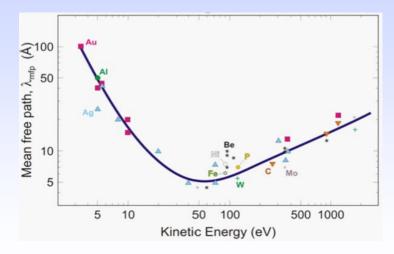


Soft-X-Ray ARPES View of Three-Dimensional Electronic Structure

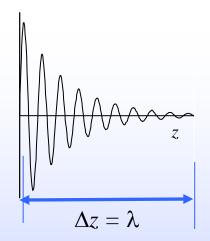
V.N. Strocov

Swiss Light Source, Paul Scherrer Institute, Switzerland

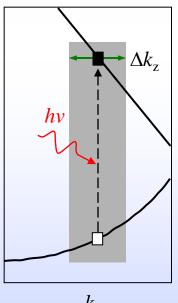

Outline:

- 1. Why ARPES in the soft-X-ray range?
 - applications to 3D systems
- 2. Instrumentation
- 3. Results
- 3-dim band structure and Fermi surface of quasi-2D VSe₂
- overview: HTSC pnictides; heavy-fermion intermetallics; fermiology of NiS_{2-x}Se_x, buried layers in LNO/STO heterostructures ...

Why Soft-X-Ray ARPES?

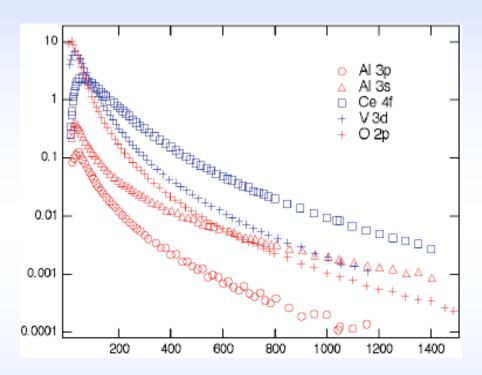

Virtue 1: Increasing λ

• increasing bulk sensitivity


\Rightarrow Virtue 2: Improving intrinsic resolution $\Delta k_z = \lambda^{-1}$

- ARPES signal by averaging $E(k_z)$ over Δk_z
- crucial for 3D systems

Virtue 3: Free-Electron Final States

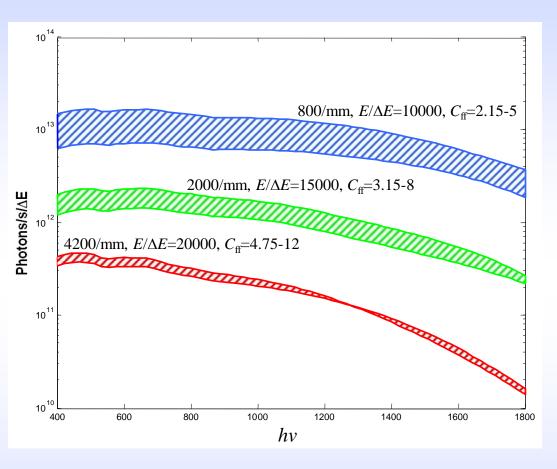

• free-electron final-state
$$E(k_z)$$
 to find $k_z = \sqrt{\frac{2m}{\hbar^2} \left(E - V_0 - \frac{\hbar^2 k_{//}^2}{2m} \right)}$

k

Further virtues: Simplified matrix elements, ...

Crossection Problem of SX-ARPES


• dramatic drop of valence band crossection with *hv* (especially for *s*- and *p*-states): **photon flux required!**


ADRESS (ADvanced RESonant Spectroscopies) Beamline at SLS

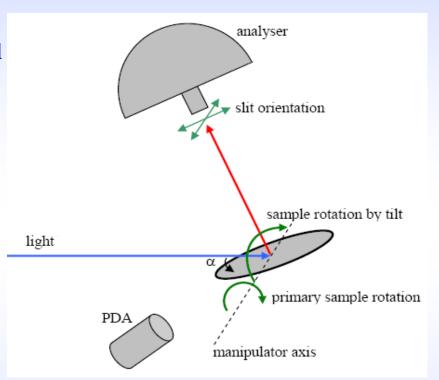
- RIXS and ARPES endstations
- soft-X-ray radiation with circular and 0-180° variable linear polarizations
- energy range 300 1800 eV
- high resolution $\Delta E \sim 30 \text{ meV}$ @ 1 keV
- collimated-light PGM optical scheme
- flux up to 10^{13} ph/s/0.01%BW: factor of 10 to 100 increase compared to best available beamlines \Rightarrow breakthrough of the crossection problem

ADRESS Beamline: Flux Parameters

- flat energy dependence with all gratings including 800/mm blazed
- 3×10^{11} to 1×10^{13} ph/s/0.01%BW (factor of 10 to 100 flux increase compared to BL25SU@SPring-8)

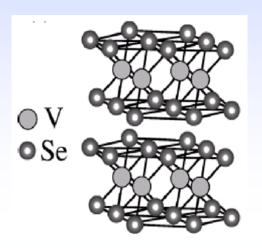
• excellent flux by virtue of (1) 2.4 GeV ring optimal for soft X-rays; (2) glancing angles on the mirrors; (3) blazed/lamellar and profile optimization of gratings; (4) optimal $C_{\rm ff}$

⇒ ADRESS is ideal for the photon-hungry SX-ARPES

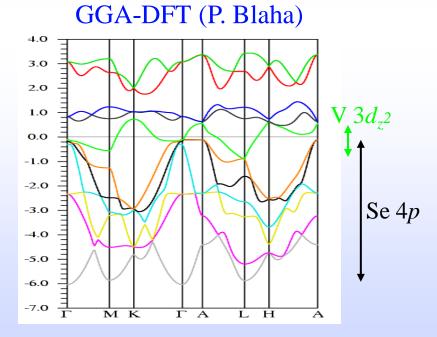

SX-ARPES Endstation @ ADRESS

- Geometry

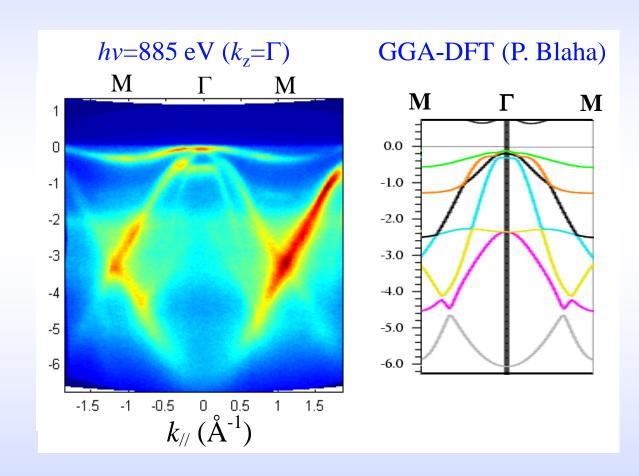
- grazing incidence at 20° to increase photoyield (factor of 2 compared to 45°)
- horizontal rotation axis to balance the vertical (<20μm) and horizontal (74μm) light footprint
- 2 operation modes:
- analyser slit // beam + tilt (selection rules)
- analyser slit ∠ beam + primary rotation

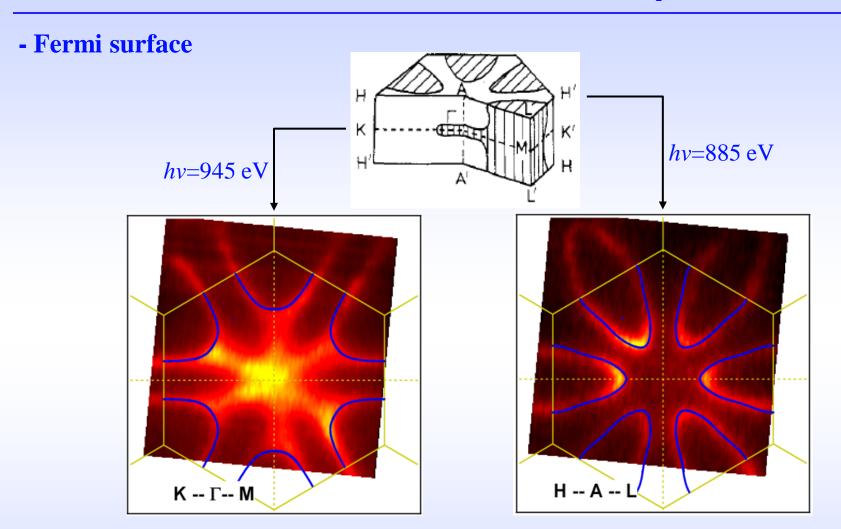

- Instrumentation

- CARVINGTM manipulator:
- 3 angular DOFs (res 0.05°)
- L-He₂ cooling to 10.5K
- analyser PHOIBIOS-150: $\Delta k_{//}$ =0.02Å⁻¹@1keV

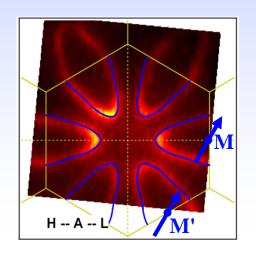

Test case: 3D bandstucture and Fermi surface of VSe₂

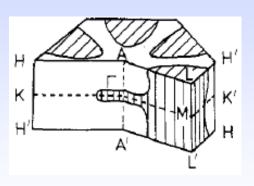
- Structure and electronic structure


• quasi-2D structure with weaker interlayer interaction

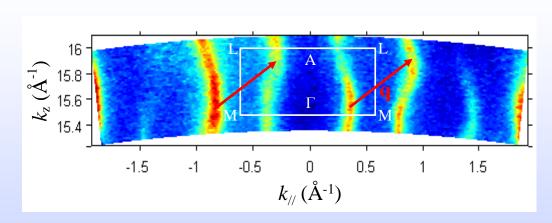

• significant 3D-lity due to V 3d and Se $4p_z$ dispersing along Γ A

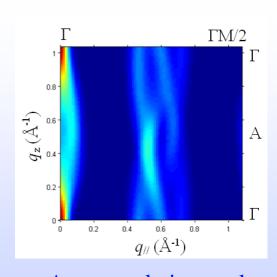
- 3D Band Structure


- T=10.7 K
- combined $\Delta E \sim 110 \text{meV}$
- acquisition time **10 min**
- excellent intensity not only for *d*-states, but also for *p*-states despite dramatic loss of crossection
- intense and sharp in $\mathbf{k}_{//}$ structures => Debye-Waller and phonon broadening are no prohibitive
- agreement with GGA-DFT
- evolution with hv => intrinsic Δk_z resolution $\sim 0.05 \text{ Å}^{-1}$ (or $\lambda \sim 20 \text{ Å}$)



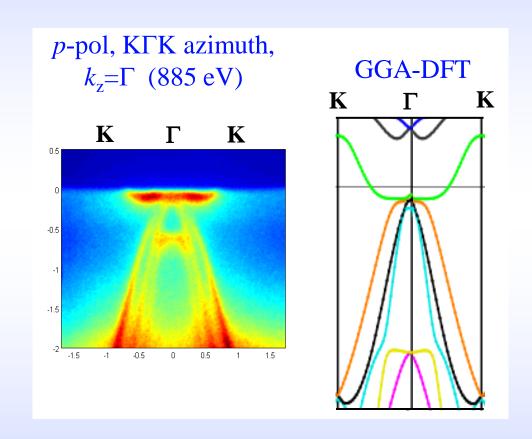
- combined $\Delta E \sim 120 \text{meV}$; each image in 400 s; each map in < 5 hrs
- extraordinary clarity of the experimental data (no image enhancement)
- fantastic agreement with GGA-DFT, even the tiny warping in HAL


- Origin of 3-dimensional CDWs

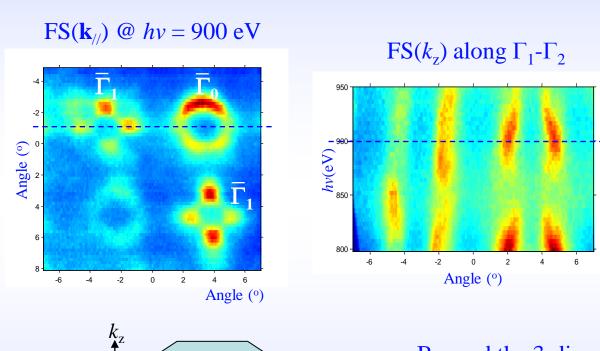


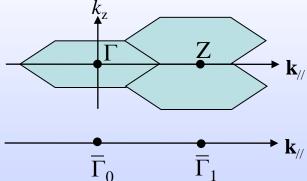
$$\mathbf{q}_{\text{CDW}} = \mathbf{q}_{\text{//}} + \mathbf{q}_{\text{z}} (q_{\text{z}} \sim k_{\text{z}}^{\text{BZ}/3})$$

- Perpendicular FS cut in MLL'M' plane


• 3D warping to support nesting with the experimental q_z

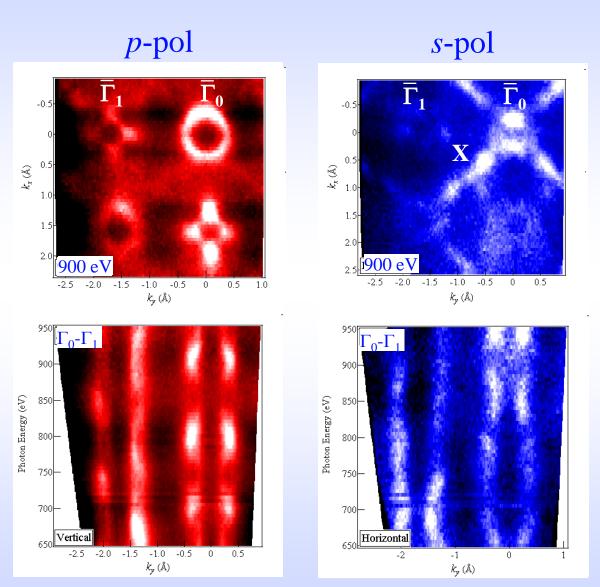
• Autocorrelation peak at the experimental q_z


Towards better resolution


- combined $\Delta E \sim 60 \text{meV}$
- image in 40 min
- well resolved bands

3D Fermi Surface of HTSC pnictide Ba_{0.6}K_{0.4}Fe₂As₂

- pnictides are 3D materials
- measurements at *p*-pol, T=10.7K, ΔE ~110meV



Beyond the 3-dimensionality:

- $k_{\rm z}$ dispersion along Γ_1 reduced compared to Γ_0

- linear polarization dependence

- strong linear dichroism in the $FS(\mathbf{K}_{//})$ and $FS(k_z)$ maps
- Varying BZs and polarization \Rightarrow selective excitation of α , α' and β Fe 3d bands of the FS: matrix element effects due to intra-cell interference

3D bulk electronic structure of heavy-fermion EuRh₂Si₂

TU Dresden: M. Höppner, S. Danzenbächer, D. Vyalikh, S. Molodtsov

3D electronic structure of strongly correlated NiS_{2-x}Se_x

Fudan University: Y. Zhang, H. C. Xu, M. Xu and D. L. Feng

PbBi₄Te₇: Topological Surface State in 3D Sea

H. Dil, G. Landolt, B. Slomski, J. Osterwalder (PSI/Uni Zuerich)

k-resolved Fermi surface of LaAlO₃/LaNiO₃ heterostructures

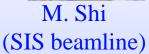
Uni Wuerzburg: G. Berner, M. Sing and R. Claessen; samples: MPI-FKF Stuttgart

Summary

- Virtues of soft-X-ray ARPES
- Enhanced λ , improved Δk_z resolution, free-electron final states, simplified matrix elements...
- SX-ARPES instrumentation at SLS
- ADRESS beamline: 300 1800 eV energy range, high res ($\Delta E \sim 30 \text{meV} \otimes 1 \text{ keV}$) and high flux (up to $10^{13} \text{ ph/s}/0.01\% \text{BW} \otimes 1 \text{ keV}$)
- Data acquisition rate of ~5 min @ ΔE ~110 meV: breakthrough of the crossection problem
- Examples
- 3D fermiology and CDWs in VSe₂: textbook clarity of 3D-resolved $E(\mathbf{k})$ and FS by virtue of free-electron final states and small Δk_z in the soft-X-ray region
- Further studies of 3D electronic structure: Band selection effects in HTSC pnictides, 3D hybridization effects in heavy-fermion intermetallics, 3D fermiology of strongly correlated NiS_{2-x}Se_x, buried layers in LNO/LAO heterostructures ...
- \Rightarrow high potential of SX-ARPES, in particular for 3D systems

People

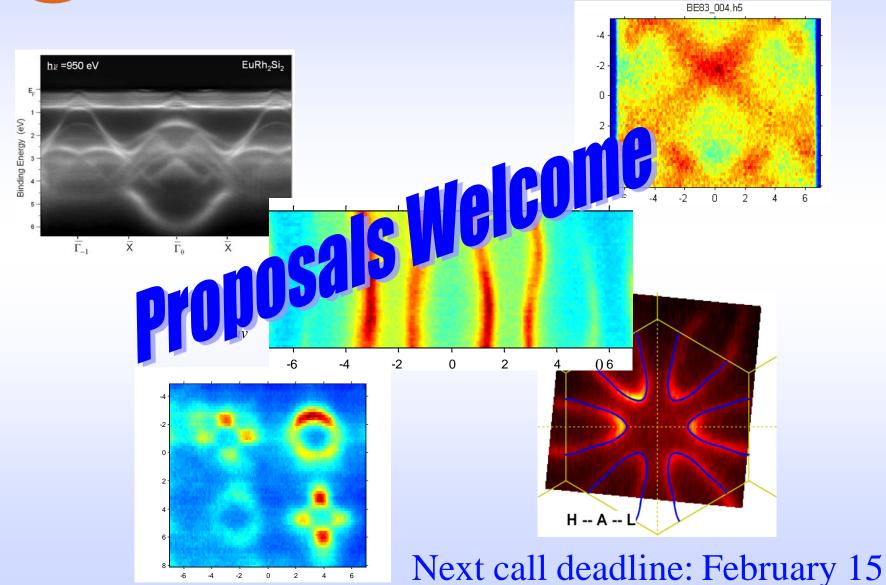
SX-ARPES team



V.N.S. M. Kobayashi C. Hess (BL Scientist) (PostDoc) (BL Technician)

Collaborators

T. Schmitt (RIXS)


L. Patthey (Group Leader)

www.psi.ch/sls/adress/

