Ground state of ${ }^{33} \mathrm{Mg}$: a puzzle

- Several measurements in contradiction
- B-decay of ${ }^{33} \mathrm{Na}: 3 / 2^{+}$based on log ft and shell model predictions
- g-factor and hfs parameter: 3/2-
- B-decay of ${ }^{33} \mathrm{Mg}: 3 / 2^{+}$based on log ft and known ${ }^{33} \mathrm{Al}$ gs
- Coulex on ${ }^{33} \mathrm{Mg}$: E2 transition between gs and 484 keV state
- (p, p^{\prime}) on ${ }^{33} \mathrm{Mg}: 484 \mathrm{keV}$ state observed
- $\mathrm{P}\left({ }^{34} \mathrm{Mg},{ }^{33} \mathrm{Mg}\right) \mathrm{X}$: both 484 keV and 546 keV states observed
- References
- B-decay of ${ }^{33} \mathrm{Na}$: Nummela et al., PRC 64, 0543 I 3 (200I)
- g-factor:Yordanov et al., PRL 99, 2I250I (2007)
- B-decay of ${ }^{33} \mathrm{Mg}$:Tripathi et al., PRL IOI, I42504 (2008)
- Coulex on ${ }^{33} \mathrm{Mg}$: Pritychenko et al., PRC 65, 06I304R (2002)
- (p, p) and $\mathrm{p}\left({ }^{34} \mathrm{Mg},{ }^{33} \mathrm{Mg}\right) \mathrm{X}$: Elekes et al., PRC 73, 0443 I 4 (2006)

Conflicting interpretations

- Ground state parity: g-factor and B-decay results in contradiction
- 484 keV state: populated in E2 transition from Coulomb excitation incompatible with different parity from ground state
- Proposed level at 159 keV solely inferred from 546 keV transition (proposed isomeric M2 159 keV transition not seen in β decay experiment)
- No solution that rejects only one of previous measurements

Proposed level scheme for ${ }^{33} \mathrm{Mg}$ and $\log \mathrm{ft}$ values deduced following the β-decay of ${ }^{33} \mathrm{Na}$

Configurations

- Low-lying states in ${ }^{33} \mathrm{Mg}$
- Competition between different configurations
- Shell evolution depends on deformation
- $3 / 2^{+}$correspond to IpIh excitation, whereas $3 / 2^{-}$corresponds to 2 p 2 h excitation

Calculated low-lying states in 33 Mg (1p1h) $3 / 2^{+} \longrightarrow 0.000$ (unmixed case) from Nummela et al., PRC 64, 0543 I3 (200I)

Goals of proposed experiment

- Identify spin and parity of ${ }^{33} \mathrm{Mg}$ ground state, and resolve present conflicting information
- Identify spin and parity of excited states, in particular 484 keV level seen in Coulomb excitation
- Deduce level scheme using $\gamma-\gamma$ coincidences
- Look for proposed long-lived M2 isomeric state at 159 keV
- Characterize intruder configurations in this nucleus

Single nucleon knockout reactions

- One-neutron removal from ${ }^{34} \mathrm{Mg}$
- Populate excited and ground states in ${ }^{33} \mathrm{Mg}$
- Measure longitudinal momentum distributions of ${ }^{33} \mathrm{Mg}$ residue tagged on gamma-rays
- Unambiguous identification of angular momentum of removed nucleon
- Ground state momentum distribution from inclusive minus excited states
- 484 keV - tagged momentum distribution after subtraction of feeding from 705 keV and 1243 keV states
- One-proton removal from ${ }^{34} \mathrm{Al}$
- Favors population of positive parity states in ${ }^{33} \mathrm{Mg}$
- Complementary information on the structure of excited states in ${ }^{33} \mathrm{Mg}$ by comparison with one-neutron knockout from ${ }^{34} \mathrm{Mg}$

Angular momentum identification

- Longitudinal momentum distribution of residue
- From initial 0^{+}state, only one angular momentum value possible to final state
- Calculation shows difference between d and p orbitals
- Example on ${ }^{34} \mathrm{Ar}$ - In
- Ground state $\mathrm{P} / /$ distribution shows agreement with $l=0$ shape whereas excited states with $l=2$
- From A. Gade et al., PRC 69, 0343II (2004)

Proposed setup

- Production, filtering and identification of ${ }^{34} \mathrm{Mg}$ and ${ }^{34} \mathrm{Al}$ beams
- Use BigRIPS fragment separator with $345 \mathrm{MeV} / \mathrm{u}^{48} \mathrm{Ca}$ primary beam on 16 mm Be production target
- Knockout reactions on radioactive beams
- Place reaction target (Be or C) at F8 focal point of BigRIPS
- Use Zero Degree Spectrometer (ZDS) in dispersive mode to filter, identify and measure momentum of ${ }^{33} \mathrm{Mg}$ residue
- Surround reaction target with the DALI2 array to detect γ-rays emitted in coincidence with the heavy residue
- Stopped ${ }^{33} \mathrm{Mg}$ at FII focal plane
- Use high efficiency Ge detector to look for proposed long-lived isomer, and measure its lifetime if found

Lifetime issues

- Doppler broadening and long lifetimes
- Assuming transition from $7 / 2^{+}$to $5 / 2^{+}$for 484 keV line: $T_{1 / 2}=69 \mathrm{ps}$ which corresponds to $2-3 \mathrm{~cm}$ at $\beta=0.6$
- High resolution γ ray array cannot be used to its full capacity
- Geant simulation of DALI2 array shows evolution of peak shape as a function of lifetimes: 50,100 , 200 and 400 ps

Simulation courtesy of
P. Doornenbal

Resolution issues

- γ-ray tagging of momentum distributions
- Relatively high level density and low energy of ${ }^{33} \mathrm{Mg}$ level scheme
- Difficult to resolve 484 keV and 546 keV lines
- Necessary to use $\gamma-\gamma$ coincidences with feeding transitions
- Calculated spectra using branching ratios from β-decay of ${ }^{33} \mathrm{Na}$

Simulations courtesy of P. Doornenbal

