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Natural structural materials which feature hierarchical architectures, like bone and glass sponge skeletons, often 

display remarkable mechanical properties. Employing the principle of hierarchy can create self-similar architected 

metamaterials across multiple length-scales, but the strengthening mechanisms remain to be fully understood. 

In the present study, self-similar hierarchical octet-truss lattice materials were fabricated via additive manufac- 

turing and deformed in uniaxial compression. Experimental results indicated that the mechanical properties of 

such hierarchical lattice materials were not determined by relative density, unlike those of non-hierarchical ones, 

but varied with strut slenderness ratios in the two hierarchical levels. In terms of specific strength and stiffness, 

hierarchical architected structures do not necessarily outperform non-hierarchical structures. To explain the un- 

derlying mechanisms of these phenomena, analytical models considering effects of complex nodal microstructure 

were established. The upper and lower bounds of strength for the hierarchical lattice materials were deduced 

and compared with that for the non-hierarchical materials; these comparisons suggested that the hierarchical 

construction could be used to access unique mechanical properties that are unachievable in traditional materials. 

Additional levels of hierarchy beyond the second order could be similarly analyzed. This study discerns how 

hierarchical architecture can be used to access the unique properties of lattice materials, provides insight into 

the role of design in regulating the mechanical properties of such mechanical metamaterials. 
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. Introduction 

Biological materials, such as cancellous bone, wood and radiolari-

ns, exhibit excellent mechanical properties that benefit from their hi-

rarchical microstructures [1, 2] . For example, cancellous bone, with

ts highly complex structure with up to seven hierarchical levels of or-

anization, displays a dual function of structural support with impact

rotection [3] . Analogously, the Euplectella glass sponge has a hierar-

hical construction achieved through a lengthy evolution process and

uided by environmental constraints; as such, it possesses exceptional

echanical stability and toughness [4] . 

Among corresponding synthetic structural materials, architected ma-

erials have attracted wide attention over the past decade; these include

rchitected materials constructed with various constituents, including

etallic [5] , composite [6-8] and ceramic lattices [9] , which have been

rocessed by a wide variety of fabrication techniques to achieve de-

ired mechanical properties. With the development of micro/nano fab-

ication, especially additive manufacturing, considerable attention has
∗ Corresponding author. 

E-mail address: junxu@buaa.edu.cn (X. Jun). 

ttps://doi.org/10.1016/j.ijmecsci.2018.09.038 

eceived 26 July 2018; Received in revised form 24 August 2018; Accepted 24 Septe

vailable online 27 September 2018 

020-7403/© 2018 Elsevier Ltd. All rights reserved. 
een focused on the development of micro-/nano-lattices. Specifically,

lectron beam melting [10-12] and selective laser melting [13-15] tech-

iques have been used to rapidly manufacture micro-lattice materials of

rbitrary shape. Yuan et al. [ 16 ] conducted a systematic investigation

n the manufacturing process of selective laser sintering, including the

ptimization of the fabrication process and mechanical testing of 3D-

rinted structures. Compton et al. [ 17 ] reported a new epoxy-based

nk that enabled 3D printing of cellular composites composed of ori-

nted fiber-filled epoxy, and demonstrated the printed cellular compos-

tes with exceptional mechanical properties using experimental and the-

retical methods. Additionally, stereolithography [18] , self-propagating

hotopolymer waveguides [19-22] , two-photon lithography and projec-

ion micro stereolithography techniques [23, 24] have also been devel-

ped to fabricate architected materials with complex geometries at mi-

ro to nano length-scales. Bauer et al. [25] have reviewed the progress

hat research has made into the topic of nanolattices as an emerging class

f mechanical metamaterials, and expanded on the benefits of combin-

ng nanomaterials with lattice architectures. The mechanical properties
mber 2018 
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1 Resilience means sample’s recoverability, defined as the height after unload- 
Nomenclature 

Q repeating number of the 1 st order octet-truss unit 

cell along the struts of the 2 nd order octet-truss unit 

cell 

𝐸 

(2) 
𝑍 

compressive stiffness of the 2 nd order octet-truss 

unit cell 

d 1 diameter of strut in the 1 st order octet-truss lattice 

materials 

𝜆
(2) 
𝑁 𝑄 

modification of nodal volume effect of the larger 

strut 

l 1 length of strut in the 1 st order octet-truss lattice ma- 

terials 

𝜆
(2) 
𝑁 𝑙 

modification of nodal volume effect of the smaller 

strut 

d 2 diameter of the smaller strut in the 2 nd order octet- 

truss lattice materials 

𝜎I buckling stress of the Type I struts 

l 2 length of the smaller strut in the 2 nd order octet- 

truss lattice materials 

n n is determined by the end condition of buckling 

strut; n = 1 for pin-jointed strut, n = 2 for fixed-end 

strut 

𝜌̄(1) relative density of the 1 st order octet-truss lattice 

materials 

𝜎
(2) 
𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔 

strength of the 2 nd order octet cell failing with Euler 

buckling of smaller strut 

𝜌̄(2) relative density of the 2 nd order octet-truss lattice 

materials 

I 2 inertia moment of larger struts 

E S compressive modulus of the parent nylon materials 

𝜎
(2) 
𝐵𝑈𝐶 𝐾 𝐿𝐼 𝑁 𝐺 

strength of the 2 nd order octet cell failing with Euler 

buckling of larger strut 

𝜎ys compressive strength of the parent nylon materials 

𝜎
(2) 
𝑦𝑖𝑒𝑙𝑑𝑖𝑛𝑔 

strength of the 2 nd order octet cell failing with plas- 

tic yielding 

𝜀 strain 

𝐹 
(1) 
𝐴 

axial force of strut in the 1 st order octet-truss lattice 

materials 

𝛿Z imposed displacement of the 1 st and 2 nd order octet- 

truss lattice materials 

𝐹 
(1) 
𝑆 

sheer force of strut in the 1 st order octet-truss lattice 

materials 

𝛿X lateral deformation of the 1 st and 2 nd order octet- 

truss lattice materials along x axis 

l 1 ′ equivalent length of the struts in the 1 st order octet- 

truss lattice materials 

𝛿Y lateral deformation of the 1 st and 2 nd order octet- 

truss lattice materials along y axis 

I 1 inertia moment of struts in the 1 st order octet-truss 

lattice materials 

𝛿A axial deformation along the larger strut of the 2 nd 

order octet-truss lattice materials 

𝑃 
(1) 
𝑇 

shear modification of Timoshenko beam 

𝜔 inclination angle between the struts and the hori- 

zontal truss of the octet-truss unit cell 

𝜅 shear coefficient 

l 2 ′ equivalent length of the smaller struts in the 2 nd or- 

der octet-truss lattice materials 

G shear modulus 

Q ′ equivalent repeating number of the 1 st order octet- 

truss unit cell along the larger strut of the 2 nd order 

octet-truss unit cell 
i

151 
A 1 cross-section area of struts in the 1 st order octet- 

truss lattice materials 

𝛿𝛼 axial deformation along each substructure in the 

larger strut of the 2 nd order octet-truss unit cell 

𝜈 Poisson’s ratio of nylon material 

𝜃1 inclination angle between the Type I struts and the 

axial direction of corresponding larger strut 

𝐸 

(1) 
𝑍 

compressive stiffness of the 1 st order octet-truss lat- 

tice materials 

𝜃2 inclination angle between the Type II struts and the 

axial direction of corresponding larger strut 

𝜆
(1) 
𝑉 

modification of nodal volume effect in the 1 st order 

octet-truss lattice materials 

𝜃3 inclination angle between the Type III struts and the 

axial direction of corresponding larger strut 

𝜆
(1) 
𝐵 

modification of bending volume effect in the 1 st or- 

der octet-truss lattice materials 

F I axial force in the Type I struts 

𝜎
(1) 
𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔 

strength of the 1 st order octet cell failing with Euler 

buckling 

F II axial force in the Type II struts 

𝜎
(1) 
𝑦𝑖𝑒𝑙𝑑𝑖𝑛𝑔 

strength of the 1 st order octet cell failing with plastic 

yielding 

F III axial force in the Type III struts 

f these materials depend on their constituent materials, their architec-

ure or combinations of the two. 

Inspired by biological materials in Nature, architected materials with

ultiple hierarchical levels have been designed across different length-

cales and studied for their effects on mechanical behavior [26-30] . The

esign concept of recursion has been widely applied to create hierarchi-

al architected materials through the topology of lower-order unit cell

31–33] . Meza et al. [34] investigated the effect of structural hierarchy

n the stiffness, strength and resilience 1 of nanolattices using nanome-

hanical experiments and computer modeling. They found that more

han two levels of hierarchy would not stiffen or strengthen these struc-

ures but would help to amplify their recoverability. Zheng et al. [24] de-

eloped hierarchical metamaterials with various three-dimensional fea-

ures spanning seven orders of magnitude, which exhibited high tensile

uctility with tensile strains approaching 20%, behavior not found in

heir brittle-like metallic constituents. However, the fundamental mech-

nisms underlying this behavior across different length-scales were not

ade clear. 

In general, the increase of hierarchical level would introduce com-

lexity on lattice nodes and mechanical behavior of architected mate-

ials. Detailed analytical models considering the node complexity were

bsent to evaluate effects of hierarchical level and structural parame-

ers. Also, how to manipulate mechanical properties by adjusting the

icrostructures was still unknown. To bridge this gap, the current work

ill be carried out as followed. Specifically, we fabricate self-similar

ierarchical octet-truss architected materials using additive manufac-

uring, characterize their uniaxial mechanical response through experi-

ents and theoretical modeling, and compare their mechanical behav-

or to that in non-hierarchical architected materials. The key factors that

overn mechanical properties of hierarchical constructions are explored

ith the objective of discerning their structural efficiencies. 

. Design and fabrication 

An octet-truss (termed as face-centered cubic, fcc ) unit cell is com-

osed of a central octahedral cell with 12 struts and 8 edge tetrahedrons
ng divided by its original height, as described by Meza et al. [25] . 
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Fig. 1. Computer-aided design (CAD) of hierarchical octet-truss lattice materials and specimens fabricated by selective laser sintering. (a) a zero-order repeating 

truss unit; (b) a first-order octet-truss unit; (c) illustration about the patterning method for (d) a second-order hierarchical octet-truss unit cell; (e) nodal volume 

effects arising from the complex microstructure and coincident volume at the nodes formed by larger or smaller truss members. 
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ach with 3 struts. The octet-truss unit cell possesses a nodal connectiv-

ty of 12 which satisfies Maxwell’s rigidity criterion, and thus will de-

orm according to a stretch-dominated mechanism [ 35 ] . A hierarchical

ctet-truss architected material is designed using a recursive method as

hown in Fig. 1 . Specifically, an octet-truss unit ( Fig. 1 b) is patterned

long the truss length direction ( Fig. 1 c), with topological interval of

alf a unit cell and repeating number of Q , resulting in a fractal-like 2 nd 

rder self-similar geometry ( Fig. 1 d). Note that during this construction,

he local coordinate system of the 1 st order octet-truss unit cell is kept

he same as that of the 2 nd order. These steps can be repeated iteratively

o create hierarchical lattice materials of any order; indeed, the method

s sufficiently general that it can be repeated for a wide range of unit

ell geometries. 

Selective laser sintering (SLS) was employed for the manufacture of

ll samples in this study using an additive manufacturing machine (EOS

396, Germany) with polyamide PA 2200 powder (Nylon 12). The sys-

em begins by applying a thin layer of powder material to the build-

ng platform. Subsequently, the powder is selectively fused by powerful

aser beam and solidified according to the sample geometry. Samples

ere fabricated together in 6 hr or less without any supporting struc-

ures which are often difficult to remove. Photographs of the printed

on-hierarchical and hierarchical lattice materials are shown in Figs. 1 b

nd 1 d, respectively. From the surface tomography image of a single

russ ( Fig. 1 a), taken with a Keyence VHX-6000 optical microscope, the

owder can be seen to have sintered thoroughly; the truss diameter ap-

ears to be slightly varied, which can be attributed to the fabrication

rocess, in particular the slicing method, powder thickness and accuracy

d  

152 
f electronic scanning. By changing the strut slenderness ratio, i.e ., the

atio of length to diameter of the struts, four groups of non-hierarchical

ounterparts of 5 ×5 ×5 unit cells were obtained, respectively termed

s A1-A4 for comparison; correspondingly, six groups of hierarchical

ctet-truss unit cells, termed as B1-B6, were fabricated with the same

lenderness ratio and variable unit repeating numbers Q . The geome-

ries are summarized in Table 1 , and the overall dimension of all spec-

mens is 56 ×56 ×56 mm. Note that the strut diameter is restrained by

he smallest achievable feature size of the present additive manufactur-

ng machine. 

For non-hierarchical octet-truss lattice materials, the relative density

as been derived previously [35] as 𝜌̄(1) = 

3 
√
2 𝜋
2 ( 𝑑 1 

𝑙 1 
) 2 , where d 1 and l 1 

re lattice truss diameter and length. However, for those with higher

elative densities ( > 0.1), the coincident volume at the joints of the lat-

ice members must be taken into account [36] . A curve fit of the relative

ensities calculated by CAD models of Groups A1-A4 suggests adding a

ubic correction [10] , given as: 

̄(1) = 

3 
√
2 𝜋
2 

( 

𝑑 1 
𝑙 1 

) 2 
− 6 . 825 

( 

𝑑 1 
𝑙 1 

) 3 
, (1)

For hierarchical lattice materials, larger lattice struts consisting of

ctet-truss cells will form super nodes with complex microstructure at

he joints, as shown in Fig. 1 e. Nodal volume effects should be consid-

red because of the coincident volume at each node, both with larger

nd smaller struts. Similarly, the relative density of the 2 nd order hierar-

hical octet-truss unit cell, 𝜌̄(2) , can be calculated in terms of the relative

ensity of octet-truss unit cell times that of the substructure in its larger
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Table 1 

Summary for geometries of the 1 st order and 2 nd order octet-truss lattice materials. 

Specimen d 1 (mm) l 1 (mm) d 1 /l 1 𝜌̄(1) 

Theoretical value (Eq.1) Actual value 

A1 1.28 7.92 0.1616 0.15 0.15 

A2 1.60 7.92 0.2020 0.22 0.23 

A3 1.92 7.92 0.2424 0.29 0.32 

A4 2.24 7.92 0.2828 0.38 0.42 

Specimen Q d 2 (mm) l 2 (mm) d 2 /l 2 𝜌̄(2) 

Theoretical value (Eq.2) Actual value 

B1 0.8 4.95 0.1616 0.06 0.05 

B2 8 1.0 4.95 0.2020 0.09 0.08 

B3 1.2 4.95 0.2424 0.12 0.12 

B4 1.4 4.95 0.2828 0.16 0.16 

B5 6 1.0 4.95 0.2020 0.13 0.12 

B6 10 1.0 4.95 0.2020 0.06 0.05 

Fig. 2. (a) Compressive and (b) tensile engineering stress-strain curves of the constitutive nylon materials. 
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trut as: 

̄( 2 ) = 

36 𝑄 − 92 
𝑄 

3 

[ 

25 
√
2 𝜋

16 

( 

𝑑 2 
𝑙 2 

) 2 
− 5 . 922 

( 

𝑑 2 
𝑙 2 

) 3 
] 

(2) 

here d 2 and l 2 are diameter and length of the smaller struts. The mea-

ured relative densities agree well with those obtained by theoretical

rediction, as indicated in Table 1 . 

. Experiments 

Quasi-static compression tests for the hierarchical lattice materials

ere carried out and their compressive behavior analyzed and com-

ared with those of non-hierarchical counterparts. All the specimens

ere compressed on a servo-hydraulic testing machine (Instron 8801)

quipped with two parallel high strength steel loading platens, at a con-

tant cross-head strain rate of about 10 − 3 /s. The compression force was

ead from the load cell, while the compressive displacement was mea-

ured using a laser extensometer. Three tests were carried out for each

roup of specimens to ensure repeatability. Also, the compressive and

ensile properties of the parent constitutive material were tested. 

.1. Compressive response of constitutive materials 

The compressive and tensile stress-strain curves of the constitutive

ylon materials, which were made by 3D printing in accordance with

STM D695-15 [37] and ASTM D638-14 [38] , are shown in Fig. 2 . For

he compressive test, a linear-elastic stage appeared first, then the cylin-

rical strut starts to yield followed by nonlinear strain-hardening behav-

or. For the tensile test, after an initial linear-elastic stage, the slope de-

reases gradually with the dog-bone shaped specimen entering its “plas-

ic ” stage until the curve starts to fall rapidly. The slopes of the linear
153 
tages are considered to be the modulus and the values of the stress at

he y -axis, defined by the end point of linear-elastic stage, were taken

s the yield strength. The calculated values of the compressive modu-

us E S , compressive yield strength 𝜎ys , tensile modulus E S ′ and tensile

ield strength 𝜎ys ′ , were 1180 MPa, 37.5 MPa, 1662 MPa and 39.9 MPa,

espectively. 

.2. Compressive response of non-hierarchical lattice materials (1 st order) 

The compressive stress–strain curves of the 1 st order lattice material

re shown in Fig. 3 together with the deformation modes. Representative

ompressive responses were typical of cellular materials exhibiting high

requency oscillations. 

For Group A1 ( ̄𝜌(1) = 0 . 15 ), a linear-elastic stage appeared first, reach-

ng a peak followed by a sharp drop, before subsequently strain hard-

ning prior to densification. The oscillation in the stress-strain curve

as due to a layer-by-layer collapse. As shown in Fig. 3 b, the onset of

ailure appeared first at the boundary layer by Euler buckling of lat-

ice members, followed by progressive crushing towards the specimen

enter; this behavior has been widely observed for other conventional

ellular solids. 

For Groups A2 and A3, after deforming in a linear-elastic manner, the

xperimentally-measured macroscopic engineering stress-strain curve

ecomes non-linear, reaching the first stress peak while the deforma-

ion fields were still macroscopically uniform. After the peak, the stress

ecreased slowly, accompanied by yielding and fracture of the structure,

efore diagonal crushing, as shown in Fig. 3 c-d. 

For Group A4 with relative density of 0.42, no sharp stress drops

ere observed but instead a clear stress plateau stage appeared after the

eak followed by small stress fluctuations until densification. Shear lo-

alization bands were created which triggered strut plastic yielding and
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Fig. 3. (a) Compressive stress-strain curves and the corresponding deformation histories of the 1 st order octet-truss lattice materials with relative densities of (b) 

0.15, (c) 0.23, (d) 0.32 and (e) 0.42. 
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racture along the diagonals, followed by subsequently densification,

s shown in Fig. 3 e. Note that similar localization densification bands

ere observed for metallic fcc metamaterials in a previous study [10] .

or specimens in Groups A3-A4 with larger relative densities, the meso-

copic deformation mode was in the form of plastic hinges which were

reated near the strut nodes before nodal rupture and sample crushing;

ccordingly, bending deformation could not be neglected during theo-

etical analysis, as discussed in the Appendix B . 

.3. Compressive response of hierarchical lattice materials (2 nd order) 

For the 2 nd order lattice materials, the compressive stress-strain

urves for six groups of specimens were shown in Fig. 4 a. The curves

xhibited two obvious peaks during compression because the lower

nd upper half-cells failed progressively as the strain increased, and

he horizontal larger struts did not deform. The deformation process

f Group B4 ( ̄𝜌(2) = 0 . 16 ), for example, is shown in Fig. 4 b. Referring to

he corresponding stress-strain curve, after the linear-elastic stage the

tress-strain curve became non-linear and reached the first stress peak

t ∼0.96 MPa accompanied by buckling of larger struts in the lower half-

ell. As the strain increased, the upper half-cell started to deform after
154 
he lower one fully collapsed, at a strain of 0.3; the latter buckled at the

econd stress peak followed by its full collapse at a strain of ∼0.45 prior

o densification. Additionally, more possible failure modes appeared for

he hierarchical materials. The representative failure modes could be Eu-

er buckling of smaller lattice strut (Group B1), plastic yielding (Group

5), and macroscopic Euler buckling of larger strut, as summarized in

ig. 4 c. 

. Theoretical analysis 

As the length-scale is diminished, material size effects and primarily

rchitectural effects begin to play a competing role on mechanical prop-

rties of architected materials (e.g. , nanolattices) depending on their rel-

tive density [25] . Here, we only focus on mechanisms of hierarchical

rchitecture for these materials whatever the length-scale is. 

The compressive stiffness and strength prediction formulae are de-

uced for the 2 nd order hierarchical octet-truss unit cell similarly as

hose for non-hierarchical lattice materials [36] , which are derived in

he Appendix B . To facilitate our analysis, a single larger strut of the

ierarchical octet-truss unit cell is extracted, as shown in Fig. 5 . All

he lattice members are presumed to be compressed with pin-jointed
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Fig. 4. (a) Compressive stress-strain curves of the 2 nd order octet-truss lattice materials with relative densities of 0.05, 0.08, 0.12, 0.16, 0.12 and 0.05; (b) typical 

failure modes that were observed; and (c) deformation histories for the 2 nd order octet-truss lattice materials with relative densities of 0.16. 
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w

nds, thus ignoring any small bending deformation. For hierarchical

attice materials, the effect of nodal volume is clear due to the com-

lex microstructure at the nodes ( Fig. 1 e), which need to be considered

n any theoretical analysis. Here, nodal volume effects of both larger

nd smaller lattice members are considered by introducing equivalent

ell number Q ′ ( Fig. 5 c-d) and smaller strut length l 2 ′ ( Fig. 5 e-f), re-

pectively. For the imposed displacement 𝛿Z in the z -direction shown in

ig. 5 a, the lateral deformation due to effects of Poisson’s ratio leads

o 𝛿X = 𝛿Z /3, such that the axial deformation along the secondary strut

ecomes 𝛿A = 𝛿Z sin 𝜔 − 𝛿X cos 𝜔 , where 𝜔 = 45° for the fcc construction. 

.1. Stiffness 

The representative substructure in the larger strut is shown in Fig. 5 d.

or this configuration, the axial deformation along each substructure is

𝛼 = 𝛿A /2 Q ′ . Three types of struts exist in the substructure, and the cor-

esponding strut inclination angles are defined according to the load-

ng direction with 𝜃1 = 0 ○, 𝜃2 = 90 ○ and 𝜃3 = 60 ○. Using truss sys-

em analysis theory [39] , the corresponding axial forces in three types

f struts are respectively: 𝐹 𝐼 = 𝜋𝑑 2 2 𝐸 𝑆 𝛿𝛼 cos 𝜃1 ∕4 𝑙 2 ′ cos 𝜃3 , 𝐹 II = 0 and

 𝐼 = 𝜋𝑑 2 2 𝐸 𝑆 𝛿𝛼 cos 𝜃3 ∕4 𝑙 2 ′. Thus, the compressive stiffness of the 2 nd or-

er hierarchical octet-truss unit cell can be expressed as: 

 

(2) 
𝑍 

= 

5 
√
2 𝜋𝐸 𝑆 

4 

( 

𝑑 2 
𝑄 𝑙 2 

) 2 
𝜆
( 2 ) 
𝑁 𝑄 
𝜆
( 2 ) 
𝑁 𝑙 
, (3)
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here the two parameters 𝜆
(2) 
𝑁 𝑄 

= 𝑄 ∕ 𝑄 

′ and 𝜆
(2) 
𝑁 𝑙 

= 𝑙 2 ∕ 𝑙 2 ′, represent con-

ributions of nodal volume effects of the larger and smaller struts, re-

pectively. Note that only axial deformation is considered in the above

nalysis, and the contribution from strut bending deformation (termed

s bending effects) on compressive properties are neglected to simplify

he analysis. 

.2. Strength 

More possible failure modes exist in the hierarchical octet-truss lat-

ice material during uniaxial compression, namely (i) Euler bucking of

he smaller struts (EB1), (ii) macroscopic Euler buckling of the larger

truts (EB2), and (iii) strut plastic yielding (PY). We now provide below

redictive models for each of these failure modes. 

1) Euler buckling of the smaller struts 

During compression, the Type I struts always fail prior to the Type

I and III struts. Accordingly, the buckling stress in smaller strut is 𝜎𝐼 =
 

2 𝜋2 𝐸 𝑆 𝑑 
2 
2 ∕16 𝑙 2 

′2 with n = 1, and the corresponding strength of the 2 nd 

rder hierarchical octet cell will be: 

(2) 
𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔 

= 

15 
√
2 𝜋3 𝐸 𝑆 

64 𝑄 

2 

( 

𝑑 2 
𝑙 2 

) 4 
𝜆
(2) 
𝑁 𝑄 

(
𝜆
( 2 ) 
𝑁 𝑙 

)2 
. (4) 

Note that because the modification of Q ′ in 𝜆
(2) 
𝑁 𝑄 

can be offset; 𝜆
(2) 
𝑁 𝑄 

ill be equal to unity in the expression for 𝜎
(2) 
𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔 

in Eq. 4. 
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Fig. 5. (a-c) Free-body diagram of a single larger strut for the hierarchical lattice material under uniaxial compression; (d) the representative substructure in the 

larger strut; (e) equivalent length of Type III struts considering nodal effects; (f) deformation sketch of Type III strut. 
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1) Euler buckling of the larger struts 

The inertia moment of the larger struts determines their buckling

esistance, simplified here as that of the Type I struts ( Fig. 5 d), i.e.,

s 𝐼 2 = 𝜋𝑑 2 2 ( 𝑑 
2 
2 +2 𝑙 

2 
2 )∕16 . Thus, the collapse strength for failure by Euler

uckling of a larger strut can be derived as: 

(2) 
𝐵𝑈𝐶 𝐾 𝐿𝐼 𝑁 𝐺 

= 

3 
√
2 𝜋3 𝐸 𝑆 𝑑 

2 
2 
(
𝑑 2 2 +2 𝑙 

2 
2 
)

16 𝑄 

4 𝑙 4 2 

(
𝜆
( 2 ) 
𝑁 𝑄 

)2 
𝜆
(2) 
𝑁 𝑙 
. (5)

Note that the nodal volume effect of smaller strut 𝜆
(2) 
𝑁 𝑙 

equals unity

n Eq. 5. 

1) Plastic yielding 

If the strut fails by plastic yielding, then 𝜎I = 𝜎ys , and thus the com-

ressive strength of the 2 nd order octet cell is: 

(2) 
𝑦𝑖𝑒𝑙𝑑𝑖𝑛𝑔 

= 

15 
√
2 𝜋𝑑 2 2 

4 𝑄 

2 𝑙 2 2 

𝜎𝑦𝑠 𝜆
( 2 ) 
𝑁 𝑄 
𝜆
(2) 
𝑁 𝑙 
. (6)
a  
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Here, both 𝜆
(2) 
𝑁 𝑄 

and 𝜆
(2) 
𝑁 𝑙 

will be equal to unity and thus nodal volume

ffects can be ignored when plastic yielding occurs. 

. Discussion 

.1. Compressive stiffness and strength 

Experimental stiffness and strength values are plotted and compared

ith different prediction models for both the hierarchical and non-

ierarchical octet-truss lattice materials in Fig. 6 . All the specific val-

es are summarized in Table C1 and C2, and more detailed compared

esults between theoretical and experimental values were clarified in

ppendix C . With the same geometry of d/l ( d 1 /l 1 = d 2 /l 2 ), the compres-

ive performance and failure modes of the two types of lattice materials

an be seen to be totally different. Effects of structural geometries on

ompressive properties for both non-hierarchical and hierarchical lat-

ice materials are discussed below. 

For the non-hierarchical octet-truss lattice materials, theoretical

odels are plotted as a function of strut slenderness ratio, d 1 /l 1, as

hown in Fig. 6 a, to explore the effect of this ratio on the selection of the

ppropriate predictive models. Specifically, four types of stiffness mod-
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Fig. 6. Variation of compressive stiffness and strength with the geometries examined. (a) Effects of d 1 /l 1 on the compressive properties of the non-hierarchical 

1 st order octet-truss lattice materials; effects of d 2 /l 2 and Q on (b) the compressive stiffness and (c) the strength of the second-order hierarchical octet-truss lattice 

materials. EB: Euler buckling; PY: plastic yield; N: models considering nodal volume effect; B: models considering bending effect; N + B: models considering both 

nodal volume and bending effects; Ideal: models considering neither nodal or bending effect. 
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Fig. 7. Effects of hierarchihcal level on (a) specific stiffness and (b) specific 

strength of lattice materials as a function of their relative density. 
ls and six types of strength models are plotted. By comparison to exper-

mental data, nodal volume and bending deformation effects can be con-

idered selectively at different d 1 /l 1 . From Fig. 6 a, we can directly find

hat for non-hierarchical octet-truss lattice materials, the nodal volume

ffect contributes more than the bending effect to stiffness; meanwhile,

he latter one does not cause much variation in strength experimentally,

hich actually is contrary to the prediction by molecular dynamics sim-

lations for nanolattices [36] . 

For hierarchical octet-truss lattice materials, the compressive stiff-

ess and strength are plotted as functions of two governing geometrical

arameters, d 2 /l 2 of the smaller struts and the repeating unit numbers

n the larger struts, respectively. Note that structures with more possible

 values as the geometrical variable are virtually tested by simulation

see Appendix D ), and the corresponding stiffness and strength values

re summarized in Figs. 6 b-c. Two types of stiffness models and five

ypes of strength models are plotted and compared with experimental

alues. Overall, the stiffness and strength models that consider the nodal

olume effect can improve the accuracy of prediction. 

.2. Effects of hierarchical level 

The specific stiffness 𝐸 

(2) 
𝑍 
∕ ̄𝜌(2) and specific strength 𝜎

(2) 
𝑍 
∕ ̄𝜌(2) of the

 

nd order hierarchical lattice materials are compared with those of the

on-hierarchical lattice materials in Fig. 7 . Note that the relative densi-

ies of B1 and B3 are respectively the same as those of B6 and B5, even

hough the geometrical parameters d 2 /l 2 and Q are different. Accordingly,

he specific stiffness and strength can have different values at the same

elative density, which means that the mechanical properties depend

irectly on the geometry of the two structural levels and not on their

elative density. We can also see from Fig. 7 that the specific stiffness

nd strength of the 2 nd order hierarchical lattice materials do not out-

erform those of the non-hierarchical ones as expected. Accordingly,

he design and strengthening mechanisms of hierarchical constructions

equire further examination, as described below. 
157 
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Fig. 8. (a) A collapse mechanism map for the 2 nd order octet-truss lattice materials with arrows indicating the optimal pathways that maximize compressive strength 

at a given relative density; (b) variation of relative density with d 2 / l 2 ( Q = 8) and Q ( d 2 / l 2 = 0.2020) respectively; (c) the relationships between the optimized (upper) 

and minimum (lower) strength bounds of the hierarchical lattice materials with their relative densities, as compared with those of non-hierarchical ones. 

5

 

c  

p  

d  

e  

o  

a  

f  

r  

m  

r

⎧⎪⎪⎨⎪⎪⎩
 

w  

T  

q  

n

 

a  

p

𝜌  

r  

t  

t  

t  

p  

t

 

e  

h  

m  

c  

t  

t

6

 

t  

t  

w  

m  

d  

h  

a  

m  

c  

w

 

 

 

 

.3. Optimization 

A collapse mechanism map is constructed for the 2 nd order hierar-

hical octet-truss lattice materials in Fig. 8 a, and indicates the various

redicted collapse modes as a function of the geometrical parameters

 2 /l 2 and Q . The boundaries of each collapse regime were obtained by

quating the predicted collapse strength ( Eqs. 4 - 6 ), with consideration

f the nodal volume effect, for each mode in turn. This map can serve as

 guide for the design and development of hierarchical lattice materials

or structural efficiency coupled with minimum weight [ 40 , 41 ]. The ar-

ows in Fig. 8 a indicate the various pathways for optimal designs that

aximize the compressive strength of hierarchical structures at a given

elative density, represented by: 

 

 

 

 

 

 

 

𝑄 = 

√ 

0 . 8 ×
[
1 + 2 

(
𝑙 2 ∕ 𝑑 2 

)2 ] × [
1 − 

√
2 
(
𝑑 2 ∕ 𝑙 2 

)]2 
+ 2 . 2 , 

along EB1 − EB2 boundary as 𝑄 ≥ 𝑄 0 
𝑑 2 
𝑙 2 

= 1∕ 
( √ 

𝜋2 𝐸 𝑆 ∕ 
(
16 𝜎𝑦𝑠 

)
+ 

√
2 
) 

, alongEB1 − PYboundaryas 𝑄 < 𝑄 0 

, 

(7)

here 𝑄 0 = 
√ 

0 . 8 × [ 1 + 2 ( 
√ 

𝜋2 𝐸 𝑆 ∕( 16 𝜎𝑦𝑠 ) + 
√
2 ) 

2 
] × [ 1 − 

√
2 ( 1∕ ( 

√ 

𝜋2 𝐸 𝑆 ∕( 16 𝜎𝑦𝑠 ) + 
√
2 ) ) ] 

2 
+2 . 2 .

hus, the upper bound of compressive strength is obtained. Subse-

uently, the minimum strength bound is found with Eqs. 2 , 4 - 6 using a

umerical approach at each specific relative density. 

The upper and lower bounds of compressive strength will be plotted

s a function of the relative densities. However, if we revisit the model

redictions for the relative density in Eq. 2 , the relative density 𝜌̄(2) ∼
̄(2) ( 𝑑 2 ∕ 𝑙 2 , 𝑄 ) increases first and then decrease as d 2 / l 2 increases or Q is

educed as shown in Fig. 8 b. This abnormal phenomenon is attributed

o the extremely large nodal volume as d / l > 0.7851 or Q < 3.8 when
2 2 
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he lattice material is almost completely dense; under these conditions,

he predicted model in Eq. 2 becomes invalid. Accordingly, results are

lotted in Fig. 8 c as a function of the relative density in regimes where

he models ( Eq. 2 ) are valid ( ̄𝜌(2) < 0.15). 

The maximum and minimum strength values of the 2nd order hi-

rarchical lattice materials are also compared with those for the non-

ierarchical lattice materials in Fig. 8 c. For a given relative density,

anipulate mechanical properties by adjusting the microstructures. Ac-

ordingly, one can perceive that this hierarchical strategy could be used

o access unique mechanical properties that are unachievable in tradi-

ional materials. 

. Conclusions 

Inspired by hierarchical structure of many biological and natural ma-

erials, hierarchical octet-truss lattice materials have been designed in

his study and manufactured using selective laser sintering. Specifically,

e examined the uniaxial quasi-static compressive mechanical perfor-

ance of the second-order hierarchical octet-truss lattice materials with

ifferent geometries, and compared their behavior with that of the non-

ierarchical materials. Our rationale was to identify the salient mech-

nistic deformation and failure modes in such hierarchical architected

aterials such that they can be developed to provide superior mechani-

al performance to non-hierarchical architected materials. Based on this

ork, the following conclusions can be made: 

• The compressive performance was totally different as the hierarchi-

cal level increased; in particular, more possible failure modes were

apparent. 
• Analytical models considering the coincident volume at complex

nodal microstructures were established for the compressive stiffness
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Fig. A1. (a) Compressive stress-strain curves and (b) the corresponding failure modes of the repeated experiments of A4 and B3. 
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and strength of the hierarchical lattice materials; predicted values of

stiffness and strength agreed well with experimental values. 
• Unlike the power-law rule between stiffness/strength and relative

density for non-hierarchical lattice materials, the mechanical prop-

erties of hierarchical lattice materials were not determined by the

relative density, but instead varied with strut slenderness ratios at

the two structural levels. 
• Collapse mechanism maps were constructed to display the upper and

lower bounds of strength for the second-order hierarchical lattice

materials; these bounds were, respectively, superior and inferior to

those for the non-hierarchical lattice materials. Accordingly, we be-

lieve that this hierarchical strategy with cautious selection of strut

slenderness ratios at each hierarchical level, can be used to access

unique mechanical properties that are unachievable in traditional

materials. 

In general, we find that the mechanical properties of such archi-

ected lattice materials are determined by their architecture . We trust

hat the salient mechanisms of deformation and failure that we observe

nd model for our lattice materials in this work, will provide guidelines

or the next-generation design and development of superior mechani-

al metamaterials with unprecedented mechanical properties to meet

he requirements of the ever-demanding structural applications of the

uture. 
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Table B1 

Summary for geometries and compressive propertie

Specimen d 1 l 1 d 1 /l 1 Stiffness 

(mm) (mm) (MPa) 

C1 6.40 39.60 0.1616 37.71 
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ppendix A. Repeatability of the compressive experiments 

Repeated tests of groups A1-A4 and B1-B6 have been conducted

o explore the consistency of the experiments. The compressive stress-

train curves and the corresponding failure modes of the repeated ex-

eriments of Group A4 and Group B3 are shown in Fig. A1 . It can be

bserved that the elastic stage and peak force keep the same among

he repeated tests, while the curves after the peak show a slight dif-

erence. Besides, for different repeated tests, the failure mode remains

nchanged but the failure location does vary which might due to the

andom printing defects at micro-scales. 

ppendix B. Compressive properties of the non-hierarchical 

ctet-truss unit 

Due to fabrication limitation, only hierarchical octet-truss lattice unit

ould be obtained with the printing technology in this study. Corre-

pondingly, four groups of the non-hierarchical octet-truss lattice unit

ell (1 st order), termed as C1-C4, were fabricated with the same slen-

erness ratio and overall dimension as A1-A4, to examine cell number

ffect. The geometries and compressive properties of C1-C4 are summa-

ized in Table B1 . Also, the compressive stress–strain curves of C1-C4

re shown in Fig. B1 together with corresponding deformation modes.

y comparing the stiffness, strength and failure mode of C1-C4 with
s of the 1 st order octet-truss lattice unit cell. 

Strength Deviation percentage from A1-A4 

(MPa) Stiffness Strength 

1.92 24.16% 16.67% 

3.22 12.58% 2.48% 

4.94 12.24% 6.68% 

6.81 18.27% 18.80% 

http://dx.doi.org/10.13039/501100001809
http://dx.doi.org/10.13039/100000015
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Fig. B1. (a) Compressive stress-strain curves and (b) the corresponding failure modes of the 1 st order octet-truss units termed as C1 –C4. 
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1-A4 (see Table D1 ), it can be deduced that layer number of the 1 st or-

er octet-truss lattice materials will not significantly affect the compres-

ive properties and dominate failure mode, although diagonal crushing

r shear localization band appear after the initial failure of multi-layer

on-hierarchical lattice materials. 

ppendix C. Analytical models for compressive properties of 

on-hierarchical lattice materials 

The mechanical properties of non-hierarchical octet-truss lattice ma-

erials with low relative density have been analyzed by Deshpande et al.

35] . Their model, termed the ideal model, however, pertains to micro-

cale structures consisting of slender struts, and is thus not appropriate

or our nanometer-scale structures with stubby struts (mainly due to

trut aspect ratio limitation in nanofabrication) [36] . 
ig. C1. (a) Free body diagram for the unit cell of the 1 st order lattice material; 

b) loading condition of a single strut. 

i
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The relative densities of our 1 st order lattice material, described in

he experimental section of the main paper, range from 0.15 to 0.42. For

pecimens with such high relative density, the nodal volume effect and

ending deformation effects are both included in the following modified

nalytical models. The corresponding free body diagram of octet-truss

nit cell is shown in Fig. C1 , as employed in previous studies [36, 42] . 

1). Stiffness 

The deformation of a single strut is analyzed by considering the

ateral displacement 𝛿X , 𝛿Y , as shown in Fig. C1 -b. Applying a z -

isplacement 𝛿Z to a octet unit cell, the lateral displacements in the

 and y directions have 𝛿𝑋 = 𝛿𝑌 = 𝛿𝑍 ∕3 according to our previous study

hich considered the Poisson’s effect [36] . Taking stretching and bend-

ng deformation into account, the axial and shear force, 𝐹 
(1) 
𝐴 

and 𝐹 
(1) 
𝑆 

,

n the strut can be given by Timoshenko beam theory [43] as: 

 

(1) 
𝐴 

= 

𝐸 𝑆 𝜋𝑑 
2 
1 
(
𝛿𝑍 sin 𝜔 − 𝛿𝑋 cos 𝜔 

)
4 𝑙 1 ′

, (B1)

 

(1) 
𝑆 

= 

12 𝑃 (1) 
𝑇 
𝐸 𝑆 𝐼 1 

(
𝛿𝑍 cos 𝜔 + 𝛿𝑋 sin 𝜔 

)
𝑙 1 

′3 , (B2)

here 𝜔 is strut inclined angle; 𝑙 1 
′ = 𝑙 1 − 

√
2 𝑑 1 is the equivalent length

epending on the nodal volume of struts in lattices, and I 1 is the in-

rtia moment of area of the beam cross section, given by 𝐼 1 = 𝜋𝑑 4 1 ∕ 64 .
 

(1) 
𝑇 

= 1∕ ( 1 + 12 𝐸 𝑆 𝐼 1 ∕ 𝜅𝐺 𝐴 1 𝑙 1 
′2 ) is the shear modification of Timoshenko

eam, where 𝜅 is shear coefficient, G is shear modulus and 𝐴 1 = 𝜋𝑑 2 1 ∕4
s the cross-section area of the 1 st order strut. For a circular beam,

= ( 6 + 12 𝜈 + 6 𝜈2 ) ∕ ( 7 + 12 𝜈 + 4 𝜈2 ) , where 𝜈 is the Poisson’s ratio of the

aterial [44] . 
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Table D1 

Theoretical compressive stiffness and strength of the 1 st order lattice materials, compared to experimental values. Ideal: models considering neither nodal volume 

effect nor bending effect; N: nodal volume effect only; B: bending effect only; N + B: considering both nodal volume and bending effects; n represents the boundary 

condition at the strut ends with n = 1 for pin-joined and n = 2 for fixed-end. 

Specimen Stiffness (MPa, by theory) Stiffness Deviation percentage 

Ideal N B N + B (MPa, by tests) 

A1 22.82 29.50 24.19 31.26 28.6 3.05% 

A2 35.66 49.72 39.30 54.79 53.7 1.99% 

A3 51.35 77.73 59.43 89.96 98.7 9.72% 

A4 69.89 115.71 85.61 141.73 145 2.31% 

Strength (MPa, by theory) 

Specimen Euler Buckling (EB) 

Pin-jointed Fixed-end Plastic Yielding Strength Failure Deviation 

( n = 1) ( n = 2) (PY) (MPa, by tests) mode percentage 

Ideal N Ideal N B N + B N N + B 

A1 1.10 1.84 4.41 7.37 4.677 7.81 2.18 2.31 1.60 EB 13.04% 

A2 2.69 5.24 10.77 20.95 11.87 23.08 3.40 3.75 3.14 PY 7.65% 

A3 5.58 12.80 22.34 51.19 25.85 59.24 4.90 5.67 5.27 PY 7.05% 

A4 10.35 28.36 41.39 113.43 50.69 138.94 6.66 8.16 8.09 PY 0.86% 
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Accordingly, the compressive stiffness 𝐸 

(1) 
𝑍 

under uniaxial compres-

ion can be deduced to be: 

 

(1) 
𝑍 

= 

√
2 𝜋𝑑 2 1 
6 𝑙 2 1 

𝐸 𝑆 𝜆
(1) 
𝑁 
𝜆
(1) 
𝐵 
, (B3)

here 𝜆
(1) 
𝑁 

= 𝑙 1 ∕ 𝑙 1 ′ and 𝜆
(1) 
𝐵 

= 1 + 1 . 5 𝑃 (1) 
𝑇 

( 𝑑 1 ∕ 𝑙 1 ′) 2 represent the contribu-

ion by the nodal volume effect and bending deformation effect, respec-

ively. Note that the nodal volume and bending effects are first- and

econd-order quantities of d 1 / l 1 , and can be neglected as the relative

ensity is small (refer to a slender lattice truss with small d 1 / l 1 ). 

2). Strength 

A stretching-dominated lattice structure may fail by Euler buckling

r plastic yielding under compressive loading, depending on the d 1 / l 1 
atio of the lattice struts. Accordingly, the corresponding failure strength
(1) 
𝑍 

for the 1 st order octet-truss lattice materials can be given by: 

( 1 ) 
𝑍 

= 

⎧ ⎪ ⎨ ⎪ ⎩ 
𝜎
(1) 
𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔 

= 

√
2 𝑛 2 𝜋3 𝑑 1 4 

32 𝑙 1 4 
𝐸 𝑆 

(
𝜆
(1) 
𝑁 

)2 
𝜆
(1) 
𝐵 
if 𝑑 1 
𝑙 1 
𝜆
(1) 
𝑁 
< 

√ 

16 𝜎𝑦𝑠 
𝜋2 𝐸 𝑆 

, 

𝜎
(1) 
𝑦𝑖𝑒𝑙𝑑𝑖𝑛𝑔 

= 

√
2 𝜋𝑑 2 1 
2 𝑙 2 1 

𝜎𝑦𝑠 𝜆
(1) 
𝐵 
if 𝑑 1 
𝑙 1 
𝜆
(1) 
𝑁 

≥ 

√ 

16 𝜎𝑦𝑠 
𝜋2 𝐸 𝑆 

. 

, (B4)
Table D2 

Theoretical compressive stiffness and strength of the 2 nd order lattice materials, as c

Specimen Stiffness (MPa, by theory) 

Ideal N 

B1 2.67 4.77 

B2 4.18 8.04 

B3 6.02 12.56 

B4 8.19 18.70 

B5 7.43 16.36 

B6 2.67 4.78 

Specimen Strength (MPa, by theory) 

Euler buckling of Euler buckling of p

smaller strut (EB1) larger strut (EB2) (

Ideal N Ideal N N

B1 0.13 0.22 0.13 0.24 0

B2 0.32 0.61 0.20 0.38 0

B3 0.65 1.50 0.29 0.55 0

B4 1.21 3.32 0.39 0.75 0

B5 0.56 1.09 0.62 1.55 0

B6 0.20 0.39 0.08 0.13 0

161 
here n is determined by the boundary conditions of lattice struts, with

 = 1 for pin-joined struts and n = 2 for fixed-end struts. Note that the

odal volume effect 𝜆
(1) 
𝑁 

equals unity in the expression of 𝜎
(1) 
𝑦𝑖𝑒𝑙𝑑𝑖𝑛𝑔 

, be-

ause the modification of l 1 
′ can be offset by the axial stress. 

ppendix D. Comparison of theoretical and experimental 

ompressive stiffness and strength values 

The theoretical and experimental values of compressive stiffness and

trength for the 1 st and 2 nd order octet-truss lattice materials are sum-

arized in Tables D1 and D2 , respectively. Effects of nodal volume and

ending effects on the accuracy of prediction results are outlined, with

he bold values in Tables D1 and D2 corresponding to the most appro-

riate analytical models that can best predict the experimental data. 

For all the non-hierarchical lattice material in the present study, we

nd that the nodal volume effect must be considered in the theoretical

odels to better predict the compressive stiffness and strength values.

n addition, for samples with the lowest relative density of 0.15 (Group

1) which fail by Euler buckling, our predicted theoretical values agree

ell with the experimental stiffness and strength values when effects

f bending deformation are not included; conversely, for samples with

arger relative densities greater than 0.2 (Group A3-A4), both nodal and
ompared to experimental values. 

Stiffness (MPa, by tests) Deviation percentage 

4.02 15.72% 

7.9 1.74% 

14.1 12.26% 

20.1 7.49% 

18.72 14.43% 

4.5 5.86% 

lastic Yielding Strength Failure Deviation 

PY) (MPa, by tests) mode percentage 

 

.25 0.09 EB1 30.77% 

.40 0.3 EB2 21.05% 

.57 0.53 EB2 3.64% 

.78 0.96 EB2 28.00% 

.71 0.82 PY 15.49% 

.25 0.175 EB2 34.62% 
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Fig. E1. Simulation models illustrated with the loading condition for (a) the 1 st order octet truss lattice material, and (b) the 2 nd order octet truss lattice material. 

Fig. E2. Comparison of numerical simulations with experimental results for failure modes at a specific strain during compressive stress-strain curves, shown for (a) 

1 st order octet-truss lattice materials (A3), and (b) 2 nd order octet-truss lattice materials ( B4 ). 
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t  
ending effects need to be considered for the most accurate theoreti-

al predictions. However, Group A2 with medium relative density ap-

ear to be more sensitive to strut end boundary conditions, which can

ometimes lie within the transition area of pin-jointed and fixed-end

onditions (1 < n < 2); because of this, our models that respectively in-

lude or exclude the slight contribution from bending deformation can

rovide better predictions of the compressive stiffness and strength of

roup A2. Generally, accurate consideration of the nodal volume effect

rovides the most enhancement to predictions of the ideal model; we

egard the nodal volume effect as a first-order trivial quantity, as com-

ared to the bending effect which is deemed to be a second-order small

uantity. 

For all the 2 nd order hierarchical lattice material, models including

odal volume effects of both smaller and larger lattice members can

rovide an accurate prediction of the compressive stiffness. For samples

n Group B1 with the lowest relative density of 0.05, models which ex-

lude any nodal volume effect provide better predictions of experimen-

al strength values. However, for samples with larger relative densities,

etter predictions are found when the nodal volume effect is included,

lthough prediction still deviate from experimental data (see Table D2 ).

e attribute this deviation to our simplified calculation of the buckling

esistance of larger struts ( Eq. 5 ). Overall, the appropriate model for ac-

urate prediction of the mechanical properties of our hierarchical lattice

aterials is primarily dependent on geometry. 
162 
ppendix E. Simulation 

Numerical simulation was performed to further investigate the accu-

acy of appropriate theoretical models on predicted mechanical proper-

ies and failure modes of our architected materials. Using the LS-DYNA

nite element program, quasi-static compression performance was sim-

lated, with results shown in Fig. E1 for non-hierarchical and second-

rder hierarchical octet-truss lattice materials with various slenderness

atios from the two structural levels. During the simulation, circular lat-

ice struts were modeled using Hughes-Liu beam elements. An elasto-

lastic material model with maximum plastic failure strain criterion was

mployed here. After convergence analysis, the mesh size was set to be

.625 mm for the non-hierarchical lattice material and 1.1 mm for the

 

nd order hierarchical one. Automatic node to surface contact was de-

ned between the lattice and plates, while automatic general contact

as defined for the self-interaction of lattice struts. An implicit-explicit

witch method was utilized in this work, which was proved to be more

fficient and accurate compared with either implicit-only or explicit-

nly methods. Specifically, the whole compression process was simu-

ated through an implicit algorism initially until collapse, and then the

olver was automatically switched to an explicit algorism for higher cal-

ulation efficiency. 

The numerical models were validated by comparison to experimen-

al results. As shown in Fig. E2 , the numerical simulations of the com-
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ressive response were compared with those measured by experiments.

or the 1 st order lattice material shown Fig. E2 -a, the elastic region

nd initial collapse strength obtained by numerical simulations (solid

ed curves) match well with the experimental results (dashed yellow

urves). The maximum deviation of peak stresses is 12.3%. Nevertheless,

he stress-strain curves obtained by simulation are systematically lower

han experimental results in the plateau region, which is attributed to

n inappropriate treatment of damage evolution in the current beam el-

ment model. For the 2 nd order lattice material in Fig. E2 -b, the numer-

cal stress-strain curves (solid blue curves) accurately predict the trend

f the stress-strain history from the elastic to densification regions. The

aximum deviation of initial collapse strength is 10.0%. It should be

oted here that a good agreement between simulation and experiment

s seldom seen when there is a sharp decline in stress due to the abrupt

ollapse of lattice struts. However, in general, the comparison of numer-

cal predictions and experimental results indicate that the finite element

nalysis developed here is quite reliable for both 1 st and 2 nd order lat-

ice materials described in this work. Simulations for structures with

ore varied geometries could be carried out in the future to aid in the

election of even more appropriate theoretical models. 
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