## Ground state of <sup>33</sup>Mg: a puzzle

- Several measurements in contradiction
  - B-decay of <sup>33</sup>Na: 3/2<sup>+</sup> based on log ft and shell model predictions
  - g-factor and hfs parameter: 3/2-
  - B-decay of <sup>33</sup>Mg: 3/2<sup>+</sup> based on log ft and known <sup>33</sup>Al gs
  - Coulex on <sup>33</sup>Mg: E2 transition between gs and 484 keV state
  - (p,p') on <sup>33</sup>Mg: 484 keV state observed
  - p(<sup>34</sup>Mg, <sup>33</sup>Mg)X: both 484 keV and 546 keV states observed
- References
  - B-decay of <sup>33</sup>Na: Nummela et al., PRC 64, 054313 (2001)
  - g-factor:Yordanov et al., PRL 99, 212501 (2007)
  - B-decay of <sup>33</sup>Mg:Tripathi et al., PRL 101, 142504 (2008)
  - Coulex on <sup>33</sup>Mg: Pritychenko et al., PRC 65, 061304R (2002)
  - (p,p') and p(<sup>34</sup>Mg, <sup>33</sup>Mg)X: Elekes et al., PRC 73, 044314 (2006)

### Conflicting interpretations

- Ground state parity: g-factor and B-decay results in contradiction
- 484 keV state: populated in E2 transition from Coulomb excitation incompatible with different parity from ground state
- Proposed level at 159 keV solely inferred from 546 keV transition (proposed isomeric M2 159 keV transition not seen in ßdecay experiment)
- No solution that rejects only one of previous measurements



Proposed level scheme for  $^{33}Mg$  and log ft values deduced following the  $\beta$ -decay of  $^{33}Na$ 

## Configurations

- Low-lying states in <sup>33</sup>Mg
  - Competition between different configurations
  - Shell evolution depends on deformation
  - 3/2<sup>+</sup> correspond to IpIh excitation, whereas 3/2<sup>-</sup> corresponds to 2p2h excitation



## Goals of proposed experiment

- Identify spin and parity of <sup>33</sup>Mg ground state, and resolve present conflicting information
- Identify spin and parity of excited states, in particular 484 keV level seen in Coulomb excitation
- Deduce level scheme using  $\gamma$ - $\gamma$  coincidences
- Look for proposed long-lived M2 isomeric state at 159 keV
- Characterize intruder configurations in this nucleus

### Single nucleon knockout reactions

- One-neutron removal from <sup>34</sup>Mg
  - Populate excited and ground states in <sup>33</sup>Mg
  - Measure longitudinal momentum distributions of <sup>33</sup>Mg residue tagged on gamma-rays
  - Unambiguous identification of angular momentum of removed nucleon
  - Ground state momentum distribution from inclusive minus excited states
  - 484 keV tagged momentum distribution after subtraction of feeding from 705 keV and 1243 keV states
- One-proton removal from <sup>34</sup>Al
  - Favors population of positive parity states in <sup>33</sup>Mg
  - Complementary information on the structure of excited states in <sup>33</sup>Mg by comparison with one-neutron knockout from <sup>34</sup>Mg

# Angular momentum identification

- Longitudinal momentum distribution of residue
  - From initial 0<sup>+</sup> state, only one angular momentum value possible to final state
  - Calculation shows difference between *d* and *p* orbitals
- Example on <sup>34</sup>Ar-In
  - Ground state p// distribution shows agreement with I=0 shape whereas excited states with I=2
  - From A. Gade et al., PRC 69, 034311 (2004)



#### Proposed setup

- Production, filtering and identification of <sup>34</sup>Mg and <sup>34</sup>Al beams
  - Use BigRIPS fragment separator with 345 MeV/u <sup>48</sup>Ca primary beam on 16 mm Be production target
- Knockout reactions on radioactive beams
  - Place reaction target (Be or C) at F8 focal point of BigRIPS
  - Use Zero Degree Spectrometer (ZDS) in dispersive mode to filter, identify and measure momentum of <sup>33</sup>Mg residue
  - Surround reaction target with the DALI2 array to detect  $\gamma$ -rays emitted in coincidence with the heavy residue
- Stopped <sup>33</sup>Mg at FII focal plane
  - Use high efficiency Ge detector to look for proposed long-lived isomer, and measure its lifetime if found

#### Lifetime issues

- Doppler broadening and long lifetimes
  - Assuming transition from  $7/2^+$  to  $5/2^+$  for 484 keV line:  $T_{1/2}$ =69 ps which corresponds to 2-3 cm at B=0.6
  - High resolution γray array cannot be used to its full capacity
  - Geant simulation of DALI2 array shows evolution of peak shape as a function of lifetimes: 50, 100, 200 and 400 ps

Simulation courtesy of P. Doornenbal



#### **Resolution issues**

- γ-ray tagging of momentum distributions
  - Relatively high level density and low energy of <sup>33</sup>Mg level scheme
  - Difficult to resolve 484 keV and 546 keV lines
  - Necessary to use  $\gamma$ - $\gamma$  coincidences with feeding transitions
  - Calculated spectra using branching ratios from B-decay of <sup>33</sup>Na

