the vessel walls as it traces its unloading path, while retaining its high resistance to
crushing along its loading path. In the present simulation, a unit cell of a stent is considered
under periodic boundary conditions. The stress-free reference configuration is taken at four times
the diameter of the thin-walled tube. Texture is assumed as in the previous examples, since the
stent is cut from the same type of tube. Repeating the procedure used in isolating six potentially
active variants in Section 6.1, variant pairs (5, 8), (10, 17), and (2, 3) are considered. As shown
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Figure 15. Distribution of T̄t for Type B loading at 6% tension and 2% torsion.

in Figure 17, a moderately fine mesh of bricks is used to resolve the stress concentration in
the upper and lower section of the stent cell. Furthermore, in order to accurately capture the
bending of the stent wires, the finite element analysis is conducted using 27-node isoparametric
bricks. The outer radius of the tube is R0 = 2.325 mm, the thickness is 0.375 mm and the
height is 7.0 mm. To replicate the manufacturing process, the initial configuration of the stent
was obtained by radial expansion from the tube configuration under displacement control on
the outer walls, where the deformation was assumed purely elastic. The resulting configuration
was set to coincide with a new stress-free reference configuration and was taken to consist
completely of austenitic phase. Subsequently, the stent was radially compressed to radius r

using again displacement control on the outer walls. The average external pressure applied
on the outer walls of the stent and resolved on the geometry of the initial configuration is
plotted in Figure 18 against the relative change of radius (4R0−r)/R0. This figure illustrates the
hysteretic loop obtained during a cycle of compression, followed by self-expansion of the stent.
Figures 19 and 20 show the distribution of normal Cauchy stress Tt and the total martensitic
volume fraction during the compression/tension cycle. As expected, the stress concentration
at the wire connections generates significant martensitic transformation, while the rest of the
wire remains largely untransformed. The mechanical behaviour of stents is affected by several
design parameters, such as height of the stent cell, number of wire-mesh structures in the
circumferential direction, thickness in the radial direction, smoothing of the wire connections,
etc. Owing to its excellent predictive capacity, the proposed model can be used in the design
and analysis of stents.
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Figure 16. Distribution of variants 2, 3, 11 and 19 for Type B loading at 6% tension and 2% torsion.

7. CONCLUSIONS

The article presents in a unified manner a sufficiently general theoretical and computational
framework for the analysis of the superelastic effect in shape memory alloys. From a continuum
standpoint, the proposed formulation is based on a complete theory which allows for the precise
definition of loading/unloading, and the identification and measurement of transformation strain.
The algorithmic implementation accurately and robustly replicates the non-smooth transitions
during loading and unloading, while the numerical simulations show satisfactory match with
experimental results.
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Figure 17. Finite element model of a stent.
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Figure 18. Pressure vs change of radius for a stent in compression/extension cycle.
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Figure 19. Distribution of Tt for a stent in compression/extension cycle at six configurations
corresponding to outer radii r = 4R0, 3R0, 2R0, R0, 2R0, 3R0.
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Figure 20. Total martensitic volume fraction distribution for a stent in compression/extension cycle at
six configurations corresponding to outer radii r = 4R0, 3R0, 2R0, R0, 2R0, 3R0.
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APPENDIX A: OUTLINE OF THE CONSTRAINED MINIMIZATION ALGORITHM

The proposed algorithm for the solution of the constitutive equations at the Gauss point level
for time tn+1 is outlined in the following steps.

1. Set [�f
n+1](0) = [�r

n+1](0) = [�n], J
f(0)
n+1 = Jf

n, J
r(0)
n+1 = Jr

n and flag to its value at tn
(flag = f for ‘forward’ or flag = r for ‘reverse’). Also, set counter = 0.

2. Calculate
[
h

flag
n+1

]
and

[
c

flag
n+1

]
.

3. Loop over i

(3a) Solve

[Q][dn+1](i) + ([�n+1](i)[A])T[�̄n+1](i) = [gn+1](i)

[�n+1](i)[A][dn+1](i) = [0]

where [gn+1](i) =
[
c

flag
n+1

]
− [Q]

[
�flag
n+1

](i)
. If ‖[d]‖(i) < tol, then go to (3d).

(3b) Calculate

�(i)
n+1 = min

k | [ak]T[dn+1](i)>0

{
1,

hn+1,k − [ak]T[�flag
n+1](i)

[ak]T[d(i)
n+1]

}

and set
[
�flag
n+1

](i+1) = [�flag
n+1](i) + �(i)

n+1[d](i).
(3c) If �(i) < 1, update J

flag(i)

n+1 to J
flag(i+1)

n+1 by adding the index k, set i ← i + 1, and
return to (3a).

(3d) Determine �̄
(i+1)

j = min
�∈Jflag(i)

n+1
�̄
(i+1)

�,n+1. If �̄
(i+1)

j � 0, set counter← counter+ 1 and

go to 4. Else, drop the index j from J
flag(i)

n+1 , set i ← i + 1 and go to (3a).
4. Set flag =!flag. If counter = 1 go to 2.
5. If flag = f and

∑6
�=1 �r

�,n+1 <
∑6

�=1 ��,n − tol, set flag = r and

�̄l = 0, �̄u =
nv∑

�=1

��,n

Else if flag = r and
∑6

�=1 �f
�,n+1 >

∑6
�=1 ��,n + tol, set flag = f and

�̄l =
nv∑

�=1
��,n, �̄u = 1

6. Compute Et
n+1, Sn+1 and �En+1Sn+1.

APPENDIX B: DEFORMATION OF THE THIN-WALLED TUBE

With reference to Figure 6, the combined tension and torsion of a homogeneous circular cylinder
tube can be expressed componentwise as

r = f (R)
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�=�+ ��Z (B1)

z= �Z

where (R, �, Z) and (r, �, z) are the cylindrical polar co-ordinates in the reference and current
configuration. Also, � is the prescribed stretch along the Z-axis, � is the prescribed angle of
twist per unit referential length, and f is an unknown function of R.

Taking into account (B1), the Lagrangian strain tensor takes the form

E= 1

2

[
(f ′(R)2 − 1)ER ⊗ ER +

(
r2

R2
− 1

)
E� ⊗ E�

+ {�2(1+ �2r2)− 1}EZ ⊗ EZ + ��r2

R
(E� ⊗ EZ + EZ ⊗ E�)

]
(B2)

where (ER,E�,EZ) are the basis vectors associated with the cylindrical polar co-ordinate
system of the reference configuration. During the thin-walled tube experiments, the Lagrangian
strain of the tube is calculated by measuring ��L, r and z in the test section. Upon making
a standard thin-wall approximation and recalling the homogeneity of the tube, the average
Lagrangian tensile strain Et along the Z-axis and the average shearing strain Es become

Et = 1

2
�2[(1+ �2r2

o )− 1], Es = 1

2

��r2
o

Ro
(B3)

where ro and Ro are the current and referential outer radii, respectively. The strains (B3) are
reported for all experiments and also computed in all thin-walled tube simulations.
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