
Journal of Physics: Conference Series

PAPER • OPEN ACCESS

Synchrotron X-ray micro-tomography at the
Advanced Light Source: Developments in high-
temperature in-situ mechanical testing
To cite this article: Harold S. Barnard et al 2017 J. Phys.: Conf. Ser. 849 012043

 

View the article online for updates and enhancements.

Related content
MTF, NPS and DQE characterization of an
in-house developed X-ray imaging
detector for synchrotron based micro-
tomography
K Desjardins, M Bordessoule, C Petrache
et al.

-

Identification of strain fields in pure Al and
hybrid Ni/Al metal foams using X-ray
micro-tomography under loading
T. Fíla, O. Jiroušek, A. Jung et al.

-

Applications of synchrotron X-ray micro-
tomography on nondestructive 3D studies
of diesel nozzle internal micro-structure
Z Li, Z Wu, W Huang et al.

-

This content was downloaded from IP address 128.32.10.164 on 15/04/2018 at 15:05

https://doi.org/10.1088/1742-6596/849/1/012043
http://iopscience.iop.org/article/10.1088/1748-0221/9/06/C06001
http://iopscience.iop.org/article/10.1088/1748-0221/9/06/C06001
http://iopscience.iop.org/article/10.1088/1748-0221/9/06/C06001
http://iopscience.iop.org/article/10.1088/1748-0221/9/06/C06001
http://iopscience.iop.org/article/10.1088/1748-0221/11/11/C11017
http://iopscience.iop.org/article/10.1088/1748-0221/11/11/C11017
http://iopscience.iop.org/article/10.1088/1748-0221/11/11/C11017
http://iopscience.iop.org/article/10.1088/1742-6596/463/1/012045
http://iopscience.iop.org/article/10.1088/1742-6596/463/1/012045
http://iopscience.iop.org/article/10.1088/1742-6596/463/1/012045


1

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

1234567890

X-Ray Microscopy Conference 2016 (XRM 2016)  IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 849 (2017) 012043  doi :10.1088/1742-6596/849/1/012043

Synchrotron X-ray micro-tomography at the

Advanced Light Source: Developments in

high-temperature in-situ mechanical testing

Harold S. Barnard1∗, A.A.MacDowell1, D.Y.Parkinson1, P.Mandal1,
M.Czabaj2, Y.Gao3, E.Maillet3, B.Blank4, N.M.Larson5,
R.O.Ritchie6, B.Gludovatz6, C.Acevedo6, D.Liu7

1Advanced Light Source, Lawrence Berkeley Laboratory, Berkeley CA, USA
2University of Utah, Dept. of Mechanical Engineering, Salt Lake City, UT, USA
3GE Global Research, Niskayuna, NY, USA
4Pulse Ray Inc. Beaver Dams, NY, USA
5University of California, Dept. of Materials, Santa Barbara, CA, USA
6Materials Sciences Division, Lawrence Berkeley Laboratory, Berkeley CA, USA
7Dept. of Materials, University of Oxford, Oxford, Oxfordshire, UK

E-mail: hbar@lbl.gov

Abstract. At the Advanced Light Source (ALS), Beamline 8.3.2 performs hard X-ray micro-
tomography under conditions of high temperature, pressure, mechanical loading, and other
realistic conditions using environmental test cells. With scan times of 10s–100s of seconds,
the microstructural evolution of materials can be directly observed over multiple time steps
spanning prescribed changes in the sample environment. This capability enables in-situ quasi-
static mechanical testing of materials. We present an overview of our in-situ mechanical testing
capabilities and recent hardware developments that enable flexural testing at high temperature
and in combination with acoustic emission analysis.

1. Introduction
As the use of advanced structural materials, such as carbon fiber composites and ceramic matrix
composites (CMC), expand in aerospace, turbine, nuclear, and other engineering disciplines,
there is a growing need for understanding the response of these materials’ microstructure to their
operational environments through high resolution imaging and in-situ testing. Beamline 8.3.2
at the Advanced Light Source (ALS) specializes in synchrotron hard X-ray micro-computed-
tomography (µCT) [1, 2]. With µCT, transmission radiographs of an object are taken from
multiple angles and are then used to computationally reconstruct a 3D image of the object’s
internal structure. The high X-ray flux from synchrotron sources like the ALS uniquely enable
high-speed micro-scale X-ray imaging and tomography. At 8.3.2, µCT scans typically require
10s–100s of seconds to acquire high-resolution (0.6 µm/pixel) data sets. With short acquisition
timescales, relative to other lab-based µCT instruments, synchrotron tomography is well suited
for in-situ mechanical testing materials. Analysis of advanced structural materials exposed to
incrementally increasing loads can provide detailed knowledge of how material microstructure
evolves under realistic loading and failure conditions.

http://creativecommons.org/licenses/by/3.0
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Figure 1. (a) Photo of environmental cell for high temperature mechanical testing. (b) Uniaxial
loading grippers and volume rendering of analyzed CMC sample. (c) Three Point bend loading
system and volume rendering of analyzed graphite sample.

In-situ environmental cells are a critical part of the beamline 8.3.2. program. Various cells are
available for studies spanning fields such as aerospace, plant physiology, geology, and materials
science. Each of these cells is used to impose unique controlled environmental conditions on
samples. Studying materials under loads, especially at high temperature (800o to > 1600oC), is
critical for understanding properties and failure modes of advanced structural materials. Uni-
axial loading tests of such materials, particularly tensile testing of CMCs has been and continues
to be a highly successful part of the 8.3.2. user program [3]. Over the past several years, the
majority of mechanical testing on 8.3.2 has been performed using a high temperature loading
cell described in detail in reference [4] and shown in Figure 1. To address growing scientific
needs, we are developing new in-situ mechanical testing capabilities to include in-situ tensile
testing with acoustic emission analysis in addition to flexural testing with both 3-point and
4-point bending.

2. Acoustic Emission Analysis
Acoustic emission (AE) analysis is an established technique used in industry for monitoring
how a material changes under load, particularly the formation of fractures and damage. AE
analysis refers to the recording of elastic waves produced by damage within a material with high
frequency transducers. For loaded samples, analysis of characteristics of the detected waves such
as propagation time, amplitude, energy, and characteristic shape can indicate damage location
and mechanism. AE has been shown to be beneficial for analysis of fiber-reinforced composites
including CMCs [5, 6, 7, 8, 9] and can therefore be an important tool to couple with µCT.

Preliminary AE analysis has been performed on data collected during room temperature
in-situ tensile tests. These measurements successfully detected the initiation and propagation
of cracks in loaded CMC samples and have therefore demonstrated that AE analysis can be
performed with in-situ tomography (Figure 2). AE was monitored using two sensors clamped
in place 20 mm apart on either side of the gauge section of CMC sample. The AE system used
was composed of Pico HF-1.2 sensors connected to an IL-LP-WS, 26 dB gain preamplifier, and
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Figure 2. (a) Schematic of tensile loading system: sample, grippers, and AE sensor placement.
(b) Cumulative AE energy vs. time and (c) location of AE events vs. time for CMC sample. In
(c) the highlighted region corresponds to the scanned length and the dashed-line box indicates
the failure zone. (d) Design concept for water-cooled sample gripper with integrated AE sensor.

a 1283 USB AE Node from Mistras Group.
Cumulative AE signal energy and signal amplitudes were monitored continuously during

tensile loading until the sample failed, and the AE signals were used to guide the load
increase. Load was increased until AE activity became significant. Further load increments
were determined based on the amount of increased accumulated AE energy. µCT scans were
taken between each loading step and are thus closely associated with development of cracks in
the samples during continued load increase. Figure 2b shows cumulative AE energy as a function
of time. Cumulative AE energy is a direct measure of damage progression; the energy of an AE
signal being directly related to the surface area created by fracture. From the difference in times
of arrival of signals at the top and bottom sensors, the location of each AE event can also be
determined. Figure 2c shows that significant damage occurred along the entire gauge and that
failure location corresponds to a zone of high AE activity prior to failure.

Further work will focus on correlating the locations and signal characteristics of AE events
in the scanned volume with observations from the tomography scans. In addition, since the
sensors’ thermal limits are typically ∼ 200oC, water-cooled sample grippers with integrated AE
sensors are in development to make high temperature AE analysis possible (Figure 2d).

3. Flexural Testing
A common method for determining mechanical properties of materials is by flexural testing
using 3-point or 4-point bend configurations [10, 11, 12], where the number of points refers
to the number of contacts points used to impart a bending moments on the sample. Flexure
testing enables analysis of the fracture mechanics of materials. Broadly speaking, the 3-point-
bend test is best suited for studying initiation and propagation of cracks due to concentration of
tensile stresses in the center of sample. The 4-point-bend test is well suited for determining the
bulk properties of the sample under pure flexure, which occurs between the two inner loading
points. Flexural tests are relatively straightforward in the engineering laboratory setting because
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sample preparation is simple and bending instruments are well established. These tests become
more challenging for in-situ tomography environments due to geometric constraints but can
provide critical understanding of the mechanisms for material failure and fracture resistance.
Development of flexure systems at beamline 8.3.2 are described in the following sections.

3.1. Horizontal Three-Point Bending
A horizontally oriented 3-point bending apparatus was developed for the high temperature
loading cell used on 8.3.2 [13]. This mechanism, shown in Figure 1c, consists of two 4.8 mm
(3/16 inch) diameter rollers that load a horizontal beam-like sample from the top, and a
stationary 4.8 mm diameter roller that supports the sample from the bottom. This configuration
was chosen because stationary support roller allows the middle of the sample – where crack
propagation is typically observed – to remain in the field of view with minimal motion as the
sample is loaded. To accommodate high temperature experiments the loading and support
rollers are made from alumina (Al2O3) and are supported by a stainless steel structure mounted
in water cooled supports. A thermocouple is also integrated into the design to directly measure
the sample temperature. 10 mm and 16 mm span was chosen for samples of 2–4 mm in width w
and height h.

The sample’s large aspect ratio L/w – longest dimension L versus shortest dimension w – and
its horizontal orientation, can be problematic for X-ray attenuation in L and contrast. Therefore
this 3-point bend method works best for samples that have sufficient transmission in L and has
been demonstrated with low-Z materials such as graphite [13].

3.2. Vertical Four-Point Bending
A vertically oriented 4-point bend apparatus is currently in development. The prototype for
the 4-point bend mechanism that is compatible with our high temperature uniaxial loading cell
is shown in Figure 3. This mechanism converts the vertical linear motion of the loading stage
into a symmetric bending moment applied to both ends of the sample. The vertical bending
configuration is advantageous because it eliminates the contrast issues that arise with large
aspect ratio samples mounted horizontally (as in section 3.1).

The bending grips are adjustable to accommodate samples of different thickness and are made
from super-alloy MAR M247 because they operate at high temperature with limited conductive
cooling. The support arms are made from phosphor bronze and are conductively cooled through
the water-cooled support posts.

With 4-point bend measurements, it is desirable to load the sample purely with bending
moments applied to the sample through the four contact points. With this mechanism, however,
axial compressive loads cannot entirely be avoided. To minimize compression, the bending
arms are made to the maximum length allowed by the internal geometry of the environmental
cell. Based on the geometry of the current design, the axial compression force should be fairly
minimal, 20 times less than the bend force applied at the contact points.

Preliminary 4-point bend measurements were performed on CMC samples demonstrating that
samples can be loaded to failure in-situ between tomography scans. Digital image correlation
(DIC) [14] analysis was also performed ex-situ to characterize the performance of the 4-point
bend mechanism, as shown in Figure 3b. In this analysis, the motion of the load stage, grippers,
and sample were tracked to determine the relationship between the strain distribution across the
sample and the motion of the mechanism. Figure 3d shows the strain distribution as a function
of applied displacement ∆applied by the chamber’s vertical uniaxial loading stage. The strain
measurements on both tensile and compressive sides of the sample were within ∼ 5% of each
other, indicating relatively symmetric loading and minimal influence of the compressive load.
Figure 3e shows the motion of the sample’s centroid – typically near the region of interest –
versus the applied displacement ∆applied. As expected, this shows that the centroid Cvert,horiz
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Figure 3. (a) Photo of 4 point bend mechanism. (b) Digital image correlation (DIC) analysis
of 4-point bend system. Arrows indicate motion of and forces generated by components. (c)
Zoomed-in view of DIC analysis showing strain distribution in the sample regions highlighted
by circles correspond to (d) the plot measured strain vs applied displacement. (e) Shows the
vertical and horizontal displacement of the midpoint of the sample.

moves substantially in the vertical direction with ∆Cvert ≈ ∆applied/2. Motion of the sample
between µCT scans can problematic however it can be managed with a > 5 mm tall x-ray
window, appropriate positioning of the sample and registration algorithms to correct for the
sample motion in the analysis. Development of this system is ongoing and looks promising for
in-situ 4-point bending.

4. Conclusions
Coupling µCT with high temperature mechanical testing provides powerful tools for
understanding the microstructural behavior of advanced materials. Due to increasing scientific
demand, at beamline 8.3.2, we have expanded our capabilities to include acoustic emission (AE)
and flexural testing. Preliminary analysis with AE has been performed, with high temperature
AE experiments planned. Three-point bending has been successfully implemented and used for
brittle materials such as graphite. Four-point bending has been demonstrated with CMCs and
continues to be developed.
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