Proposal for a Nuclear Physics Experiment at RI Beam Factory (RIBF NP-PAC-05, 2009)

Spectroscopy of ⁴⁰Mg

Lawrence Berkeley Laboratory RIKEN MSU/NSCL

⁴⁰Mg - first observation 2007

T.Baumann et al., Nature Letters Vol. 449 (2007)

The high-intensity high-energy ⁴⁸Ca primary beams now available at RIBF provide a major gain in experimental reach

Effective neutron single-particle energies at N=28

F.Nowacki and A. Poves, Phys. Rev. C 79, 014310 (2009)

⁴⁰Mg expected to be prolate

⁴⁰Mg - a *prolate core* surrounded by a *neutron halo*

Goals of ⁴⁰Mg experiment

- Identify and measure gamma-ray decay of the 2⁺ state
- Measure inclusive and exclusive 2p removal σ →information on wavefunction

Neutron (near)dripline nuclei

- Experiments have limited reach (Mg, S, Ca?)
- Rely on theory
 - Major challenges: deformation, pairing, weakbinding, all need to be treated
- Benchmarking/constraining theory where experiment <u>can</u> reach is important
 - Requires data on excited state and ground state properties (to address multiple dimensions of the problem)

⁴⁰Mg experimental setup

- This measurement will use a 200 pnA, 345 MeV/u ⁴⁸Ca primary beam on a ~3000 mg/cm² Be target to produce a ⁴²Si secondary beam.
- The ⁴²Si beam will be transported through BIGRIPS and undergo reactions on a ¹²C secondary target located at F8.
- The ⁴⁰Mg products from the ${}^{42}Si \rightarrow {}^{40}Mg$ 2-proton removal reaction will be identified by the Zero Degree Spectrometer.
- Prompt gamma-rays will be detected using the high efficiency DALI2 (Nal) detector array surrounding the ¹²C secondary target.