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This paper provides scaling relationships between constituent properties and the uniaxial tensile
response of synthetic “brick and mortar” composite materials inspired by nacre. The macroscopic
strength and ductility �work of fracture� are predicted in terms of the brick properties �size, strength,
and layout� and interface cohesive properties �e.g., maximum shear and normal stresses and
separations�. The results illustrate the trade-off between increasing strength and decreasing ductility
with the increasing aspect ratio of the bricks. The models can be used to identify optimum mortar
properties that maximize toughness for a given brick strength. © 2010 American Institute of
Physics. �doi:10.1063/1.3499294�

The development of freeze-casting techniques to synthe-
size bioinspired composites of ceramic “bricks” and poly-
meric “mortar” creates significant opportunities to create
strong, lightweight and tough materials.1 Like nacre �abalone
shell�, the high strength of these composites is almost en-
tirely due to the ceramic �mineral� phase; however, they ad-
ditionally display remarkable toughness because limited
sliding between the bricks acts to dissipate local stress con-
centrations, much like dislocation motion in metals or micro-
cracking in bone. For synthetic materials, critical questions
arise regarding how the constituents should be tailored to
promote toughness while not undermining strength.

Here, we present a simple uniaxial model to identify the
scaling relationships between constituent properties and
the macroscopic composite strength and work to failure.
Rather than predicting the complex behavior in biological
materials,2–5 the motivation for the present model is the need
to identify combinations of mortar and brick properties that
optimize the macroscopic response of synthetic materials.
Currently, synthetic materials involve much higher volume
fractions of the polymeric phase �e.g., 10%�, and blocks with
smaller aspect ratios than most biological systems. Hence,
we adopt an idealized model that neglects details more rel-
evant in biomineralized natural materials �such as molecular
stretching, stiff bridging ligaments, or rough interfaces�.
In spirit, the approach is similar to composite modeling
that utilizes atomistic-based cohesive laws describing the in-
teraction between polymers and rigid particles.6,7 However,
since the interplay between interface bonding and inelastic
polymer deformation has yet to be quantified for the present
materials, we adopt a phenomenological cohesive law.8 The
law is quantitatively similar to van der Waals bonding when
the peak stress and critical separation of the cohesive law are
matched: the focus here is on the relationship between these
parameters, brick geometry, and macroscopic response.

A schematic of the brick and mortar idealization used for
the present model and the corresponding unit cell is shown in

Fig. 1. All bricks are defined to have width w, height h, and
rows of bricks overlap by s. It is assumed that the elastic
stretching of the bricks is negligible compared to the dis-
placements of the bricks relative to one another; hence, the
bricks are treated as rigid. However, one can compute the
maximum stress in a brick, which occurs just below each
vertical mortar layer, at x=0 in Fig. 1�b�. The mortar is rep-
resented using cohesive laws acting between adjacent brick
interface: for simplicity, we assume the mortar thickness is
much smaller than the brick dimensions. �Finite mortar layer
thicknesses are shown in Fig. 1�b� for clarity.�

In the kinematics of the unit cell deformation �Fig. 1�b��,
the bottom �reference� brick is considered fixed. The adja-
cent �cohesive� mortar layers experience purely horizontal
displacements, such that the cohesive layers connecting ad-
jacent rows are sheared, while the layers across vertical in-
terfaces experience tension. While the total vertical gap that
opens up between any two bricks is spatially uniform
throughout the composite, the displacements of the two
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FIG. 1. �Color online� Schematic illustration of �a� the composite and �b�
the unit cell used in the analysis.
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bricks within the unit cell are asymmetric. The top left brick
in the unit cell is displaced by �1 �i.e., for x�0�, while the
right is displaced by �2 �i.e., for x�0�. The composite mac-
roscopic strain is defined by �= ��1+�2� /w. Since the bot-
tom brick is rigid and fixed, the displacements �1 and
�2 reflect the relative displacements that are fed into
the traction-displacement relation defining the cohesive
interfaces.

To capture the phenomenon of cohesive layer rupture,
the cohesive law is described as a nonmonotonic function of
relative displacements, similar the stress-strain relationships
illustrated in Fig. 2. The cohesive tractions along the vertical
layers, ���n�, and along the horizontal layers, ���t�, are pre-
scribed as follows:8

� = e�o
�n

�1c
e−�n/�1c, � = e�o

�t

�2c
e−�t/�2c, �1�

where �n is the relative normal displacement of the vertical
interfaces, while �t is the relative tangential �sliding� dis-
placement of the horizontal interfaces. The peak cohesive
stresses are given by �o and �o. The critical displacements
required to reach the peak stresses are �1c and �2c. The cor-
responding work of separation of the cohesive layers is Wi
=e�o�1c �vertical� and Wi=e�o�2c �horizontal�.

Using the kinematics described above and referring to
the unit cell, the horizontal cohesive layers experience the
shear displacements �t=�1 for x�0 and �t=�2 for x�0.
For all vertical layers, the normal separation is given by �n
=�1+�2. In the general case �i.e., s�w /2 and different criti-
cal displacements for shear and normal stresses�, the shear
and normal stresses reach a maximum at different stages of
deformation. Force balance at each brick’s origin implies that
s̄���1�= �1− s̄���w�−�1�, where s̄=s /w and �B defines the
maximum stress in the brick. This equation is used to deter-
mine �1 at a prescribed level of macroscopic strain; �2 is
eliminated as a variable using the definition of the macro-
scopic strain. The brick stress is then computed as �B
= �2s̄���1�+�n�w��� /2. The average macroscopic composite
stress, computed at a given vertical plane �e.g., x=0�, is then
�c= �1 /2���B+�o�.

For the special case when s̄=0.5, symmetry dictates that
relative motions are described by the displacements �1=�2
=w� /2. If �1c=2�2c, the vertical and horizontal mortar layers
will experience identical separations relative to their control-

ling length scale; i.e., �n /�1c=�t /�2c. In this case, the
strength of the composite is dictated only by the maximum
stresses of cohesive laws, �o and �o. For systems with strong
bricks �as presumably the case with ceramic phase with
small volumes�, the optimum performance is obtained by
tuning �o such that the peak stress in the bricks is just below
their strength �B

f . In this case, the maximum work of fracture
of the composite is obtained because full sliding “pull-out”
of ceramic bricks will occur before brick failure. This opti-
mum, with the observed failure strength of the composite
�c

f =1 /2��o+�B
f �, is described by the following:

�o
opt =

h

w
��B

f − �o�, Wf = c�1c�o�1 +
h

w
��B

f

�o
− 1�	 , �2�

where �B
f is the failure stress of the ceramic bricks and Wf is

the failure work per unit cross-sectional area. It should be
emphasized that these results are valid regardless of the
shape of the cohesive law; only the dimensionless constant c
depends on the form of the cohesive law �here, c
1.36�.
This optimum illustrates that if the mortar is tailored to
maximize strength, the toughness will decrease with brick
aspect ratio w̄=w /h. Note that the optimum composite fail-
ure stress scales as one-half the brick strength �presuming the
mortar phase has limited strength�, since at a given plane,
loads are focused from the vertical gaps onto the adjacent
bricks.

Regardless of whether or not the shear behavior of the
mortar is tuned to the optimum outlined above, there is a
fundamental trade-off between composite strength and duc-
tility with increasing aspect ratio w̄, as shown in Fig. 2�a�
�for the case �o=�o�. As w̄ increases, the maximum stress
increases and the failure work �area under the curves, a mea-
sure for ductility� decreases. For large aspect ratios w̄, this is
true even when the mortar does not deform proportionally on
the vertical and horizontal layers �i.e., when 2�1c��2c�,
since shear stresses dominate the composite response. This is
illustrated in Fig. 2�a�; only small changes in the composite
response result from changing the critical normal displace-
ment ��1c� by a factor 2.

In Fig. 2�b�, the above the theory with s̄=0.5 is com-
pared with results from previously published experiments for
a “brick and mortar composite” comprised of 85 wt % alu-
mina and 15 wt % poly�methylmethacrylate�.1 Since the
theory neglects elastic deformation of the bricks, the mea-
sured strains are adjusted by subtracting an estimate for the
composite’s elastic deformation. Figure 2�b� plots �=�exp
−�exp /Eexp, where �exp is the total experimental strain, and
the experimental elastic modulus �at smalls strains� is Eexp
�50 GPa. For the theory, the critical stresses and separa-
tions were used as fitting parameters �values listed in the
caption�. Good agreement is not surprising with four fitting
parameters. However, there is a relatively narrow range of
parameters that capture the data even crudely. It is worth
noting scanning electron microscopy observations show
damage localization,1 i.e., brick failure and regions where
local sliding is larger than the surrounding bricks. However,
such observations are by their very nature local and it is
difficult to detect more defuse submicron deformation; more-
over, one anticipates abrupt drops in stress associated with
the spread of a dominant defect. Using reasonable cohesive
parameters, the present homogeneous deformation model is
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FIG. 2. �Color online� �a� Composite stress-strain relationships: illustrating
the effect of brick aspect ratio w /h, for s /w=0.49 and �o=�o: solid lines
are for �1c=�2c=0.02h, dashed lines are for �1c=0.04h, �2c=0.02h. �b�
Comparison of theory with previously published experiments �Ref. 1�:
w=20 	m, h=3 	m, s /w=0.5, �o=102 MPa, �o=28 MPa, �1c=30 nm,
and �2c=75 nm.
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in clear agreement with the gradual loss of load-carrying
capacity seen in Fig. 2�b�.

In fitting the model to the experiment, it is critical to use
different values for normal and shear contributions. The
model implies �for the experimental composite� that the nor-
mal stress �in the vertical cohesive layers� dominates the
composite peak stress; the shear stress �in the horizontal lay-
ers� controls the softening behavior. Roughly, 
20% varia-
tions in �o and �1c lead to changes in similar proportion in
the predictions near the first peak, and 
20% variations in �o
and �2c lead to changes in similar proportion in the predic-
tions in the softening portion of the response. The model
suggests that the slight bump present at ��0.7% correlates
with a peak in shear stress.

The model further implies that the slight “bump” seen in
Fig. 2�b� at ��0.7% can be exaggerated to significantly in-
crease the composite work to fracture, provided the critical
shear sliding distance can be increased relative to that con-
trolling normal separation. This is illustrated in Fig. 3�a� as
follows: larger critical shear sliding distances lead to peak
shear stresses at larger strains. Reasonably elevated compos-
ite strength is maintained over a large range of strains by
creating a transition between small strain behavior domi-
nated by normal stresses and large strain behavior dominated
by shear stresses. The fundamental trade-off between

strength and failure work is unavoidable, however; Fig. 3�b�
plots the correlation of composite strength and failure work,
with the critical shear sliding distance as an implicit param-
eter that increases from left to right.

The highest strength is achieved when the critical sliding
distances are nearly equal, as both cohesive layers contribute
to load carrying capacity at the same level of macroscopic
strain. This additive effect is lost when the critical shear slid-
ing distance increases, though this increases the failure work.
The results in Fig. 3�b� also illustrate the general implica-
tions of the model for scenarios involving brick failure.
�In these cases, the composite strength is taken as the
maximum reached such that the brick stress is below its
strength. The composite failure work is computed up until
the point of brick failure.� In Fig. 3, low brick strength im-
plies that the composite fails before exhibiting pull-out, lim-
iting both strength and failure work. The results in Fig. 3 for
�B

f =20�o illustrate a sharp increase in failure work for con-
ditions that narrowly avoid brick failure �as described ear-
lier�; when the critical shear sliding distance reaches a criti-
cal value of �2c /h
0.02, the failure work jumps because
brick failure is just avoided, while the composite strength is
relatively constant. However, even if brick failure is avoided
�e.g., �B

f =25�o in Fig. 3�b��, increasing the failure work to
significant levels leads to a concomitant decrease in compos-
ite strength.

The present results, combined with the assumption that
the critical distances �1c and �2c will scale with the mortar
thickness, suggest that there is an optimal mortar thickness;
it must be small enough to avoid brick failure driven by the
additive effect of shear and normal stresses, but large enough
to ensure effective load transfer. Although the present model
is clearly able to predict mechanical behavior consistent with
experiments, future modeling is needed to rigorously connect
critical cohesive properties to microscale and nanoscale
properties, such as bond strength and polymer yield strength.
The present results are informative, however; if the peak
composite stress is governed by mortar yield strength, say

50 MPa, and the brick strength is 
1 GPa, the optimal
value of critical sliding displacement is 
75 nm �similar to
that inferred from the above matching with experiments� for
bricks measuring 20 by 1 	m. These properties would lead
to composite strengths of 
500 MPa, with failure work on
the order of 40 kJ /m2. Relative to the existing materials
shown in Fig. 2�b�, this would represent a factor of 3 im-
provement in strength, and a factor of 3 improvement in
toughness.
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FIG. 3. �Color online� Results for w /h=20, s /w=0.49, �o=5�o, and various
combinations of critical displacements, and brick strength. �a� Composite
strength is at a maximum when the shear and normal critical displacements
are the same, implying an additive effect of shear and normal stresses: it
then decreases as �2c increases, due to different strain levels associated with
peak stress. �b� Plot of the composite strength vs failure work, illustrating
the general trade-off between strength and ductility; along each curve from
left to right, �2o increases.
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