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This work addresses the long-standing debate over fractal models of
packing structure in metallic glasses (MGs). Through detailed fractal
and percolation analyses of MG structures, derived from simulations
spanning a range of compositions and quenching rates, we conclude
that there is no fractal atomic-level structure associated with the
packing of all atoms or solute-centered clusters. The results are in
contradiction with conclusions derived from previous studies based
on analyses of shifts in radial distribution function and structure
factor peaks associated with volume changes induced by pressure
and compositional variations. The interpretation of such shifts is
shown to be challenged by the heterogeneous nature of MG
structure and deformation at the atomic scale. Moreover, our analysis
in the present work illustrates clearly the percolation theory applied
to MGs, for example, the percolation threshold and characteristics of
percolation clusters formed by subsets of atoms, which can have
important consequences for structure–property relationships in these
amorphous materials.

metallic glass | fractal structure | percolation cluster | dimensionality |
inhomogeneous deformation

Metallic glasses (MGs) are of significant current interest be-
cause of their unique combination of mechanical properties

(1–7). Although it is generally understood that these properties
arise from the nature of the MG structure, the understanding of this
structure, spanning atomic to medium-range scales, remains in-
complete. In recent years, fractal concepts have been introduced
(e.g., refs. 8–10) to describe the structure of MGs: that is, based on
self-similar patterns of packing structure repeated at different
length scales (11). These models have been invoked to explain (8, 9,
12–14) widely observed noncubic power laws (D) correlating posi-
tions of the first sharp diffraction peak, q, or the first peak of radial
distribution functions (RDFs), r, with the average atomic volume,
V (or bulk atomic density, ρ = 1/V), that is:

V = 1=ρ∼ rDorð1=qÞD. [1]

Exponents of D ≈ 2.5 or 2.3 have been measured in MGs, or the
metallic melts from which they are derived based on scattering
experiments and computer simulations (8, 9, 12–14), in which the
changes in atomic volume V have been investigated through appli-
cations of hydrostatic pressure or compositional variations. These
measurements, which are in contrast to the situation for crystal-
line metals and alloys, where the scaling in Eq. 1 is characterized by
D = 3, have led to the proposal of two distinct fractal models for the
structure of MGs, associated with the packing of local clusters or
atoms (see illustration of atomic configuration in Fig. 1A). In the first
such model (9), it was proposed that MGs are composed of solute
(minority atom)-centered clusters that are arranged on medium-
range scales in a fractal manner. This description has been the sub-
ject of debate in the literature (7, 14, 15), and more recently Chen
et al. (8, 10) proposed a description in which the individual atoms of
MGs are packed according to a special class of fractal models,
namely, a percolation cluster. This latter description serves to solve
the puzzle of how MGs can simultaneously exhibit fractal structure
yet remain fully dense; the fractal behavior, D ≈ 2.5, was reported to

arise at short-range scales, whereas the structure is homogeneous
(i.e., D = 3) at larger length scales.
In what follows, we present a detailed analysis of these fractal

models of the atomic structure in a variety of MGs derived by
computer simulation, as well as extracted from experimental data
taken from the literature. Structural analyses have been conducted
that are based on established methodologies characterizing the
scaling of the distance-dependent atomic mass/density distribution, as
well as percolation theory. The results establish that there is no
fractal packing structure, considering the packing of either all of the
atoms or solute-centered clusters in the MG systems analyzed. The
findings are thus at odds with the models summarized above, and we
demonstrate that conclusions concerning fractal dimensionality de-
rived from the scaling relations in Eq. 1, that is, based on measure-
ments of the changes in the RDFs and structure factor peaks induced
by pressure and compositional variations, can be misleading due to
the heterogeneous nature of the MG structure and its nonaffine
deformation. The current analysis establishes that percolation clus-
ters emerge when considering a small subset of the atoms drawn at
random from the MG structures, and we discuss how the presence of
such percolation clusters may have important implications for
properties including the glass transition and mechanical deformation.

Fractal Dimension and Percolation Analysis of MGs
We use large-scale molecular-dynamics (MD) simulations (16) to
prepare 12 distinct MG samples, listed in Table 1, which span a
wide range of compositions and cooling rates (defined in Methods).
These include binary, ternary, as well as monatomic MGs (Table 1),
including the Cu46Zr54 and Ni80Al20 systems considered in previous
simulation studies (8). In the present work, each sample is larger
than those considered in previous simulation studies of fractal
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structure, with more than 1 million atoms, to produce smoother
RDFs with higher resolution (Fig. S1).
From the simulated MG structures, we implement a classical

analysis of fractal structure by analyzing the power-law scaling of
the mass distribution (11, 17):

MðrsÞ∼ rDf
s , [2]

where rs is the radius of a region within the material, M(rs) is the
mass (i.e., number of atoms or solute atoms) within rs, and Df is the
fractal dimension (examples of this analysis, for simple-cubic and
face-centered cubic crystals, are shown in Fig. S2). Theoretically, for
a 3D material, noncubic values for Df indicate fractal structure (11,
17). Fig. 1B shows the mass distribution analysis for the packing of
all of the atoms (independent of type), among all of the 12 MG

samples studied in this work, as well as an experimental sample of
Cu64.5Zr35.5 MG (extracted from ref. 18). The slope is found to be
consistent with Df = 3 for power-law scaling between M(rs) and rs,
where rs is chosen as the radial distance to the local minima of the
RDFs separating two nearby atomic shells (Fig. S1). If rs is normal-
ized by the corresponding average atomic spacing rave_atom = V1/3

(V is the average atomic volume), the scaling between M(rs) and
rs/rave_atom for all MGs collapse on a line withDf = 3, as shown in Fig.
1B. Thus, we conclude that, in these MGs, there is no suggestion of
a slope change to noncubic values of Df, for values of the radii down
to that corresponding to the nearest-neighbor shell, which is consis-
tent with our percolation analysis below, for the correlation length
of percolation clusters for the packing of all atoms in MGs.
Percolation analysis provides a complementary framework for

analyzing the fractal nature of the atomic structure. In this approach,

Fig. 1. Universal dimensionality for MGs. (A) Atomic configuration of the MD-simulated Ni80P20 MG (sample 9 in Table 1); pink and blue balls represent Ni
and P atoms, respectively; the magnified view (Right) illustrates the packing of solute (P)-centered clusters (delineated by black dashed circles), exhibiting
fivefold symmetry; only the Ni–P pairs are plotted. B and C show the analysis of distance-dependent mass distribution (Eq. 2) for the packing of all atoms and
solute atoms (reflecting solute-centered clusters), respectively, among MGs listed in Table 1. rs is the radius of a region within the material, centered on an
atom or a solute species, and M(rs) is the mass [i.e., (B) number of atoms or (C) number of solute atoms] within rs. The solid lines are the best fit of all of the
data, with a slope of dimension Df = 3. For the x axis in B and C, rs is normalized by the average atomic spacing (i.e., rave_atom) and average solute-atom spacing
(i.e., rave_cluster), respectively, as defined in the text. Experimental data of the Cu64.5Zr35.5 MG, extracted from ref. 18, are also plotted in B.

Table 1. List of large-scale model MG systems studied in the present work

No. Composition No. of atoms Cooling rate, K/s Sample size, nm Interatomic potential

1 Cu46Zr54 1,024,000 1010 26.421 Cheng et al. (31)
2 Cu46Zr54 1,024,000 1012 26.431 Cheng et al. (31)
3 Cu46Zr54 1,024,000 1012 26.422 Mendelev et al. (18)
4 Cu64Zr36 1,250,000 1012 27.146 Cheng et al. (31)
5 Ni80Al20 1,024,000 1012 22.605 Pun and Mishin (32)
6 Ni50Al50 1,024,000 1012 23.311 Pun and Mishin (32)
7 Ni20Al80 1,024,000 1012 24.889 Pun and Mishin (32)
8 Ni50Al50 1,024,000 1012 23.591 Mishin et al. (33)
9 Ni80P20 1,024,000 1012 22.503 Sheng et al. (34)
10 Zr46Cu46Al8 1,024,000 1012 26.125 Cheng et al. (31)
11 Mg65Cu25Y10 1,024,000 1012 27.781 Ding et al. (35)
12 Ta 1,024,000 1013 26.861 Zhong et al. (36)

For each system, we indicate the composition, the number of atoms, cooling rates, sample size, and the classical
interatomic potential models used to describe the interatomic interactions.
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a subgroup of atoms within a given MG sample is generated by
randomly selecting atoms with an occupation probability p (Meth-
ods). The correlation length ξ of percolation clusters, which depends
on the value of p and reflects their characteristic size, can then be
computed from these randomly sampled structures. The dependence
of the resulting correlation lengths on p can be used to evaluate the
structure of percolation clusters in metallic glasses. We use such a
site percolation analysis using simulated MGs of large-scale sam-
ples (containing ∼27 million atoms), to minimize finite-size scaling
effects. Fig. 2 A and B shows examples of slices illustrating the
associated percolation clusters for a Cu46Zr54 MG sample, gener-
ated with occupation probabilities of p = 0.192 and 0.198, re-
spectively. The percolation threshold, pc, is measured as pc ≈
0.1864, as the critical value of occupation probability that perco-
lation clusters are formed (Fig. S3). Only the atoms within the
percolated clusters of MG configurations are plotted in Fig. 2 A
and B, and the characteristic size of the “pores” (empty space) is
seen to grow with decreasing values of p.
One definition of the correlation length, described in refs. 19

and 20, follows from the following scaling relations for the mass
and density:

MðrsÞ∝
�
rs
Df , rs << ξ′
rs
3, rs >> ξ′ , [3]

and

ρðrsÞ∝MðrsÞ
rs3

∝
�
rsDf−3, rs << ξ′
1, rs >> ξ′ . [4]

From this definition, as illustrated in Fig. 2C, the correlation
length ξ′ can be determined from the simulated samples as a
crossover for the scaling with radial distance r of the density of

the percolation clusters, ρ(rs). The negative slope at smaller rs
corresponds to the power of (Df − 3), whereas at larger length
scales the plot is horizontal slope, consistent with the scaling
for large r in Eq. 4; the corresponding crossover denotes the
correlation length ξ′. In Fig. 2D, the dependence of the calcu-
lated values of ξ′ on p is presented, along with similar data
for an alternative correlation length, ξ″, defined in ref. 19 as
follows:

�
ξ″
�2

=
2ΣR2

s s
2ns

Σs2ns
, [5]

where Rs, s, and ns are the gyration radius, number of atoms, and
cluster population, respectively, of nonpercolated clusters (19).
The correlation lengths ξ′ and ξ″ in Fig. 2D follow the power-law
scaling:

ξ′, ξ″∝ jp− pcj−v, [6]

where ν ≈ 0.875 (11, 19) is a critical exponent describing the
dependence of the correlation length on p associated with the
percolation transition. This critical exponent is a universal quan-
tity only depending on the dimension of the lattice (11). As
shown from the extrapolation of this relation in Fig. 2D, for
correlation lengths to take values corresponding to the average
atomic spacing (horizontal dashed line in Fig. 2D), a small frac-
tion (p = ∼0.28–0.35) of atoms in a MG would need to be con-
sidered, rather than the packing of all atoms (p = 1). The results
of this analysis are thus consistent with conclusions derived from
Fig. 1B, namely, that there is no fractal scaling for the packing of
all of the atoms, down to the scale of the atomic spacing. Addi-
tional results from the percolation analyses, including the density
of the percolation cluster, as well as the percolation threshold for
MGs, are presented in Fig. S3.

Fig. 2. Percolation clusters and their correlation length in MGs. For the Cu46Zr54 MG (large-scale sample with ∼27 million atoms) at zero pressure, A and B are
the atomic configurations of slices for percolation clusters with the occupation probability p = 0.192 and 0.198, respectively; gray and yellow balls represent
Zr and Cu atoms, respectively. (C) Average atomic density of percolation clusters, ρ(rs) vs. radial distance rs for two corresponding values of occupation
probability p; the corresponding correlation lengths ξ′ are denoted at the slope crossover. (D) Correlation lengths ξ′ and ξ″ are plotted vs. p-pc, where solid
lines represent the best fit to Eq. 6, assuming ν = 0.875. The dashed line indicates the average atomic spacing.
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We consider next a similar fractal analysis for cluster packing in
MGs, exploring the fractal model for packing of solute-centered
clusters at medium-range scales (9). Fig. 1C shows a plot of the
mass distribution analysis (Eq. 2) for the solute atoms, considering
three typical MG samples studied by the MD simulations, for ex-
ample, P-centered quasiequivalent clusters in Ni80P20 MG (Fig. 1A).
M(rs) in Fig. 1C represents the number of solute-centered clusters
within rs, obtained as the mass distribution of the solute atoms.
Similar to the analysis in Fig. 1B, the scaling between M(rs) and
normalized rs/rave_cluster for MGs collapse on a line with Df = 3, as
shown in Fig. 1C, provided rs is normalized by the corresponding
average cluster spacing rave_cluster = (Vcluster)

1/3, where Vcluster is de-
fined as the average volume of solute-centered clusters (i.e., the total
volume of the MG sample divided by the number of solute-centered
clusters). Hence the dimensionality Df = 3 in Fig. 1C establishes that
the solute atoms (reflecting the solute-centered clusters) in MGs are
similarly not packed in a fractal network.
Collectively, the analyses presented above for the 12 samples

obtained from MD simulation do not provide support for fractal
scaling in the arrangement of either all of the atoms or solute-
centered clusters in the MG structures studied. Only when a
subgroup of atoms is considered (i.e., p significantly less than 1)
do we find that the mass (or density of atoms) is spatially dis-
tributed according to fractal scaling as percolation clusters
exhibiting correlation lengths at atomic scales.

Power-Law Scaling of V ∼ rD or (1/q)D

In light of these results above, it is important to consider in more
detail the analyses in previous work that led to conclusions of
fractal structuring based on measured noninteger powers D ≈
2.5 or 2.3 in the relations given in Eq. 1, through studies of the
pressure- or composition-dependent peaks of RDFs and structure
factors (8–10, 12). In particular, we make two important obser-
vations based on analyses of the current and previously published
data that help to clarify the origin of the disparate conclusions.
First, the power D derived from analyses based on Eq. 1

cannot be relied upon to determine the fractal dimension of
MGs. To illustrate the distinction between fractal structure and
analyses based on Eq. 1, we consider the simple example of 2D
Sierpinski gaskets (11). A 2D Sierpinski gasket is a classical non-
random fractal with fractal dimension Df = ln3/ln2 = 1.585, which is
illustrated in Fig. 3 A and B for different values of the edge length
(l) and homogeneous strain («), respectively. Shown in Fig. 3C with
solid lines is the scaling of the density vs. the edge length (l), as
discussed in ref. 11, which exhibits the expected fractal scaling of
ρ(l) ∼ lDf-2 = l−0.415 (similar to the discussion in Fig. 1 and Fig. 2) at
each homogeneous strain «. The dashed lines in Fig. 3C connect
points at similar levels for different values of «, following the

analysis of Eq. 1; it is clear that the strain dependence displays a
power-law behavior with an exponent of −2 (i.e., corresponding to
the topological dimension). This latter power-law dependence with
homogeneous strain (dashed lines) exhibits inverse scaling with the
topological dimension, as expected for any material, fractal or
nonfractal, glassy or crystalline, assuming homogeneous (or affine)
deformation is applied (i.e., uniform scaling of the atomic coordi-
nates according to the change of the sample dimensions). This point
is reinforced by the analysis summarized in Fig. S4, where we ex-
amine the shift of the first-peak position in the RDF with pressure
for a Cu46Zr54 MG (sample 2 in Table 1), under the constraint of
imposed affine deformations; the results show that the peak posi-
tion scales with the volume according to Eq. 1 with D = 3, as
expected. Although MGs indeed undergo inhomogeneous de-
formation (see analysis below), Fig. 3 clearly illustrates the critical
point that fractals are structures with repeating self-similar patterns
at different length scales, and their characterization requires anal-
ysis of power-law scaling across a range of length scales, to establish
the fractal dimension (e.g., analysis of Eq. 2). Such conclusions
cannot be drawn solely from the analysis of the sample volume
dependence of the peak positions of RDFs using Eq. 1.
Second, an analysis of the current results and previously

published experimental data does not support the proposal (8, 9,
12–14) of a universal noncubic power D characterizing the
scaling of Eq. 1 [i.e., V ∼ rD or (1/q)D, where D ≈ 2.5 or 2.3] for
MGs with varying compositions or pressure. We first consider
the analysis of the pressure-dependent change in RDF peaks
with sample volume, using the approach employed in ref. 8, for
the MD simulation models of Cu46Zr54 and Ni80Al20 MGs.
However, as shown in Fig. S5, we find that this noninteger power
D cannot be reproduced even for Cu46Zr54 and Ni80Al20 MGs,
and that the results for D are found to be highly sensitive to the
method for measuring peak positions. Thus, in our current
analysis, the RDFs are computed with finer resolution due to the
larger MD simulations considered (Fig. S1). The results are
shown in Fig. 4A for the scaling between ln(V0/V) and ln(r0/r) for
all MGs in Table 1 under applied pressures. These results in-
dicate that the values of D fluctuate between 2.5 and 4.0 (and can
thus exceed 3), without any universal power-law scaling. The range
of values for D in Fig. 4A can be mainly understood from two as-
pects: (i) The first-peak positions for the RDFs are not reliable
estimates of the atomic neighbor-separation distances in binary or
multicomponent MGs, because these peaks represent a superposi-
tion of partial pair distribution functions for different bond types
with possibly large differences in bond lengths. For instance, in Fig.
5A, the shapes of first peak of the RDF for the Cu46Zr54 MG
(sample 2) is irregular and the position of the maximum is mainly
determined by Cu–Zr pairs rather than all pair types. (ii) Deformation

Fig. 3. Dimensionality of Sierpinski gaskets. (A) Typical Sierpinski gaskets at the first few stages in the aggregation with the denoted edge length l.
(B) Description of stretched Sierpinski gasket at a strain «. (C) Edge length (l)-dependent density ρ(l) for Sierpinski gaskets at the strain « = 0, 100%, 200%; the
solid lines indicate the power-law scaling with aggregation (with data at the same strain), and their slopes relate with the fractal dimension (Df = 1.585) of
Sierpinski gaskets; dashed lines reflect the scaling with stretching (with the same number of occupied triangle units, but at different strains).
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in MGs is intrinsically inhomogeneous, because the different bond
types display different compressibilities (7, 21, 22), such that the
RDFs derived by summing the contributions of the partial pair
distribution functions change shape and intensity with applied
pressure, rather than simply scaling and rigidly shifting; this point is
illustrated clearly in Fig. 5B, Fig. S6, and SI Text. Hence, in the
scaling relation V ∼ rD, the exponent D does not necessarily equal
3. The essential point is that this observation does not directly
imply a fractal structure. Furthermore, the exponent D derived
from second, third, and fourth peak positions in g(r) for all studied
MGs are also included in Fig. S7. For each MG, D is observed to
increase, decrease, or fluctuate with increasing peak positions,
showing a general trend of convergence toward 3 at larger r.
For the analysis of the scaling of the principal diffraction peak q in

the total structure factor via the relation of V ∼ (1/q)D, the situation
is more complex, because the physical significance of q for MGs is
not as well defined as it is for crystalline metals/alloys (as discussed in
refs. 7, 15, 23, and 24). In particular, the interpretation of the
principal diffraction peak q in multicomponent amorphous solids is
complicated by the fact that the diffraction maximum is a sum of
weighted partial functions with different atomic scattering fac-
tors (23, 25) (SI Text). In refs. 8, 9, 12–14, the value D ≈ 2.5 or D ≈
2.3 have been measured for MGs, for the pressure and composi-
tion dependence of q obtained through X-ray diffraction. We in-
vestigated the universality of this result by simulating the X-ray total
structure factor S(q) for the MGs listed in Table 1 (SI Text). We first
consider the analysis of V ∼ (1/q)D, where volume changes are in-
duced by composition variations; our analysis summarized in Fig. S8
demonstrates the absence of a universal D for all of the MGs con-
sidered. Furthermore, Fig. 4B plots the scaling between ln(V0/V) and
ln(q/q0) for all MGs studied at various hydrostatic pressure values,
and the power D is observed to span values ranging between 2.8 and
3.6. The results from the current analysis thus do not support the
universality of the scaling exponent D characterizing the relationship
of V ∼ (1/q)D for MGs under hydrostatic pressure and compo-
sitional variation.

Discussions and Conclusions
The central conclusion of the current work is that there is an
absence of fractal structure related to the packing of all of the
atoms or solute-centered clusters in MGs. This finding is con-
sistent with the high packing fractions that characterize these
materials, which are close to, or even exceeding, those of crys-
talline metals/alloys, with no noticeable pores at the atomic scale.
Although the packing fractions for MGs and crystalline metals/

alloys are similar, they exhibit quite different structures as well as
deformation behavior. Specifically, unlike crystalline materials,
the structure of MGs is heterogeneous on the atomic scale, and
their deformation nonaffine. These fundamental features of MG
structures challenge the interpretation of the changes in the
RDFs and structure factor peaks induced by pressure and
compositional variations, as described above. The percolation
analysis presented in the present work does reveal that a sub-
group of atoms, drawn randomly from a MG structure, may show
a fractal structure at small length scales as well as long-range
homogeneous atomic packing, consistent with the behavior of a
percolation cluster. This analysis helps to putMGs within the context
of previous applications of percolation theory, including in crystalline
metals/alloys. More importantly, our analysis of the percolation
clusters within MGs, including their cluster structure and perco-
lation threshold, may provide a powerful theoretical framework to
describe the properties of amorphous alloys, such as the glass tran-
sition, shear banding/localization, and elasticity (26–29). It would
be particularly interesting if the specific subgroup represents atoms
with an extraordinary degree of icosahedral short-range order or
high free volume. For instance, the glass transition and shear
banding, that is, α processes in the potential energy landscape (30),

Fig. 4. Analysis of pressure-dependent RDFs and structure factors. (A) Scaling between ln(V0/V) and ln(r0/r) for all MGs in Table 1 at different applied
pressures. In these plots, r and V are the first-peak positions of the RDFs and atomic volume, respectively (r0 and V0 correspond to pressure P = 0 GPa). The
dashed lines represent several power-law scaling exponents D as denoted. (B) Scaling between ln(V0/V) and ln(q/q0) for all MGs in Table 1 at different applied
pressures. q denotes the principal diffraction peak of simulated X-ray total structure factors (q = q0 at P = 0 GPa).

Fig. 5. Inhomogeneous deformation of MGs. (A) RDFs and partial pair distri-
bution functions (pairs of Cu–Cu, Zr–Zr, and Cu–Zr) for the Cu46Zr54 MG (sample
2) at P = 0 GPa; the shape of first peak of the RDF is irregular, and the position of
the maximum is mainly determined by Cu–Zr pairs rather than all pair types.
(B) Scaling between ln(V0/V) and ln(r0/r) for the Cu46Zr54 MG (sample 2) at var-
ious applied pressures, where r denotes the positions of the first peak in the RDFs
and the partial pair distribution functions (pairs of Cu–Cu, Zr–Zr, and Cu–Zr);
different pairs exhibit different changes under hydrostatic pressure; note that red
empty circles represent the weighted average summed over each pair of peaks,
which exhibits a slope of D ≈ 3.42.
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are proposed as the percolation of free volume or liquid-like sites
(26, 27). Also, the percolation of icosahedral short-range order
has been demonstrated to form the backbone in some MGs,
which would significantly determine their shear localization and
elasticity (28, 29).
To conclude, we have conducted detailed fractal and percolation

analyses of the structure of MGs samples, derived from computer
simulations as well as from experimental data drawn from the lit-
erature. The significance of present work is threefold: (i) our sys-
tematic analyses demonstrate a lack of fractal nature considering
the packing of all atoms or solute-centered clusters in MGs. This
finding clarifies the long-standing debate over the packing structure
of MGs from the perspective of fractal models. Specifically, the
packing of atoms in MGs is demonstrated to be nonfractal, in
contrast with previous conclusions drawn mainly from analyses of
pressure (or composition) induced changes of RDF and structure
factor peak positions using Eq. 1 (8, 9, 12). This contradiction re-
sults from the assumed connection between the scaling in Eq. 1 and
the fractal distribution of the atomic mass/density, which has been
demonstrated to be not generally valid. It is worth emphasizing
again that fractals are structures with repeating self-similar patterns
at different length-scales; identifying their presence thus requires
analysis spanning a range of length scales to accurately characterize
their dimension. (ii) For MGs, the shift of RDF and structure factor
peaks, induced by pressure or compositional variations, result from
their intrinsic heterogeneous structure as well as nonaffine de-
formations. The power D in Eq. 1 is demonstrated to be non-
universal and can even exceed 3, as it depends on the details of the
structure and bonding in a specific system. (iii) Our work presents
detailed analyses of MG structures using concepts from percola-
tion theory, which have been proposed to relate with key prop-
erties, including the glass transition and mechanical deformation.
Therefore, such studies help pave the way toward the fundamental

and concrete understanding of the atomic-level structure as well as
structure–property relationships in MGs.

Methods
Sample Preparation. Large-scale MD simulations were implemented to study
12 different model MGs as listed in Table 1. The MG systems were prepared by
quenching from the melt, with a range of cooling rates (1010 to 1013 K/s).
Samples 2, 3, and 5 are the same as the systems Cu46Zr54 (FF1), Cu46Zr54 (FF2),
and Ni80Al20, respectively, studied in ref. 8, but in the present work larger
simulation boxes containing more than 1 million atoms were used. Hydrostatic
pressures of 0, 10, 20, and 30 GPa, respectively, were applied to each MG
sample. The pressure was ramped up at a rate of 10 GPa/ns. At each desired
pressure, the MGwas relaxed at 300 K for up to 2.0 ns with 100 configurations
sampled over additional 0.1-ns simulations. These 100 atomic configurations
were used to calculate the RDF for each MG sample. The resolution (i.e., the
bin size) of these RDFs was 0.005 Å (Fig. S1).

Percolation Analysis. Within each MG system, 1,000 independent samples were
generated by randomly selecting a subgroup of atoms for each of the occupation
probabilities p considered. More details related to the method of percolation
analysis can be found in refs. 19 and 20. Our percolation analysis (leading
to the results shown in Fig. 2 and Fig. S3) of MG structures was performed
on large-scale samples (with ∼27 million atoms) to reduce any finite scal-
ing effects, which are generated by replication with a 3 × 3 × 3 array. The
percolation threshold pc is evaluated as the critical occupation probability
for forming percolation clusters. The nearest-neighbor atoms for the MGs
are determined as the atoms within the distance corresponding to the first
minimum of the RDF (Fig. S1).
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