

### Cancer – looking at the wild life

The Gulliver Multi-Scale Imaging Project

What can we look at that will inform the management of the disease?













### Talk overview

- Brief summary of three important problems in cancer management
- Examples where imaging can/is contributing to improve cancer management
- Imaging limitations/needs



# Big problems in cancer management

- Early detection technologies like mammography are not reducing cancer mortality as expected/hoped
- Treatment strategies for most metastatic solid tumors are not curalive
- New drug development is time consuming, expensive and often fails



# Early detection and treatment are not reducing late stage disease



## Mortality rates remain high (SEER)



# Big problems in cancer management

- Early detection technologies like mammography are not reducing cancer mortality as expected/hoped
- Treatment strategies for most metastatic solid tumors are not curative
- New drug development is time consuming, expensive and often fails



## Survival of breast cancer patients with metastatic brain lesions treated with one of our best drugs



Science

# Big problems in cancer management

- Early detection technologies like mammography are not reducing cancer mortality as expected/hoped
- Treatment strategies for most metastatic solid tumors are not curative
- New drug development is time consuming, expensive and often fails



### Experimental therapeutics

Approximately 100 drugs are now FDA approved for some cancer indication

Over 400 experimental drugs are now in Phase II/III trials

The typical cost per successful drug is greater than \$1B and takes about 15 years

At the end of this, we still don't know who will respond well



# Our current approach to assessment of efficacy does not scale well

|               | Product/Compound                                      |             |           |         |        |        |         |         |           |        |          |          |       |
|---------------|-------------------------------------------------------|-------------|-----------|---------|--------|--------|---------|---------|-----------|--------|----------|----------|-------|
| Cancer Type   | Nexavar                                               | Sutent      | AG-013736 | Tarceva | ZD6474 | Tykerb | Avastin | Erbitux | Vatalanib | Iressa | Vectibix | Recentin | Total |
| Bladder       | 2                                                     | 2           | 0         | 2       | 0      | 0      | 2       | 1       | 1         | 2      | 0        | 0        | 12    |
| Breast        | 1                                                     | 8           | 0         | 4       | 0      | 28     | 32      | 5       | 0         | 0      | 0        | 3        | 81    |
| Colorectal    |                                                       |             |           |         |        |        |         |         |           |        |          | 125      |       |
| Female repro  | Current tyrosine kinase inhibitor clinical trials     |             |           |         |        |        |         |         |           |        |          | 21       |       |
| General/other |                                                       |             |           |         |        |        |         |         |           |        |          | 33       |       |
| Head & Neck   | • 12 inhibitors                                       |             |           |         |        |        |         |         |           |        |          | 72       |       |
| Leukemia      | • 22 organ sites                                      |             |           |         |        |        |         |         |           |        |          | 14       |       |
| Liver         | • 769 separate trials                                 |             |           |         |        |        |         |         |           |        |          | 16       |       |
| Lung          |                                                       |             |           |         |        |        |         |         |           |        |          | 145      |       |
| Lymphoma      | • 81 in breast                                        |             |           |         |        |        |         |         |           |        |          | 23       |       |
| Melanoma      | <ul> <li>Typical time to approval 15 years</li> </ul> |             |           |         |        |        |         |         |           |        |          | 22       |       |
| Mesothelioma  |                                                       |             |           |         |        |        |         |         |           |        |          | 6        |       |
| Myeloma       | ■ Typical cost > \$1B per approved drug               |             |           |         |        |        |         |         |           |        |          | 5        |       |
| Multiple      | VI                                                    |             |           |         |        |        |         |         |           |        |          | 17       |       |
| CNS           | 3                                                     | <b>ypic</b> | al cost   | > 3215  | per    | appro  | )vea    | drug    | 4         | 6      | 0        | 2        | 47    |
| Ovarian       | 3                                                     | 0           | 0         | 1       | 0      | 2      | 3       | 0       | 1 1       | 0      | 0        | 0        | 10    |
| Pancreatic    | 2                                                     | 1           | _1        | 10      | 0      | 0      | 13      | 12      | 2         | 1      | 0        | 0        | 42    |
| Prostate      | 4                                                     | 3           | 0         | 5       | 0      | 2      | 9       | 0       | 2         | 0      | 0        | 0        | 25    |
| Renal         | 14                                                    | 10          | 0         | 4       | 1      | 0      | 10      | 0       | 1         | 0      | 0        | 3        | 43    |
| Sarcoma       | 5                                                     | 2           | 0         | 0       | 0      | 0      | 6       | 1       | 1         | 0      | 0        | 0        | 15    |
| Solid         | 4                                                     | 2           | 0         | 7       | 0      | 2      | 7       | 5       | 1         | 3      | 1        | 2        | 34    |
| Thyroid       | 0                                                     | 0           | 1         | 1       | 2      | 0      | 1       | 1       | 0         | 0      | 0        | 0        | 6     |
| Total         | 70                                                    | 53          | 3         | 128     | 12     | 48     | 279     | 103     | 18        | 55     | 14       | 31       | 769   |

# What can we "look at" that will inform the management of the disease?



### **Cancer pathophysiology**

Molecular parts list

Molecular function

Model organisms

#### **Cancer detection**

Molecular histopathology

Anatomic localization

#### **Therapy**

Molecular target definition and drug design

Therapeutic agent assessment in vitro and in vivo

Quantitative clinical response

# What can we "look at" that will inform the management of the disease?



in vitro and in vivo

response

and drug design

### The Cancer Genome Atlas (TCGA) project

#### Data Management, Bioinformatics, and Computational Analysis



- Database of all data generated by the project
- Analyses of data

#### **Technology Development**



- Increased sensitivity of molecular characterization platforms
- Analysis of biomolecules from 1000 cells or less

#### **Genome Sequencing Centers**



High throughput sequencing of genes and genomic regions identified through cancer characterization



#### Cancer Genome Characterization Centers



- Identification of expression alternation
- Detection of DNA fragment copy number changes and LOH
- Epigenetics

#### Human Cancer Biospecimen Core Resource



- Biospecimens-related data storage
- Histopathology confirmation performed
- Biomolecules isolated, QC'ed and distributed

## Genome Analyses Capabilities to Provide Robust Characterization of Cancers

#### **Characterizations:**

- Expression profiling
- Identification of genomic alterations
- Identification of epigenetic changes

MIC1R

chr1:604,973-687,250

P53

PTEN

BRAF CHECK2

MYC

11q23

CDK4

Selection of candidate targets for sequencing

Clinical correlation and mechanistic insights

Glioblastoma
Lung cancer
Ovarian cancer

# Remarks made on the completion of the first survey of the entire human genome, June 29, 2000

- "For let us be in no doubt about what we are witnessing today -- a revolution in medical science whose implications far surpass even the discovery of antibiotics, the first great technological triumph of the 21st century." Prime Minister Blair
- "It is now conceivable that our children's children will know the term cancer only as a constellation of stars." President Clinton

# Tumor genomes can be remarkably complex



Genome location



### What we know so far

- The typical tumor will deregulate 30% of its genome (10,000 genes)
- 10% of the genome in a typical cancer type is recurrently aberrant (3000 genes)
- Several hundred gene mutations have been discovered
- These molecular features define cancer subtypes that progress and respond to therapy in unique ways

The structures, interacting partners and functions of most of these genes are not well understood

# We need efficient tools to establish protein structure and function



Integrin in inactive and active state - studying purified individual signaling proteins and complexes by single-particle cryo-EM, and docking of atomic structures obtained by X-ray diffraction into electron densities

# We need tools to assess function in the cellular context





# Correlative light and electron microscopy

- Light microscopic phenotype
- Ultra-structural characterization
- Electron tomography for mol. resolution



# Multi-color functional analysis in vivo

Phagocytic response to a tumor

Spinning disk, multi-color confocal microscopy



Alexa-647-dextran
Tumor debris (CellTracker Red)
c-fms-eGFP phagocytes



### What can we look at that will inform the management of the disease?



parts list

function

organisms

#### **Cancer detection**

Molecular histopathology

Anatomic localization

### **Therapy**

Molecular target definition and drug design

Therapeutic agent assessment in vitro and in vivo

Quantitative clinical response

# We need to understand the molecular mechanisms and extent of invasion

#### Microinvasion in breast cancer





# Scanning mass spectrometry is particularly appealing for protein specific imaging



Figure 3. Principles of ToF-SIMS. Panel a. Raster scan of tissue section.

Panel. B. Mass spectrum showing amounts of secondary ions. Panel c.

Science

Secondary-ion-specific images of histological sections.

# Targeted labeling strategies are highly informative

Histologically normal tissue in vicinity of an acral melanoma



Pinkel, Bastian et al

Cells with high-level amplifications are present <u>before</u> there is a histologically recognizable tumor.

Field Cells beyond excision margins may result in local recurrence.



# We need to be able to "see" the anatomic extent and molecular subtype

We know the molecular characteristics of tumors that are likely to invade early – we need to be able to "see" them



Morphologic heterogeneity in ductal carcinoma in situ



### What can we look at that will inform the management of the disease?



### **Cancer pathophysiology**

Molecular parts list

Molecular function

Model organisms

#### **Cancer detection**

Molecular histopathology

**Anatomic** localization

**Therapy** 



Molecular target definition and drug design

Therapeutic agent assessment in vitro and in vivo

Quantitative clinical response

## We need more efficient tools for structure guided drug design

Therapeutic targets in one breast cancer subtype 66 genes amplified, over-expressed and associated with poor outcome





## We need better tools for identification of molecular determinants of individual response and resistance

## Automated cell culture and high content imaging for assessment of Rx response

- ~60 breast cancer cell lines in 2D and 3D culture
- Molecular profiling
  - DNA, RNA, methylation, protein
  - DNA sequence
- Semi-automated cell culture
- High content imaging
  - Apoptosis
  - Motility
  - Proliferation
  - Protein localization





### Molecular determinants of response

The ErbB2/ERGF inhibitor lapatinib as an example



### Technological opportunities

Current system is too expensive and slow to test thousands of compounds – Microfluidics and detectors (e.g. Luke Lee at UCB)



# Imaging facilitates assessment of response in model organisms

- Light diffuses (scattering >> absorption)
   through "turbid" medium such as tissue
  - Absorption low for wavelengths > 600 nm

- Surface intensity depends on:
  - Source depth
  - Source shape and brightness
  - Surface shape (curvature)
  - Wavelength
  - Tissue optical properties





## Response of a pancreatic tumor

#### We need to be able to see the molecular response





## MRI assessment of response

We need to be able to "see" the molecular response

Pre-chemotherapy











### Assessment of off target drug effects





Women on Tamoxifen show reduced hippocampal volumes compared to women on Estrogen



Atrophic Hippocampus
Eberling, Jagust et al



**Normal Hippocampus** 

# What can we look at that will inform the management of the disease?



### What is missing/needed?



Throughput in structure-function determinations, drug design

We need multiplex, molecular labeling techniques that work at all scales

Multiplex, molecular imaging in living cells/animals



Molecular imaging to reveal tumor type and target response

### The Gulliver multi-scale imaging project

DOE-GTL (JBEI)

Bioremediation Cellulose degradation

Biofuel cells

Carbon sequestration

Low dose
Damage response
Cellular interactions

Imaging technologies

EM: phase contrast, large area

X-ray: tomography, diffraction, detectors

Mass spec: Ion beam, SELDI

Light: structured illumination, selective plane, dynamic

PET: detectors, CT/MRI

Chem: mol. tags, reporters, immuno, in situ hybe, radiopharm, tracers

Comp: multi-scale overlay, pattern recog, atlas dev, quant.

Pathophysiology
Cancer
Neurophysiology

Cell biology
Signaling biology
DNA repair
Chromatin structure