
ARTICLE

Received 30 Sep 2015 | Accepted 23 Dec 2015 | Published 28 Jan 2016

Toughness and strength of nanocrystalline
graphene
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Pristine monocrystalline graphene is claimed to be the strongest material known with

remarkable mechanical and electrical properties. However, graphene made with scalable

fabrication techniques is polycrystalline and contains inherent nanoscale line and point

defects—grain boundaries and grain-boundary triple junctions—that lead to significant

statistical fluctuations in toughness and strength. These fluctuations become particularly

pronounced for nanocrystalline graphene where the density of defects is high. Here we use

large-scale simulation and continuum modelling to show that the statistical variation in

toughness and strength can be understood with ‘weakest-link’ statistics. We develop the first

statistical theory of toughness in polycrystalline graphene, and elucidate the nanoscale

origins of the grain-size dependence of its strength and toughness. Our results should lead to

more reliable graphene device design, and provide a framework to interpret experimental

results in a broad class of two-dimensional materials.
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T
he high strength of graphene combined with its exceptional
electronic1,2, optical3 and thermal properties4 has made it
an ideal material for many fascinating applications,

including flexible electronic displays5, corrosion-resistant
coatings6, biological devices7,8 and many more9. While each of
these applications exploits a different key property of graphene,
they all implicitly depend on its exceptional mechanical
properties for structural reliability10. However, such mechanical
reliability of graphene is impacted by atomic defects in its
structure. While the effect of relatively simple defects, such as
isolated dislocation cores or a few special grain boundaries (GB),
on the strength of graphene is understood11–17, the statistical
fluctuations in strength and toughness due to the randomness in
polycrystalline nanostructure remains largely unexplored.

Strength and toughness are arguably the two most important
properties of a structural material. While strength is generally
a function of the material’s resistance to deformation, toughness
represents its resistance to fracture. In most materials,
these properties tend to be mutually exclusive18. There are
conflicting experimental reports whether the strength of
polycrystalline graphene is actually a function of grain
size19–21 making the role of simulation and theory more
critical. Understanding these statistical fluctuations has become
important in light of the fact that graphene synthesized with
chemical vapour deposition (CVD) is polycrystalline, and this
method is being used to manufacture more than 300,000 m2 of
graphene annually22,23.

It is well-established that the strength and toughness of
polycrystalline solids is strongly influenced by their granular
structure. For instance, nanocrystalline metals are invariably
significantly harder and much less ductile than their microcrystal-
line counterparts. This is due to the well-known ‘Hall–Petch
effect’, wherein the motion of dislocations, and thereby plastic
flow, is impeded by the presence of GB24. On the other hand,
dislocations are typically not mobile in brittle materials, such as
ceramics (and graphene), and thus the Hall–Petch effect is not
observed in these materials. An entirely different mechanism
leads to grain-size-dependent strength in brittle ceramics where
the length of the typical extrinsic crack-like flaw (inclusion/
porosity) relative to the grain size determines the characteristic
strength25,26. In contrast to typical bulk brittle materials such as
ceramics, graphene can be fabricated in a much cleaner and
controlled environment, thus making the presence of large
extrinsic defects unlikely22. In the absence of such extrinsic
defects, the fluctuations in strength must arise from intrinsic
atomic defects inherent to the granular nanostructure. The
traditional theories developed for brittle ceramics with large
extrinsic flaws are thus not applicable for strength fluctuations
due to these intrinsic defects. In graphene these defects are GBs
and triple junctions (TJs). Although a GB is an interface between
crystalline regions of different lattice orientations and a TJ is the
intersection of three such interfaces, in graphene GBs and TJs are
typically composed of pentagon–heptagon defects, also known as
five to seven defects (Fig. 1)27–30. These defects involve significant
residual stresses and act like stress concentrators.

In this work, we develop an understanding of the grain-size-
dependent statistical fluctuations in strength and toughness of
polycrystalline graphene by using a combination of weakest-link
statistics, continuum elastic theory and large-scale molecular
dynamics (MD) simulations. Here we find that while the strength
of a brittle polycrystalline graphene sheet is dictated by the
weakest flaw in the entire sheet, its toughness is conversely
influenced by the GB nearest to the crack tip. We develop theories
to capture these two markedly different mechanisms. We believe
that the theoretical framework developed here will be applicable
to a large class of emerging two-dimensional (2D) materials.

Results
Statistical distribution of strength. We use MD simulations to
gain insights into the statistical distribution of polycrystalline
strengths31–33. We simulate fracture in over 19,000
polycrystalline graphene sheets with random grain shapes and
orientations at several different combinations of sheet size, grain
size and strain rate. The details of our simulations can be found in
the Methods section and in Supplementary Note 1. Figure 2a
shows a schematic representation of one such simulation.
Figure 2b,c shows the snapshots of a polycrystalline simulation
at zero stress, and at peak stress just before global failure,
respectively. Residual stress at GB and TJ defects can be seen
in Fig. 2b; the length-scale associated with these stresses is
sub-nanometer, showing that the fluctuations are truly atomic-
scale phenomena. Figure 2c shows that fracture originates at a
grain boundary and then progresses through rest of the
polycrystal. This observation is generic and fracture always
originates at a GB or TJ in the several thousand polycrystals that
we have simulated. This is not surprising since the interiors of the
grains are defect-free and have no residual stresses. Once fracture
originates, the incipient crack can extend in an intragranular or
intergranular manner depending on the details of the grain
orientation and loading direction.

Traditionally, the statistical distribution of fracture strengths in
brittle materials is understood in terms of Weibull theory34–37.
According to Weibull, the survival probability of brittle materials,
defined as the probability that a volume V of the material survives
at a stress s, is of the form S sð Þ ¼ expð�Vðs� s00

v0 Þ
mÞ where the

lower-bound strength, s00; and v0 are, respectively, the location
and scale parameters, and m is the Weibull modulus. These
parameters are generally evaluated by data fitting; however, in our
case, fitting this from simulation data for each combination of
grain size, strain rate and system size would give a different value
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Figure 1 | Structure of polycrystalline graphene. (a) A one-atom-thick

polycrystalline graphene sheet composed of carbon atoms arranged in

regular hexagonal rings, except at the grain boundaries (GBs) and triple

junctions (TJs). The defected atoms at the GBs and TJs that are part of non-

hexagon rings are drawn in red for clear identification. (b) A zoom-in of the

area marked in a. The red arrows indicate the orientation of the grains on

either side of the GB; the GB itself is composed of rings of five (coloured

pink) and seven (coloured blue) carbon atoms. These are the dislocation

cores with the shortest Burgers vectors in graphene, and thus represent

low-energy configurations of GBs. A TJ formed at the intersection of three

GBs is highlighted. (c) A perspective view of the graphene sheet showing its

3D structure. (d) The principal residual stresses in the graphene sheet are

in units of GPa. The grain interiors are defect free, while the GBs and TJs

have significant residual stresses, and thus are the weak points where

fracture nucleates.
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for these parameters, and thus would not provide any physical
insight into the dependence of these parameters on the
nanostructural features such as grain size. As our goal is to
gain such insight, we combine Kramer’s rate theory with extreme
value statistics to derive an expression for the survival probability
that explicitly accounts for the dependence on the physical
atomistic and structural variables of interest. Similar expressions
have been derived in various contexts previously, dating back at
least to the work of Tobolsky and Eyring38, among other more
recent studies39–43.

The specific details of our derivation can be found in the
Supplementary Note 2; we present here the main result. We
consider a polycrystalline graphene sheet of linear size L with a
linear grain size m. The sheet is loaded uniaxially at a constant
strain rate _E at a fixed temperature of 300 K. Thus, the stress at
time t is given by s tð Þ ¼ ð Y

1� Z2Þ_Et, where Y is the Young’s
modulus and Z is the Poisson’s ratio. Our main result for
polycrystalline strength gives the following expression for the
survival probability of the sheet loaded at strain rate _E up to a
stress s:

S s j L; m; _Eð Þ ¼ e�
L2 _E0
m2 _E

s� s0
nð Þm

ð1Þ

where _E0is a reference strain rate for normalization, and s0; n are
the rescaled location and scale parameters. As opposed to the
usual Weibull form, in equation (1) the effect of structural
parameters such as system size, grain size and loading rate is
captured by a single non-dimensional parameter k � L2 _E0=m2 _E,
while the rescaled parameters s0; n;m are not affected by these
details and are true material properties. We arrive at this
particularly simple result by assuming that the individual defects
in the graphene sheet are non-interacting, and that the loading is
slow enough so that a thermal quasi-equilibrium is achieved. The
dependence on L2=m2 is due to the fact that fracture initiates at
GB and TJ defects, and the number of such defects in a graphene
sheet scales as � L2=m2. The factor _E0=_E is due to the fact that a
lower strain rate gives more opportunity for thermal nucleation of
fracture at the defects. It is interesting to note that similar ideas
are applicable to dislocation nucleation in plasticity41–46, where it
has been noted that the likelihood of survival of a metallic
nanopillar under stress decreases with time due to nucleation
events. Our model is a ‘weakest-link’ model, since we assume that
the graphene sheet fractures as soon as its weakest GB/TJ defect
becomes unstable. One particularly interesting outcome of our
analysis is that the strength of graphene is a function of the ratio
L2=m2; thus there is no one well-defined value of strength at a
given grain size. As we shall show, this behaviour is in contrast to
the toughness, which is well-defined for a given grain size. Finally,

it is worth noting that in our derivation, the connection between
nucleation theory and Weibull analysis is made via the
mathematical theory of extreme value statistics (as shown in
Supplementary Equation 8)47,48.

We test our theoretical result with large-scale MD simulations.
We perform extensive statistical sampling for 24 different
combinations of the parameters L; m; _E. Figure 3a shows the
variation of the survival probability with grain size, while Fig. 3b
shows the effect of strain rate. A joint fit of the survival
probability for the entire data set using the form given in
equation (1) is obtained from the maximum likelihood estimator
(see Supplementary Note 3 for details). This fit yields a Weibull
modulus of m¼ 10.7, a location parameter of s0¼ 19.5 GPa and a
scale parameter of v¼ 53.2 GPa. Note that the Weibull modulus
and the scale parameter are a measure of the statistical variability
of the strength, and the s.d. of the strength distribution scales as
� n=mð Þk� 1=m. A modulus of B10 implies a moderate amount
of variability from a structural engineering viewpoint. By
comparison, the Weibull modulus for brittle glasses is B1–3,
while that for well-designed ceramics is B10–20. The Weibull
modulus has been interpreted in a similar manner in nanoscale
plasticity, where it is considered to be a general measure
of strength fluctuations44,46. The location parameter simply
indicates a lower bound strength. Figure 3c shows that with the
values of these parameters for graphene, all the data for the
various combinations of L; m; _E collapses on single line, validating
our theoretical result. Equation (1) further predicts that the mean
fracture strength of graphene should scale as:

s ¼ s0þ n
_E
_E0

� �1
m m

L

� � 2
m
G 1þ 1

m

� �
; ð2Þ

where Gð�Þ is the Gamma function. Figure 3d presents a
validation of this relation. Note that after s0; n;m have been
obtained by fitting the survival probability to equation (1), there
are no more free parameters, and thus the graph in Fig. 3d
contains no free parameters. The scaling of the mean strength
with grain size in equation (2) is similar to the result reported by
Sha et al.49; however, they did not model the system size and
strain-rate dependence.

Statistical distribution of toughness. The strength of a material
quantifies its failure in response to a state of large homogeneous
stress, although in practice the state of stress is rarely
homogeneous; rather, some regions of the material experience
much higher stress than others. This is often due to the presence
of stress singularities associated with sharp cracks and corners.
The fracture toughness quantifies such failure in response to the
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Figure 2 | Simulation of damage and failure during tensile loading of polycrystalline graphene. (a) A schematic representation of the fracture simulation

of a 2D periodic graphene nanoscale polycrystal. Each colour represents a grain within which the lattice orientation is fixed. The polycrystal is loaded at a

constant strain rate. (b) Residual stress in a polycrystal; the principal stress is plotted in units of GPa. The interiors of the grains are stress free while there is

significant residual stress at the GBs and TJs. The black arrow points to the large stress concentration at the tail of the pentagon–heptagon defect where

fracture ultimately nucleates. The inset shows a zoom-in of the atomic configuration. (c) Principal stress just before global fracture. The crack nucleates at

the GB defect and extends through the adjacent crystal. Notice that there are a few other incipient cracks that do not go unstable.
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stress singularity due to the presence of a crack. Not surprisingly,
the toughness is one of the most important mechanical properties
of a material. For nominally brittle materials, the fracture
toughness can be evaluated in terms of the critical stress-intensity
factor, KIcr , which is a measure of the strength of the stress
singularity at the crack tip (the stress intensity specifically
quantifies the magnitude of the elastic stress and displacement
fields at the crack tip). Griffith’s criterion establishes a lower
bound for the critical stress-intensity factor as KIcr �

ffiffiffiffiffiffiffiffi
2gY
p

,
where g is the energy required to create the fresh crack surface.
However, the Griffith theory does not account for statistical
fluctuations in KIcr due to variations in the local nanostructure of
GBs and TJs. Here we develop a theory to account for these
factors.

We use MD simulations to explore the statistical fluctuations in
fracture toughness and its dependence on grain size in graphene.
Figure 4a shows a schematic representation of our simulations.
We simulate the initial advance of semi-infinite cracks in
graphene polycrystals by imposing suitable fixed boundary
conditions away from the crack tip, and evolving the atoms near
the crack tip with canonical NVT dynamics; specific details can
be found in the Methods section. As shown in Fig. 4b, the stress
singularity at the crack tip interacts with the GB and TJ defects in
the immediate vicinity of the tip. The critical stress-intensity
factor needed to initiate crack advance depends on the local
nanostructure; as an arbitrary crack would experience a random
sampling of this nanostructure, there is significant statistical
spread in the values of KIcr and thus it is meaningful to define
a grain-size-dependent survival probability, S KI j mð Þ, as the

probability that a polycrystal with grain size m survives an
applied stress-intensity factor KI. Figure 5b shows the numerically
obtained survival probability from our MD analysis on
polycrystals with different grain sizes. This figure clearly shows
that although there is significant spread in the observations, there
is a strong dependence on grain size.

In general, we have observed that cracking progresses by
breaking the bonds associated with the pentagon–heptagon
defects near the crack tip. In fact, due to lack of plasticity, the
stress concentration at the crack tip in graphene is so strong that
the first bond to break is almost always within 10 Å of the crack
tip. Because the polycrystalline morphology is generated
randomly, as the grain size is increased it becomes more likely
that there are no defects near the crack tip. If there are no GBs or
TJs near the tip, then the toughness is simply given by the
toughness of the monocrystal that contains the crack tip. Since
the monocrystal will have an arbitrary orientation, a part of the
statistical spread in our simulation results is due to the variation
in fracture toughness of pristine graphene with orientation. For
the AIREBO empirical potential50,51 used in our MD simulations,
we find that the elastic modulus Y¼ 858 GPa, and g varies
between 5.9 and 6.3 J m� 2 for single crystals depending on the
orientation, resulting in an orientation-dependent Griffith
estimate of fracture toughness between 3.2 and 3.3 MPa m1/2

for monocrystalline graphene. In practice the observed values of
the toughness of brittle solids are slightly higher than the Griffith
bound due to such effects as lattice trapping and crack roughness.
We simulate crack advance in graphene monocrystals with
random orientations and find that the resulting distribution of
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Figure 3 | Statistical distribution of strengths in polycrystalline graphene. (a) The variation of the survival probability in nanocrystalline graphene with

grain size m at L ¼ 256 A; _E ¼ 109s� 1. At fixed stress, the smaller grain size has lower survival probability due to a higher density of GB and TJ defects.

(b) The variation of survival probability with strain rate _E (in units of 109 s� 1) at L ¼ 256 Å; m ¼ 32 Å. (c) A data collapse of the survival probability

(obtained from MD simulations) according to equation (1) for 24 different combinations of L; m; _E (see Methods section). The dashed black line is a guide to

the eye and shows the prediction of equation (1). The simulation data closely follows the predicted form. (d) A collapse of the mean failure stress as

predicted by equation (2). Note that this collapse has no free parameters.
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Scr KIð Þ is well-described by a Gaussian distribution with mean
3.9 MPa �m1/2 and s.d. 0.4 MPa �m1/2. This somewhat accounts
for the behaviour in the upper tail (large KI) of Fig. 5b, but the
interesting grain-size-dependent behaviour for smaller values of
KI needs to be explored further. We note that the trend of
increasing toughness with grain size is opposite to the trend
reported elsewhere52. Presumably, this is due to the fact that we
are measuring the value of KIcr strictly as a crack-initiation
toughness (at instability) while ref. 52 reports a propagation
toughness; moreover, their simulations seem to display crack
bridging with single atom carbon chains (a non-physical
phenomenon typical of the AIREBO potential, which we avoid
in this work by the design of our simulations).

We now develop a theory to explain the grain-size dependence
of S KI j mð Þ in graphene. To maintain theoretical tractability, we
do not account for loading-rate dependence, and all our
simulations of initial crack advance are performed in the quasi-
static limit. The stress field in the region of K-dominance is
known from linear-elastic fracture mechanics (LEFM). For ductile
materials with brittle inclusions, the statistical variation in
toughness can be obtained by integrating the Weibull-type
expression of stress survival probability equation (1) over the
LEFM crack-tip stress field53,54. A similar method has been used
to study the nucleation of dislocations under an indenter tip in
plasticity44,46. However, this technique implicitly assumes that
a large population of defects is sampled by each crack tip
(or indenter tip in plasticity); while this assumption is valid for
ductile materials with large crack-tip process zones, it is clearly
violated for brittle materials like graphene where the crack tip
samples only a few defects within a few angstroms of the tip.
Thus, a new approach is needed. It can be argued that the effect of
TJs on the distribution of KI should be minimal, since the
probability of finding a TJ near a crack tip is much smaller than
the probability of finding a GB nearby. Figure 5a shows a
schematic representation of our model. We consider an arbitrary
GB a distance l ahead of the crack tip, inclined at an angle f to
the crack. Each point on this GB experiences a different normal
stress sn that can be calculated from LEFM to be
sn ¼ KIffiffiffiffiffi

2pr
p cosðy2Þð1þ sin y

2

� �
sinð3y2 � 2fÞÞ. We define r�; y� as the

point at which the GB experiences the maximum normal stress,
s�n. Note that s�n is implicitly a function of l since r� ¼ l sinf

sin f� y�ð Þ.
We make the assumption that this GB survives at stress intensity
KI if it can survive the normal stress s�n. We measure the GB
survival probability, SGB snð Þ, for applied normal stress by
simulating over 4,000 GBs (see Methods, Supplementary Note 1
and Supplementary Fig. 1); the resulting survival probability and
probability density are shown in Fig. 5c. The polycrystalline

survival probability can then be written as:

S KI j mð Þ ¼
Z 1

lc

Z p

0
SGB s�n f; l;KIð Þ
� �

p fð Þdf p l j mð Þdl�Scr KIð Þ; ð3Þ

where p fð Þ is the probability density of the random GB
orientation angle f, p l j mð Þ is the grain-size-dependent
probability density of the GB distance from crack tip, and lc is
a lower cutoff due to the discreteness of the lattice. Equation (3)
essentially means that the polycrystal survives a stress intensity KI

if the nearest GB ahead of the crack tip and the crystal containing
the crack survive. Since the polycrystal has random boundary
orientations, the distribution of f is uniform, giving p fð Þ ¼ 1=p.
The distribution of the GB distance from the crack tip is
measured from the randomly generated polycrystals to be a

half-Gaussian distribution, p l jmð Þ ¼ 2e
�ð l2

2a2m2Þffiffiffiffiffiffiffiffiffiffi
2pa2m2
p , where the

parameter a is equal to 0.64. A collapse of the probability
density of the measured distance to the nearest GB ahead of the
crack tip according to this form is shown in Fig. 5d. Finally, we
take lc to be equal to the distance between the centres of the next
nearest hexagons in graphene (¼ 3a, where a is the carbon–
carbon bond length in graphene). Note that there are no free
parameters in equation (3). However, since it is unreasonable to
assume that only the nearest GB directly ahead of the crack tip
contributes to fracture, we leave a as a free parameter when fitting
equation (3) to numerical data. The solid lines in Fig. 5b show a
comparison of the predictions of the grain-size-dependent
polycrystalline fracture toughness obtained from equation (3)
with the numerical data obtained from extensive simulation. It
should be noted that a¼ 0.7 is obtained from the fitting process,
and is very close to the measured value of 0.64. Thus, we are able
to derive a formula for the statistical fluctuations in
polycrystalline toughness that has only one free parameter, the
value of which can also be measured to good accuracy from the
polycrystal geometry.

Discussion
Our theoretical results offer important insights into the grain size
and sample-size dependence of strength and toughness of
graphene. The scaling of strength with grain size in traditional
metals is understood in terms of the Hall–Petch effect24, while the
analogous results in ceramics are explained with the inverse
square-root scaling25. The current paper provides the
corresponding scaling relations for the strength of graphene
and other brittle 2D materials equations (1) and (2), while
equation (3) provides the scaling relation for the toughness of 2D
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Figure 4 | Fracture simulations in polycrystalline graphene. (a) A schematic representation of the simulation of initial crack advance in nanocrystalline

graphene. A prescribed KI-field is applied by holding the atoms outside the circular region of radius 100 Å fixed at the positions given by the LEFM solution.

The atoms inside the circular region are allowed to relax with NVT dynamics. Initial crack advance occurs when the stress intensity KI is sufficiently large.

(b) The stress field in a polycrystal where the atoms outside a 100 Å radius from the crack tip are held fixed at the LEFM displacement field for

KI¼4 MPa �m1/2. The black arrows show the enhancement of the crack-tip stress concentration by the GB defects. (c) The crack extends along the GB as

indicated by the black arrow. The stress concentration is relieved after crack extension.
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materials. As such, these relationships can serve a role analogous
to the Hall–Petch effect in design of 2D materials. An
understanding of the scaling relations is needed to design any
device where the structural integrity of a graphene component is
to be ensured. Their role is actually more significant in 2D
materials because it is difficult to conduct systematic
experimental investigations of their mechanical properties. The
fact that the strength of polycrystalline graphene has never been
measured under uniaxial tension, and that its toughness has been
measured only once, is a true testament to this experimental
challenge.

Our prediction of a mean toughness of 3–4 MPa �m1/2 compares
favourably with the only reported experimental measurement of
the toughness of graphene10. Note that this toughness is not high;
specifically, it is three to four times tougher than silicon and
pyrolytic carbon55 yet B20 to 50% less tough than polycrystalline
diamond56. We have found that the distribution of toughness, as
well as strength, in polycrystalline graphene is strongly dependent
on the grain size. However, at larger grain sizes the distribution of
toughness becomes less sensitive to grain size. We predict that for
grain sizes larger than 256 Å, the toughness will be essentially
independent of the grain size. Thus the toughness dependence of
grain size is a phenomena limited to nanocrystalline graphene. In
contrast, the strength will continue to be grain-size and
sample-size dependent, and the experimental results will have
to be scaled with the Weibull from equation (1) to get true
material properties. We predict a Weibull modulus of B10 for
polycrystalline graphene. We note that even though our

simulations are for nanocrystalline grains, we expect our results
to be valid for much larger micrometer-sized grains, since no new
physics is expected to emerge at the intermediate length scales.
Our results are consistent with the observations that presence of
GB reduces the strength of polycrystalline graphene20,21. Finally,
we note that our simulations consider only the equilibrium
geometrically necessary dislocations, and ignore the non-
equilibrium defects such as disclinations57,58. It has been
demonstrated that these latter defects can have a significant
effect on the strength of graphene57,58. Our theory can be
modified to include the effect of such defects if the statistical
information regarding them, such as their density, can be
obtained experimentally.

What do these results mean in practical terms? The first
measurement of the strength of pristine monocrystalline
graphene reported an intrinsic strength of about 130 GPa, and a
Young’s modulus of about 1 TPa. In practical terms these results
mean that a soccer ball can be placed on a single sheet of
graphene without breaking it. What object can be supported by a
corresponding sheet of polycrystalline graphene? It turns out that
a soccer ball is much too heavy, and polycrystalline graphene can
only support a ping-pong ball. Still remarkable for a one-atom-
thick material, but not quite as breathtaking anymore.

Methods
Details of simulations. All numerical simulations were performed with the
LAMMPS59 code by using the AIREBO50,51 empirical interatomic potential, with
the interaction cutoff parameter set to 1.92 Å (ref. 11). The simulations were
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Figure 5 | Statistical distributions of toughness in polycrystalline graphene. (a) A schematic representation of our model for the toughness of

nanocrystalline graphene. A GB a distance l ahead of the crack tip experiences the maximum normal stress at the point (r*,y*). We assume that the

polycrystal survives if the nearest GB and the crystal containing the crack survive the stress due to the crack. (b) A comparison of the numerically

measured (from MD) survival probability for various grain sizes m with the predictions of equation (3). The theoretical predictions are shown in the solid

lines, while the MD data are shown in the symbols. Agreement between theory and simulation is evident. The toughness range for monocrystalline samples

is indicated by the green line (the spread is due to change in crack orientation with respect to crystal axis). It is evident that crack-trapping due to GBs is

minimal, and in most cases GBs lower toughness by facilitating crack advance. (c) The grain-boundary survival probability and failure probability density

under applied normal stress measured from simulation of over 4,000 GBs. (d) The distribution of the distance of the nearest GB ahead of the crack tip

measured from the randomly generated polycrystals with different grain sizes. The solid line is a plot of the half-Gaussian fit.
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conducted in the NVT ensemble (the canonical ensemble with constant number of
particles, volume and temperature) at temperature T¼ 300 K. The random grain
morphology was generated by randomly choosing the required number of grain
‘centres’ and generating the boundaries of the granular domains with a Voronoi
construction. The crystalline orientations within each grain were also taken to be
random. The atomic positions, particularly at the GB, were generated by a recently
proposed algorithm that yields well-annealed GBs60. Even though this algorithm
was proposed for generation of GBs, it can be used successfully to generate well-
annealed polycrystalline samples (see Supplementary Note 1 and Supplementary
Figs 2 and 3). All structures used in our strength and toughness simulations were
prepared running NVT dynamics at T¼ 300 K for 1 ps, followed by energy
minimization using the conjugate gradient algorithm (allowing out of plane
deformations, and allowing the simulation cell dimensions to change to attain
zero stress).

Simulation of strength. For the simulations of polycrystalline strength, a constant
strain rate _E was imposed using the SLLOD equations61 as implemented in
LAMMPS, and the stress response was measured; the largest observed stress was
taken to be the ultimate strength of the sample. We performed simulations for the
following 24 combinations of the parameters L; m; _E: (64,32,1), (128,64,1),

128; 32
ffiffiffi
2
p

; 1
� �

, 128; 64=
ffiffiffi
3
p

; 1
� �
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; 0:5
� �
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3
p

; 0:5
� �

,
128; 32
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2
p
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� �
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p
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p

; 1
� �

, (256,64,1),
256; 32

ffiffiffi
2
p

; 1
� �

, 256; 128
ffiffiffi
2
p

=5; 1
� �

, (256,32,1), 256; 64
ffiffiffi
2
p

; 0:5
� �

, 256; 32
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; 0:5
� �

,
256; 128
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=5; 0:5
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p

; 0:25
� �

, 256; 32
ffiffiffi
2
p

; 0:25
� �

,
256; 128

ffiffiffi
2
p

=5; 0:25
� �

, (256,32,0.25), (512,32,1), where the units of L,m are Å,
and those of _E are 109 s� 1. The number of simulations performed for statistical
sampling was 104, 103, 102 for L¼ 64,128,256,512 Å, respectively. See
Supplementary Figs 4 and 5 for the stress–strain response and snapshots of a
representative simulation.

Simulation of toughness. For polycrystalline toughness, we simulated systems of
length L¼ 256 Å with a crack tip placed at the centre of the simulation box.
The atoms outside a radius of 100 Å from the crack tip were fixed according
to the LEFM K-field displacement solution, ux ¼ KI

2G

ffiffiffiffi
r

2p

p
k� cos yð Þcos y

2,
uy ¼ KI

2G

ffiffiffiffi
r

2p

p
k� cos yð Þsin y

2, uz¼ 0, where G is the shear modulus and
k ¼ 3� Zð Þ= 1þ Zð Þ. The atoms within a radius of 100 Å of the crack tip were
evolved with NVT dynamics at temperature T¼ 300 K. The radius of 100 Å is
chosen because the applied strain beyond this radius is o0.02, which is small
enough for linear elasticity to be applicable. Also, we note that all bond breaking
events occur within a radius of 20 Å, thus the simulation box size is large enough to
avoid any finite size effects. The applied stress-intensity factor KI was increased in
increments of 0.1 MPa �m1/2. The system was held at each value of KI for t¼ 1 ps.
The critical stress–intensity factor was taken to be the lowest value of KI for which
the crack grows. We simulated initial crack advance in polycrystals with grain
size m¼ 16,32,64 Å. For each grain size, crack advance was simulated in 500
polycrystals with random grain morphology.
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