Original Article

Modifications to Nano- and Microstructural Quality and the Effects on Mechanical Integrity in Paget’s Disease of Bone†

E.A. Zimmermanna,b, T. Köhnea, H.A. Balec, B. Panganibanc, B. Gludovatzb, J. Zustin,d M. Hahn, M. Amlinga, R.O. Ritchieb,c, B. Busseab,*

aDepartment of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
bMaterials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
cDepartment of Materials Science and Engineering, University of California, Berkeley, CA, USA
dInstitute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany

* Corresponding author: Björn Busse, Ph.D.
Department of Osteology and Biomechanics
University Medical Center
Lottestrasse 59
22529 Hamburg, Germany
Tel.: +49 40-7410-56687
Fax: +49 40-7410-56371
E-mail address: b.busse@uke.uni-hamburg.de

†This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/jbmr.2340

Initial Date Submitted June 11, 2014; Date Revision Submitted August 4, 2014; Date Final Disposition Set August 7, 2014

Journal of Bone and Mineral Research
© 2014 American Society for Bone and Mineral Research
DOI 10.1002/jbmr.2340
Abstract: Paget’s disease of bone (PDB) is the second most common bone disease mostly developing after 50 years of age at one or more localized skeletal sites; it is associated with severely high bone turnover, bone enlargement, bowing/deformity, cracking and pain. Here, to specifically address the origins of the deteriorated mechanical integrity, we use a cohort of control and PDB human biopsies to investigate multi-scale architectural and compositional modifications to the bone structure (i.e., bone quality) and relate these changes to mechanical property measurements to provide further insight into the clinical manifestations (i.e., deformities and bowing) and fracture risk caused by PDB. Here, at the level of the collagen and mineral (i.e., nanometer length-scale), we find a 19% lower mineral content and lower carbonate-to-phosphate ratio in PDB, which accounts for the 14% lower stiffness and 19% lower hardness promoting plastic deformation in pathological bone. At the microstructural scale, trabecular regions are known to become densified, while cortical bone loses its characteristic parallel-aligned osteonal pattern, which is replaced with a mosaic of lamellar and woven bone. While we find this loss of anisotropic alignment produces a straighter crack path in mechanically loaded PDB cases, cortical fracture toughness appears to be maintained due to increased plastic deformation. Clearly, the altered quality of the bone structure in PDB affects the mechanical integrity leading to complications such as bowing, deformities, and stable cracks called fissure fractures associated with this disease. While the lower mineralization and loss of aligned Haversian structures do produce a lower modulus tissue, which is susceptible to deformities, our results indicate that the higher levels of plasticity may compensate for the lost microstructural features and maintain the resistance to crack growth.

Keywords: Paget’s disease of bone, pathomechanism, fracture risk, bone quality, mechanical properties, collagen characteristics
Introduction

Paget’s disease of bone (PDB) was first described by Sir James Paget in 1876 after observing distinct proportion changes and deformities in patients’ bones (1). Today, PDB is the second most common bone disease behind osteoporosis. The disease is usually triggered after the age of 50 possibly by genetic and/or environmental factors (2,3). PDB has a high prevalence in western European countries as well as regions around the world formerly colonized by people from western European descent (4,5).

PDB localizes at one or more skeletal sites, most commonly the pelvis, spine, femur, and tibia (2,3,5–7), leading to outwardly observable abnormalities in the bone’s size and shape. While approximately 90% of patients do not have any symptoms, 10% of patients with PDB suffer from pain in bones, joints and muscles, headaches, hearing loss, gait disturbances, compression of nerves, local temperature increases, and secondary osteoarthritis (5,8–10). However, the hallmark diagnostic feature of PDB under x-ray examination is the reorganization of the bone emphasized through a combination of osteolytic, sclerotic and deformed bone regions indicating hypervascularity, trabecular densification and cortical thickening (Fig. 1a) (8,11,12). This pronounced disease pattern is accompanied by blood serum markers of bone remodeling showing abnormally high alkaline phosphatase activity and bone specific alkaline phosphatase activity (10,13), which are indicators of excessive bone remodeling.

At the bone cellular level, where previously a delicate balance of bone resorption by osteoclast cells and bone deposition by osteoblast cells produced healthy bone, changes in the osseous cell activity after the onset of PDB reflect a defective bone remodeling pattern. The appearance of abnormally shaped osteoclasts, so called ‘giant osteoclasts’ characteristic of PDB, are related to enhanced bone resorption followed by osteoblastic overstimulation causing increased bone volume (3,14), which contributes to the typical enlargement of the affected bones. Essentially, both increased osteoclast and osteoblast activity cause the striking high bone turnover in PDB (3,15). As a result, increased proportions of rapidly synthesized and non-organized collagen matrix are deposited followed by a brief mineralization period (15) producing a bone matrix with a structure resembling a mosaic of woven bone (15–17).

The changes in bone remodeling as well as the resulting outwardly observable changes in whole bone geometry at diseased skeletal sites indicate a shift in bone quality. Bone quality describes the integrity of bone’s
hierarchical structural features (Fig. 1b), which span collagen molecules (~300 nm) and mineral nanoparticles (~10 nm) at small length-scales to cylindrical features called osteons at the size scale of 100’s of microns in cortical bone to the interconnecting architecture in trabecular bone. Bone’s mechanical integrity arises from the quality of the bone structure and how it resists deformation and fracture (18–21). The hierarchical structure contributes to the mechanical integrity in terms of intrinsic and extrinsic mechanisms that resist deformation and fracture. Specifically, the intrinsic material resistance results in bone’s inherent stiffness, strength, and resistance to crack initiation. The intrinsic resistance originates from the composition and assembly of bone’s constituents at small length-scales and how these features promote or restrict plasticity\(^1\). In bone, the primary intrinsic mechanisms are thought to be fibrillar sliding and sacrificial bonding and modifications, for instance, in the cross-linking or mineralization profiles are thought to impact the generation of plasticity at this length-scale (22). In contrast, the extrinsic material resistance results in bone’s resistance to the growth of a crack. The extrinsic resistance originates from larger length-scales on the microstructural scale that are large enough to stop/interfere with crack growth. In effect, extrinsic mechanisms shield the growth of cracks through crack deflection or bridging mechanisms (22).

Epidemiological studies have quantified fracture risk in cohorts of patients with PDB \(^{10,23–26}\). Various studies have found a slight to no increase in overall fracture risk\(^2\) in patients with Paget’s disease \(^{23,24}\). However, higher rates of fracture have been reported through pathological bone, even after bisphosphonate treatment \(^{23,26}\). Even though fracture events at pathological skeletal sites are uncommon (occurring in ~2% of patients), fracture does represent a concern in patients with PDB and may be accompanied by further fracture-related complications, such as subsequent fracture, non-union of fractured site and pseudo- or fissure fractures \(^{23,24,26–28}\). Fractures at pathological skeletal sites are commonly transverse (\textit{i.e.}, “chalk-stick” fractures) and preceded by the presence of incomplete fractures, termed pseudo fractures or fissure fractures \(^{12,29}\). Regions with severe bowing and deformity commonly contain the fissure fractures, which occur on the convex side of the bone under tensile stress and contribute to the sensation of bone pain \(^{28,30,31}\).

\(^1\) While elastic deformation refers to the stretching of bonds, plastic or inelastic deformation implies permanent, irreversible deformation.

\(^2\) As Paget’s disease localizes at one or more skeletal sites, it is important to differentiate between fracture risk at pathological bone sites and overall fracture risk.
As PDB clearly disrupts the mechanical integrity of bone tissue leading to bowing, deformity, and fissure fractures in clinical cases, our aim here was to use a cohort of human iliac crest bone biopsies from control and PDB cases to experimentally characterize the structure, composition and mechanical properties. Thus, modifications to the multi-scale bone structure in PDB were related to the mechanical properties to investigate the fracture risk and the origins of reduced mechanical integrity (i.e., bowing, deformities, cracking) commonly found in clinical cases.

Methods:

Study design The objective of this study was to characterize the alterations to the structure and composition as well as the mechanical properties of bone from healthy patients and those with Paget’s disease of bone. Here, 49 control and 49 Paget’s disease of bone (PDB) methylmethacrylate-embedded iliac crest biopsies were obtained from the Hamburg Bone Registry at the University Medical Center, Hamburg-Eppendorf, Germany. The control samples stem from a previous bone histomorphometry study and did not show any sign of mineralization defects or pathologic tissue \(^{32,33}\). All individuals suffering from cancer, renal diseases, primary hyperparathyroidism and/or showing any other circumstances, such as immobilization or hospitalization, potentially leading to secondary bone diseases were excluded from the study. The PDB biopsies were taken to diagnose the source of abnormal x-rays and/or scintigraphy in patients with bone pain and/or suspicion of breast and prostate cancer. Therefore, the PDB cases exhibited pathological tissue at this skeletal region and had previously not been treated for Paget’s disease. The study was approved by the Lawrence Berkeley National Laboratory (BUA-120). The PDB cohort consisted of 19 females and 30 males with an average age of 72.2 ± 7.3 years. The control cohort consisted of 16 females and 33 males with an average age of 59.3 ± 7.3 years.

Histomorphometry Prior to embedding, the samples were first fixed in 4% phosphate-buffered formaldehyde and then dehydrated in an ascending ethanol series (80%, 90%, 94%, 96%, 100% ethanol). Undecalcified specimens were infiltrated in two steps with methylmethacrylate solutions (Merck). Afterwards, the polymerization of destabilized MMA augmented with N,N dimethyl-p-toluidine (DMPT) as an initiator/catalyst took place under a N\(_2\) saturated atmosphere. The polymerization of resin in all of the samples’ voids took place at a
temperature of 4°C. Static histomorphometry was performed on Toluidine blue or Giemsa-stained undecalcified sections. The following parameters were measured according to ASBMR standards with an Osteo-Measure histomorphometry system (Osteometrics, Atlanta, GA, USA) and a Zeiss microscope (Carl Zeiss, Jena, Germany): bone volume (BV/TV), trabecular thickness (Tb.Th), trabecular number (Tb.N), trabecular separation (Tb.Sp), osteoid volume (OV/BV), osteoid surface (OS/BS), osteoclast number (N.Oc/B.Pm), osteoclast surface (Oc.S/BS), osteoblast number (N.Ob/B.Pm) and osteoblast surface (Ob.S/BS).

Quantitative backscattered electron imaging While undecalcified histology is able to capture soft tissue and bone cells, backscattered electron imaging has the capability to focus on the different degrees of mineralization within the bone tissue. Here, the bone mineral density distribution (BMDD) was measured via quantitative backscattered electron imaging (qBEI) on 46 controls and 49 PDB cases. The measurements were performed at 20 kV and 580 pA (LEO 435 VP, Leo Electron Microscopy Ltd., England) with a constant working distance of 20 mm using a solid state backscattered electron detector (BSE Detector, Type 202, K.E. Developments Ltd., England). The electron beam was kept constant at 580 pA using a Faraday cup (MAC Consultants Ltd., England). The signal amplification (brightness and contrast) was calibrated during the entire procedure by keeping measurements of carbon and aluminum standards (MAC Consultants Ltd., England). The gray level histograms of bone were standardized using a threshold routine (Image J 1.42, National Institute of Health, USA). The obtained gray values were transformed into calcium weight percentages as previously described. We evaluated the value (Ca mean), standard deviation (Ca width) and peak (Ca peak) of the calcium distribution, which respectively refer to the mean calcium content, the heterogeneity of the calcium content and the most frequent calcium content. Additionally, we calculated the mean value of the distributions’ 5th and 95th percentiles, which were 16.54 and 27.15 wt.% Ca, respectively. For every distribution curve, we also evaluated the portion left of the mean 5th percentile (Ca low) and right of the mean 95th percentile (Ca high). These BMDD parameters represent the area of low and highly mineralized bone, respectively.

Fourier transform infrared spectroscopy To assess the quality of the bone matrix, Fourier transform infrared (FTIR) spectroscopy was performed on 5 control and 5 PDB cases. From the embedded bone sections, 5-μm-thick sections were cut with a microtome to acquire FTIR spectra in transmission with a FTIR imaging system.
(Spotlight 400, Perkin Elmer, Waltham, MA, USA). Over a specified bone area, spectra were acquired at 6.25-μm
intervals over the spectral range of 570 – 4000 cm⁻¹ at a spectral resolution of 4 cm⁻¹ and 128 scans. In total, at
least 8000 pixels of bone (roughly 560 x 560 μm²) were analyzed per sample in both the trabecular and cortical
compartments. Spectra were analyzed using a custom program in Matlab (MathWorks, Natick, MA, USA). Each
spectrum was baseline corrected and the contribution from the embedding material was subtracted from the
measured spectrum.

At each pixel, area ratios were calculated from the spectra to quantify the mineral-to-matrix ratio, carbonate-to-phosphate ratio, and 1660/1690 cm⁻¹ collagen crosslink ratio (41–43). The mineral-to-matrix ratio was measured as the area ratio of the phosphate v₁ (915 - 1180 cm⁻¹) to amide I peaks (1590 - 1725 cm⁻¹). The carbonate-to-phosphate ratio was measured as the area ratio of the carbonate (850 - 900 cm⁻¹) to phosphate v₁ peaks (915 - 1180 cm⁻¹). The collagen crosslink ratio was determined by peak fitting the amide I and II bands between 1490 - 1725 cm⁻¹. Specifically, the amide I and II bands were smoothed with a Savitzky-Golay filter using 21 points and a 2nd degree polynomial. For the 1660/1690 cm⁻¹ collagen crosslink ratio, the second derivative of the bands was used to determine the locations of nine subbands and the collagen crosslink ratio was then correlated to the area ratio of the 1660 to the 1690 cm⁻¹ subbands (42).

The average mineral-to-matrix, carbonate-to-phosphate, and collagen crosslink ratios were obtained for
each case by calculating the average and standard deviation of the parameters from each pixel over the area of
interest.

Polarized light microscopy Histological sections were Toulidine blue-stained and observed under linearly
polarized light. Collagen fibrils or bundles of fibrils, which are cut longitudinally and run parallel to the polarizer
or analyzer plane, appear bright on the dark background, while cross-sectioned fibrils or fibers appear dark. The
application of linearly polarized light on histological sections qualitatively distinguished between woven and
lamellar bone within the specimen taken from control and PDB cases (44).

Nanoindentation The mechanical properties of 14 control and 14 PDB cases were assessed via nanoindentation
measurements. The embedded and polished biopsy specimens were indented with a Berkovich tip in a
Triboindenter (Hysitron, Minneapolis, MN) perpendicular to the cross-section. The indent was loaded at a rate of
When a peak load of 600 μN was reached, the load was held for 10 s and then the sample was unloaded at the same rate. Three sets of 10 indent points were performed in a field with at least a 5-μm separation. The Young’s modulus and the hardness of the bone samples were acquired from the nanoindentation measurements.

Reference Point Indentation The mechanical properties of 10 controls and 10 PDB cases were analyzed with Reference Point Indentation measurements. Microindents perpendicular to the cross-section were made on polished embedded bone biopsies with a Biodent Reference Point Indenter (ActiveLife Tech, Inc., Santa Barbara, CA, USA). A BP2 probe was used to apply an indentation force of 6 N at an indentation rate of 2 Hz with 10 indentations per measurement cycle. Three indents were made in the cortical compartment of each iliac crest biopsy and the first cycle indentation distance, indentation distance increase, first cycle creep indentation distance and average energy dissipated were reported.

In situ fracture toughness tests Four control and three PDB cases fulfilled the criteria for a valid fracture mechanics experiment according to ASTM standard 1820 with an external cortex of roughly 12 mm in length and 1.4 mm in width \(^{(45)}\). The samples were polished into beams, notched with a water-irrigated low speed saw and then the saw-cut notch was sharpened to a crack tip radius of roughly 10 μm by polishing the root of the notch with a razor blade irrigated with 0.5 μm diamond solution. The features of the bone structure (i.e., osteons, cement lines, mineralized collagen fibrils, etc.) are predominantly aligned in a certain orientation. Due to this anisotropy, bone fracture toughness can be measured either parallel (i.e., longitudinal orientation) or perpendicular (i.e., transverse orientation) to the structure’s orientation; here, the bone fracture toughness was measured in the transverse orientation. The surface of the sample was polished to a 0.5 μm finish and the samples were hydrated in Hanks’ Balanced Salt Solution (HBSS) for at least 12 hours prior to testing. The toughness of the notched samples was tested with a Gatan Microtest 2kN bending stage (Gatan, Abington, UK) in a S-4300SE/N variable pressure scanning electron microscope (Hitachi America, Pleasanton, CA), allowing continuous observation of the crack length on the sample’s surface throughout mechanical testing.

The linear elastic stress-intensity factor was measured as a function of crack growth following standard ASTM 1820 \(^{(45)}\). Corrections were made to the load to account for the porosity in the control and Pagetic samples. A change in porosity will reduce the load bearing area and increase the load in the material as follows:

\[
P_{\text{corr}} = P/(1-p),
\]
where \(P \) is the experimentally measured load, \(P_{\text{corr}} \) is the porosity corrected load, and \(p \) is the porosity, which was measured on the bulk sample via synchrotron computed micro-tomography.

Corrections were also made to the stress intensity to account for crack deflection. The average deflection angle, \(\theta \), was measured through the thickness of each sample via x-ray computed micro-tomography. The globally applied mode-I stress intensity, \(K_1 \), was converted to the local mode I, \(k_1 \), and mode II, \(k_2 \), stress intensities at the crack tip by the following relationship for in-plane tilted cracks:

\[
k_1 = a_{11}(\theta)K_1 + a_{12}(\theta)K_{II} \quad \text{and} \quad k_2 = a_{21}(\theta)K_1 + a_{22}(\theta)K_{II},
\]

where \(a_{ij}(\theta) \) are mathematical functions dependent on the angle of crack deflection, \(\theta \). The local stress intensities can then be converted to an effective stress intensity using the following relationship based on the strain energy release rate:

\[
K_{\text{eff}} = (k_1^2 + k_2^2)^{1/2}.
\]

Assuming a yield strength of 100 MPa and the initiation toughness of \(K = 1.15 \text{ MPa}\sqrt{\text{m}} \), the minimum sample thickness for plane-strain conditions of 0.33 mm and minimum in-plane dimensions of 0.007 mm to satisfy the criterion for small-scale yielding were both met to ensure validity of the test.

3D synchrotron micro-computed tomography The crack paths from the fracture tests were assessed in the cortical regions of control and PDB samples by micro-tomography. The micro-tomography was performed after mechanical testing to avoid changes in mechanical properties associated with high doses of irradiation \(^{(20)}\). Briefly, at beamline 8.3.2 at the Advanced Light Source (Lawrence Berkeley National Laboratory, Berkeley, CA, USA), scans were conducted at 17 keV with monochromatic x-rays at a minimum sample-to-detector distance of 50 mm and a 600-ms exposure at a 1.8 \(\mu \text{m}/\text{pixel} \) spatial resolution around the crack path. Tomography slices were reconstructed with Octopus (Octopus v8, IIC UGent) from 1440 exposures acquired over 180° sample rotation in 0.125° angular increments and visualized in Avizo 6.1 (Visualization Sciences Group, Inc.).

Statistics Results are presented as means ± standard deviation. Statistical analysis was performed with OriginPro 8 (OriginLab Inc.). To test for differences between the study groups, we used the unpaired two-sided t-test on normally distributed data. The normal distribution of the data was tested using the Kolmogorov-Smirnov test. \(P \) values ≤ 0.05 were considered statistically significant. For data that was not normally distributed, a non-parametric two-sided Mann-Whitney test was used.
Results:

Characterization of mineral and collagen quality

Here, we find significant changes in the composition and quality of the Paget’s bone structure at small length-scales. Quantitative backscattered electron imaging (qBEI) of the bone mineral density distribution (BMDD) indicates a distinctly lower mineral content in PDB cases (Fig. 2a, b, and c). From the distribution of the mineral content, the histogram showing the frequency of each mineral density can be used to quantify the Ca mean, Ca peak, Ca low, Ca high and Ca width (heterogeneity). Here, in the Paget’s disease cases, the Ca mean and Ca peak values are both ≈19% lower (Fig. 2a-c, Table 1) and contained six times more bone with a low mineral density distribution as well as 86% less bone with a high bone mineral density distribution (Fig. 2a-c, Table 1). The PDB cases also had a 17% greater degree of heterogeneity in bone mineralization, as measured through the width of the histograms (Fig. 2a-c, Table 1). All of these BMDD parameters indicate a prominent lower degree of mineralization in the PDB cases.

Fourier transform infrared spectroscopy (FTIR) was also used to characterize the collagen and mineral quality (Fig. 3a-d), where the peak area ratios correlate to specific bone quality parameters: mineral-to-matrix ratio (MMR), carbonate-to-phosphate ratio (CPR), and 1660/1690 cm\(^{-1}\) collagen crosslink ratio. FTIR measurements confirm a 12% lower MMR in PDB (Control 2.96 ± 0.20, PDB 2.59 ± 0.13, \(p = 0.009\)) (Fig. 3b) and also indicate a 15% lower CPR (Control 0.0104 ± 0.0006, PDB 0.0088 ± 0.0005, \(p = 0.003\)) (Fig. 3c). The CPR corresponds to carbonate substitution for phosphate in the mineral lattice and generally increases with tissue age (i.e., the relative age of the osteons). For the organic component, FTIR showed a significantly higher collagen crosslink ratio in PDB (Control 3.40 ± 0.41, PDB 3.94 ± 0.18, \(p = 0.040\)) (Fig. 3d), which corresponds to changes in the collagen’s secondary structure and/or an increased presence of non-collageneous proteins (e.g., osteonectin, osteocalcin and osteopontin) in PDB \(^{48,49}\). Thus, the qBEI and FTIR results indicate changes to the composition and quality of the bone tissue in PDB resulting in a lower, heterogeneous bone mineralization and a younger tissue age.
Characterization of trabecular and cortical morphology

In the trabecular region of the iliac crest, static histomorphometry reveals elevated bone turnover and a denser bone volume in the PDB cases (Table 2). Indeed, the PDB cases have a significant increase in bone volume (Table 2) measured through a 2.5-fold increase in trabecular bone volume (BV/TV), 3-fold increase in trabecular number (Tb.N.) and nearly 4.5-fold decrease in trabecular spacing (Tb.Sp.). However, the trabecular thickness did not significantly change. Thus, the bone volume increases through the creation of new trabeculae and not through apposition or growth of pre-existing trabeculae \(^{(3)}\). Additionally, the PDB cases had a significant increase in bone formation measured through increases in osteoid as well as osteoclast and osteoblast numbers (Table 2).

In the cortical structure, synchrotron x-ray computed tomography images reveal that the parallel Haversian canals characteristic of healthy human bone are replaced by disorganized clusters of porosity (i.e., regions of hypervascularity) without a certain directional pattern (Fig. 4a and b). Polarized light microscopy (Fig. 4c and d) shows that these clusters are a patchwork of lamellar and woven bone, which is characteristic of PDB \(^{(15–17)}\), while the control cases have a normal lamellar structure \(^{(50,51)}\). Thus, on the microstructural level, the sandwich structure of the iliac crest consisting of a trabecular core surrounded by a cortical frame in control cases is replaced by a dense clumsy bone structure that lacks a well-defined directional orientation of collagen fibers and osteons.

Mechanical properties

Classical nanoindentation and reference point indentation (RPI) were used to assess the deformation resistance of the control and PDB cases. Nanoindentation reveals a 14% lower Young’s modulus \((p = 0.002)\) and a 19% lower hardness \((p = 0.003)\) in PDB samples (Fig. 5a and b). Reference point indentation (RPI) was also used to investigate the bone’s mechanical resistance \(^{(52,53)}\). RPI is a micro-indentation technique that cyclically loads the bone with an indenter in relation to a reference point. The RPI parameters showed significantly higher indentation depths in the PDB samples (Fig. 5c, d, and e) with no change in the average energy dissipated (Fig. 5f). A previous study using RPI in this orientation found that bone with a lower modulus also had higher indentation depth values \(^{(53)}\). Thus, the indentation techniques reveal that the PDB cases have a lower modulus and less resistance to plastic deformation.
Fracture mechanics tests were performed on the hydrated cortices of control and PDB samples. The fracture toughness in terms of the linear-elastic stress intensity, K, was measured as a function of crack extension, Δa, to determine the crack growth resistance curve (i.e., R-curve), see Fig. 6a. The toughness of healthy bone is highly dependent on orientation, mainly due to different extrinsic mechanisms that are active in either orientation. Therefore, fracture toughness is generally higher in the transverse orientation where crack deflection along the microstructural features is most active, in comparison to the longitudinal orientation, where this deflection mechanism is not favored because the osteons are parallel to the crack (46,54). As bone with Paget’s disease loses its parallel aligned Haverisan systems, the bone could be expected to have a fracture toughness similar to the longitudinal orientation. However, our results indicate that the fracture toughness of the transversely oriented control and PDB samples was not significantly different as measured through the intercept of the R-curve ($p = 0.34$), the slope of the R-curve in Fig. 6a ($p = 0.76$) and through the energy dissipated during RPI (Fig. 5f, $p = 0.06$).

To further investigate the fracture toughness measurements, we imaged the path of the crack via scanning electron microscopy during testing and synchrotron x-ray computed micro-tomography after testing (Fig. 6b, c, d, and e). While there was no change in fracture toughness, we do observe the effect of the extreme changes in microstructural morphology on the crack path. Due to the normal microstructural orientation of the osteons, the crack takes a deflected path in control cases, which can account for the increase in bone toughness with crack extension (Fig. 6b and d) (46). However, the crack path in the PDB samples is straighter than the control cases and still contains crack bridges, which occur at interfaces within the microstructure such as the interface between bone packets and lamellae (Fig. 6c and e).

Discussion:

Through the bowing, deformities and fissure fractures observed in clinical cases, PDB has a clear effect on the bone’s mechanical integrity, which results from a combination of intrinsic mechanisms at small length-scales that generate/restrict plasticity and of extrinsic mechanisms at larger length-scales that interfere with the crack growth. Here, through a multi-scale investigation of bone quality and mechanical properties in control and PDB
cases, we investigate how the extreme changes to the multi-scale bone structure (Fig. 1) lead to the pathological changes observed in the clinic.

In PDB cases, the bone quality was significantly altered at small length-scales. Specifically, the mineral content and distribution measured through qBEI (Fig. 2) and FTIR (Fig. 3) show that the PDB cases have a significantly lower degree of mineralization. This composition change directly relates to the significantly lower stiffness of the PDB tissue measured via nanoindentation and possibly also the higher indentation distance values measured via RPI (53) (Fig. 5) because in most biological materials, the Young’s modulus (i.e., stiffness) scales with mineral content (55).

In addition to affecting the bone stiffness, the deviations in bone quality at small length-scales (Figs. 2 and 3) influence how the diseased bone generates plastic deformation (56,57). Indeed, the lower hardness and the deeper indentation values (Fig. 5) indicate that the pathological bone tissue will generate more plasticity than the control cases and suggests that the modifications to the quality of the tissue alter the intrinsic mechanisms within the structure (i.e., fibrillar sliding and sacrificial bonding). Thus, the structural and compositional changes at small length-scales in PDB affect both the elastic (i.e., stretching of bonds generating stiffness) and plastic (i.e., permanent deformation promoting ductility and energy absorption) mechanical properties resulting in a lower stiffness and more plasticity.

In PDB cases, the bone quality was also significantly altered at larger length-scales. In the trabecular region of the iliac crest, the elevated bone turnover results in more trabeculae as reflected by the higher BV/TV and trabecular number (3) (Table 2). In the cortical compartment, the parallel aligned Haversian canals characteristic of healthy human bone are replaced by a patchwork of lamellar and woven bone in PDB cases, with less organized collagen fiber orientation (15–17) (Fig. 4). Thus, on the microstructural level, the sandwich structure of the iliac crest consisting of a trabecular core surrounded by dense cortical frame in control cases is replaced by a dense clumsy bone structure that lacks a well-defined directional orientation of collagen fibers and osteons.

Even though PDB resulted in significant changes to the structure at large length-scales, the fracture toughness of the diseased bone measured through the energy dissipated during RPI (Fig. 5) and the crack-growth toughness (Fig. 6) during fracture mechanics experiments was not significantly different in comparison to the
transversely oriented controls. This is in line with some of the limitations of this study, which are i) the limited number of fracture toughness samples, which restricts the statistical comparisons, and ii) that the embedding and infiltration procedures may limit the effects of sample rehydration, which affects the mechanical property measurements. While future studies with larger sample sets are required to precisely distinguish a difference in fracture toughness between the control and PDB samples, there was still a clearly higher fracture toughness in the transversely oriented controls and the PDB samples in comparison to the longitudinally oriented bone, which has a comparatively weak resistance to crack growth\(^{(46)}\).

Therefore, in both the transversely oriented controls and the PDB samples, there appears to be a form of extrinsic resistance to crack growth. In the controls, the mechanical resistance to crack propagation is primarily derived through crack deflection (see Fig. 6), which has been previously shown to increase fracture toughness\(^{(46)}\). In PDB, the crack deflection mechanism is lost resulting in straighter crack paths (see Fig. 6) due to the microstructural alterations. However, one possible route to generate further mechanical resistance would be through increased plastic deformation. Thus, the fracture toughness measurements may indicate that the bone’s intrinsic resistance (i.e., lower mineralization leading to lower hardness, more plasticity) compensates for the loss in the extrinsic crack deflection mechanism (i.e., due to the loss in the parallel-aligned Haverisan systems). This increase in plasticity would act to absorb energy during crack propagation leading to an increased fracture toughness and is supported by previous studies on other low mineralized tissues that have also found significant plastic deformation\(^{(22,56)}\). Thus, even though PDB samples lose their microstructural orientation, which is critical to the fracture toughness of healthy bone, the altered, heterogeneous structure characteristic of the pathological tissue may compensate by generating more intrinsic plasticity to resist crack growth.

In terms of clinical relevance, bone disorders associated with an underlying imbalance in the remodeling process can lead to increased fracture risk, particularly when the disorder creates structural and compositional changes. Clearly, the modifications to the bone tissue caused by the high bone turnover in PDB uniquely affect the bone structure leading to a higher bone volume, lower, heterogeneous mineral content/distribution, significantly younger tissue age, and loss in lamellar osteonal bone structure. These characteristics of the bone structure and composition of PDB are not associated with known bone fragility in other diseases. However, even though the
characteristics of the Paget bone structure are contrary to other bone disorders with fracture risk, it is necessary to recognize the impact of PDB on the mechanical integrity.

The specific effects on the pathological bone tissue, in particular bone deformities and fissure fractures, can now be further clarified from the present multiscale characterization of the bone structure and mechanical properties. Indeed, the excess amount of osteoid and mineralized bone produced in PDB leads to deformities and bowing in clinical PDB cases, where incomplete or “fissure fractures” occur in deformed load-bearing tissue \(^{(28,30)}\). Here, our experimental data revealing a lower spatially-resolved mineral content and tissue age of the bone with a corresponding lower stiffness and lower resistance to deformation could directly account for the occurrence of harmful bone deformities in patients suffering from PDB. The deformities can in turn lead to osteoarthritis due to the gait problems encountered when deformities occur in load bearing limbs \(^{(58)}\).

The other interesting phenomenon is the presence of subcritical (i.e., stable) cracks, so called fissure fractures, in PDB. The fissure fractures most likely occur due to the bone deformities/bowing but the fact that these fractures remain in the tissue and do not completely cause bone failure is in line with the same propensity for the altered structure to resist crack growth through plastic deformation. In this way, the altered composition (i.e., the reduced mineral content) has a negative impact on the bone stiffness (i.e., causes bowing/deformity) but compensates for the reorganized bone microstructure by generating plastic deformation to resist the growth of cracks allowing stable fissure cracks. In this connection, while bone fracture is an important issue in patients with PDB and stable cracks do occur, our fracture toughness data suggests that the material properties of the bone may compensate to a certain degree to prevent complete bone fracture.

In conclusion, on a set of human bone biopsies from control and Paget’s disease of bone cases, we found that the high bone turnover associated with PDB causes a significantly lower mineral content and tissue age. At larger structural length-scales, the trabecular region is known to become densified, while the cortex loses the lamellar Haversian osteon structure with its regular arrangement, which is replaced by a mosaic of immature woven and lamellar bone. Through the indentation measurements presented here, the structural changes at small length-scales clearly reduce the stiffness and promote plastic deformation in PDB cases. In turn, the loss of the
osteonal structures should deteriorate the fracture toughness but the larger degree of plastic deformation at small length-scales compensates for the lack of structure and may be the reason for the maintained fracture toughness presented here. Therefore, the alterations to the structure in PDB produce bowing/deformities, namely from the low mineral content, but may also improve the mechanical integrity of the tissue by promoting plastic deformation to stop the growth cracks leading to the presence of stable fissure fractures characteristic of the disease.

Acknowledgements:

This study was supported by the German Research Foundation (DFG) under the grant no. BU 2562/2-1 and BU 2562/1-1. We would like to acknowledge use of the computed micro-tomography beam line 8.3.2 at the Advanced Light Source (ALS) synchrotron at Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA, USA. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We thank Dr. Björn Jobke (DKFZ, Heidelberg) for plain film images of Paget’s disease of bone.

Authors’ roles contributions:

Disclosures:

The authors state that they have no conflicts of interest.
References:

48. Farlay D, Duclos M-E, Gineys E, Bertholon C, Viguet-Carrin S, Nallala J, Sockalingum GD, Bertrand D, Roger T, Hartmann DJ, Chapurlat R, Boivin G. The ratio 1660/1690 cm(-1) measured by infrared
microspectroscopy is not specific of enzymatic collagen cross-links in bone tissue. Plos One. 2011;6(12):e28736.

Figure legends:

Figure 1: Hierarchical structure of bone. (a) Radiologic signs of Paget’s disease of bone in the area marked by the yellow arrow, where the bone has a larger density and size. (b) In this study, biopsies from the iliac crest were used to analyze the structural and mechanical properties in control and PDB cases. At this skeletal site, the bone architecture consists of a dense cortical shell surrounding a porous trabecular core. At the microstructural length-scale, the cortical bone consists of osteons, which have a hypermineralized cement line delineating their outer boundary and lamellae concentrically surrounding a central vascular cavity termed the Haversian canal. The lamellae are composed of arrays of fibers, which are composed of fibril arrays. The fibril is a composite of collagen molecules and mineral platelets.

Figure 2: Small length-scales: Quantitative backscattered electron imaging. The bone mineral density distribution (BMDD) was assessed in the control and PDB cases with qBEI, where the gray values reflect the calcium content. The stark differences in the BMDD are clearly visible in the pseudo-colored backscattered electron images of (a) control and (b) PDB samples as well as the (c) histogram of the density distribution.

Figure 3: Small length-scales: Fourier Transform Infrared Spectroscopy. The quality of the collagen and mineral components was assessed via FTIR mapping. (a) Spectra were collected at 6.25-µm intervals across a defined region of interest. (b) From the data, the mineral-to-matrix ratio was significantly 12% lower in the PDB cases \(p = 0.009 \). (c) The carbonate-to-phosphate ratio was 15% lower in the PDB cases \(p = 0.003 \) and (d) the collagen crosslink ratio was 15% higher in the PDB cases \(p = 0.040 \). The scale bars equal 100 µm.

Figure 4: Large length-scales: cortical microstructure. Synchrotron micro- computed tomography and polarized light microscopy were used to observe changes at the osteonal length-scale in the cortical bone. (a) The 3D tomography reconstructions show that in control cases, the osteons have a predominant orientation with parallel-
aligned Haversian canals, which is absent in (b) the PDB cases. Additionally, polarized light microscopy indicates that (c) the osteons in control cases have alternating light and dark lamellae reflecting normal collagen fiber orientation, while the (d) PDB cases are a mosaic of immature woven and lamellar bone.

Figure 5: Mechanical properties: Nanoindentation and RPI. Nanoindentation of the control and PDB cases reveals a (a) 14% lower modulus ($p = 0.002$) and a (b) 19% lower hardness in PDB ($p = 0.003$). Reference point indentation (RPI) characterizes the bone’s mechanical resistance by cyclically loading the bone with a microindenter in relation to a reference point. (c-e) The RPI parameters indicate significantly higher indentation depths in PDB (all $p < 0.001$), which supports the nanoindentation trends of a lower modulus and hardness. However, (f) the average energy dissipated was not significantly different ($p = 0.06$). Values reported as mean ± standard deviation.

Figure 6: Mechanical properties: fracture toughness and crack path. (a) The fracture toughness in terms of the linear-elastic stress intensity, K, of control and PDB cases was measured as a function of crack extension, Δa, which is called a crack growth resistance curve or R-curve. The fracture toughness of control (i.e., transversely oriented) and PDB cases was not significantly different, as measured through the intercept ($p = 0.34$) and slope of the R-curve ($p = 0.76$). As the PDB cases do not have a defined orientation for crack deflection due to their mosaic structure, the fact that the toughness is comparable to the transverse orientation and higher than the longitudinal orientation (which is also not optimized for crack deflection) is surprising $^{(46)}$. Based on our observations (b,c) of the crack path after testing (via synchrotron x-ray computed micro tomography) and (d,e) during testing (via scanning electron microscopy), (b,d) the control cases toughen extrinsically by deflecting along the interfaces of the osteons, while (c,e) the PDB cases take a straighter crack path through the disordered structure with large crack bridges.
Table 1: Bone mineral density distribution indices. The values are reported as mean ± standard deviation.

<table>
<thead>
<tr>
<th>Bone mineral density distribution indices</th>
<th>Control</th>
<th>PDB</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca mean [Wt. %]</td>
<td>22.8 ± 0.8</td>
<td>18.4 ± 1.6</td>
<td><0.001</td>
</tr>
<tr>
<td>Ca peak [Wt. %]</td>
<td>23.9 ± 0.7</td>
<td>19.4 ± 2.2</td>
<td><0.001</td>
</tr>
<tr>
<td>Ca low [% B.Ar.]</td>
<td>5.16 ± 2.16</td>
<td>32.31 ± 14.55</td>
<td><0.001</td>
</tr>
<tr>
<td>Ca high [% B.Ar.]</td>
<td>5.09 ± 2.75</td>
<td>0.72 ± 1.06</td>
<td><0.001</td>
</tr>
<tr>
<td>Ca width [ΔWt. %]</td>
<td>3.44 ± 0.22</td>
<td>4.03 ± 0.24</td>
<td><0.001</td>
</tr>
</tbody>
</table>
Table 2: Static histomorphometry. The static histomorphometry of the control and PDB cases was evaluated according to standards set by the American Society of Bone and Mineral Research (34). The values are reported as mean ± standard deviation.

<table>
<thead>
<tr>
<th>Histomorphometric Indices</th>
<th>Control</th>
<th>PDB</th>
<th>Percent change (%)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bone volume, BV/TV (%)</td>
<td>15.6 ± 5.8</td>
<td>41.5 ± 7.8</td>
<td>+ 266</td>
<td><0.001</td>
</tr>
<tr>
<td>Trabecular thickness, Tb.Th (µm)</td>
<td>131.8 ± 36.2</td>
<td>129.0 ± 51.5</td>
<td>- 2</td>
<td>n.s.</td>
</tr>
<tr>
<td>Trabecular number, Tb.N (mm⁻¹)</td>
<td>1.21 ± 0.35</td>
<td>3.65 ± 1.35</td>
<td>+ 301</td>
<td><0.001</td>
</tr>
<tr>
<td>Trabecular separation, Tb.Sp (µm)</td>
<td>792.9 ± 388.7</td>
<td>180.1 ± 65.4</td>
<td>- 77</td>
<td><0.001</td>
</tr>
<tr>
<td>Osteoid volume, OV/BV (%)</td>
<td>1.35 ± 1.62</td>
<td>10.54 ± 7.38</td>
<td>+ 807</td>
<td><0.001</td>
</tr>
<tr>
<td>Osteoid surface, OS/BS (%)</td>
<td>16.3 ± 13.7</td>
<td>50.0 ± 18.4</td>
<td>+306</td>
<td><0.001</td>
</tr>
<tr>
<td>Osteoblast number, N.Ob/B.Pm (mm⁻¹)</td>
<td>0.62 ± 0.27</td>
<td>15.84 ± 8.71</td>
<td>+ 2548</td>
<td><0.001</td>
</tr>
<tr>
<td>Osteoblast surface, Ob.S/BS (%)</td>
<td>0.96 ± 0.55</td>
<td>22.18 ± 12.46</td>
<td>+ 2302</td>
<td><0.001</td>
</tr>
<tr>
<td>Osteoclast number, N.Oc/BS (mm⁻¹)</td>
<td>0.03 ± 0.03</td>
<td>1.89 ± 0.81</td>
<td>+ 6000</td>
<td><0.001</td>
</tr>
<tr>
<td>Osteoclast surface, Oc.S/BS (%)</td>
<td>0.31 ± 0.22</td>
<td>7.99 ± 3.76</td>
<td>+ 2548</td>
<td><0.001</td>
</tr>
</tbody>
</table>
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6