Coherent X-Ray Diffractive Imaging at LCLS, FLASH, and ALS

Henry Chapman, LLNL

Gulliver workshop, May 2007

Imaging resolution is limited by radiation damage

Dose-Resolution relationship for imaging of frozen samples at 10 keV

Empirical data compiled by Malcolm Howells, LBL

X-ray free-electron lasers may enable atomicresolution imaging of biological macromolecules

Ultrafast diffractive imaging is a versatile technique

Diffractive imaging recovers an image from diffraction intensities

- No lens aberration or NA limitation
- No depth-of-focus limitation for tomography
- Quantitative phase contrast
- Numerical focusing
- Requires isolated objects
- Computationally demanding if no reference wave provided

Ultrafast X-ray pulses allow:

- Imaging beyond static radiation damage limits (to near-atomic resolution)
- Time-resolved imaging
- Imaging of injected wet cells
- Imaging of aligned particles
- Only one exposure per object

Coherent diffractive imaging is lensless

Use a computer to phase the scattered light, rather than a lens

A lens recombines the scattered rays with correct phases to give the image

An algorithm finds the phases that are consistent with measurements and prior knowledge

Resolution: $\delta = \lambda / \sin \theta$

We perform ab initio image reconstruction with our "Shrinkwrap" algorithm

The reconstruction is carried out to the diffraction limit of the 0.26 NA detector

We have reconstructed a 3D X-ray image of a noncrystalline object at 10 nm resolution

Coherent X-ray diffraction data, rotating the sample -70 to +70 degrees (5×10⁸ data points)

Coherent X-ray diffraction data λ =1.6 nm, from a sample of 50-nm gold spheres arranged on a pyramid

Complete image reconstruction achieved, without any prior knowledge, using our "**shrinkwrap**" algorithm, **parallelized** for 3D on 32-CPU cluster. Resolution = 10 nm

3D reconstruction is achieved by Fourier synthesis

One diffraction pattern gives information on the Ewald sphere in reciprocal space

Rotating a sample about one axis only gives imperfect data filling in Fourier space

2D single-view images have depth information

True 2D projection images can be formed from a central section of the 3D diffraction data

A true projection image is obtained from a **plane central section** of the 3D diffraction data. Data must be collected at many object orientations to achieve this

We have performed full 3D reconstruction with a positivity constraint

We have performed 3D X-ray imaging of Aerogel foam at 10 nm resolution

Analysis of the 3D image revealed anisotropy in the structure. Other characterization techniques (TEM, SAXS) could not reveal this

1 micron

We are using our unique 3D X-ray imaging capabilities to investigate aerogel structure

Ta₂O₅ aerogel (100 mg/cm³), reconstructed images along orthogonal views.

We are entering a new era in x-ray science

APS=Advanced Photon Source (ANL) ALS=Advanced Light Source (LBNL)

Our diffraction camera can measure forward scattering close to the direct soft-X-ray FEL beam

Image reconstructed from an ultrafast FEL diffraction pattern

Single-particle FEL diffraction of "on-the-fly" particles has been demonstrated for the first time

We generate particle streams by electrospray aerosol generation and aerodynamic focusing

Challenges:

- High enough particle density in the beam
- Having a pure sample
- Keeping molecules in "native" conformation
- Diagnostics and control of particle trajectories

Electrospray

Electrospray Approach:

- Charged-reduced electrospray and aerodynamic and electrostatic trajectory control
- Purification through size selection by mobility
- Extremely sensitive charge detection and mass detection to give status of FELparticle interaction

The electrospray system is extremely versatile and we can select particle size and charge

A mass spectrum is recorded every FEL pulse

FEL Pulse train:

140 pulses

10 fs duration

10 μs spacing

5 Hz

 \sim 20 μ J/pulse

13.5 nm wavelength

The mass spectra show which pulse in the pulse train had hit and how.

Single-particle FEL diffraction of "on-the-fly" particles has been demonstrated for the first time

The particle injection system operates at high efficiency

24hr shift, 18.68 hours of data collection

26 sample changes, 14 different samples

16639 patterns collected, 1873 patterns contained particle scattering

11.6% of patterns contained particles

0.05 Hz average hit rate, maximum >0.5 Hz (camera limited)

Laser alignment will help establish molecular imaging at XFELs

J.C.H. Spence and R.B. Doak, Phys. Rev. Lett. **92**, 198102 (2004)

Polarized 50W IR CW Laser

J.C.H. Spence et al., Acta Cryst. A 61, 237 (2005)

D. Starodub et al. J. Chem Phys 123, 244304 (2005)

Equipartition of rotational potential energy with thermal energy gives

$$\left\langle \Delta \theta^2 \right\rangle = \frac{T}{3 \times 10^{-8} I \Delta \alpha}$$

T - temperature in K

I - laser power in W/cm²

 $\Delta \alpha$ - polarizability anisotropy in nm³

Resolution is limited by the degree of

alignment: $d = (L/2) \Delta \theta$

FEL pulses can probe laser alignment interactions

Laser fields can align particles but they may also distort them.

Methods exist for impulsive and adiabatic field-free alignment. An ultrafast FEL pulse can probe alignment

Underwood, PRL 2003 Alignment with 15 ps, fast switch-off

Coherent diffractive imaging can be combined with lenses to increase robustness

Acknowledgements

LLNL: Jennifer Alameda, Saša Bajt, Anton Barty, Daniel Barsky, Henry Benner,

Brian Bennion, Micheal Bogan, Sung-Wook Chung, Matthias Frank,

Stefan Hau-Riege, Max Haro, Richard Lee, Richard London, Stefano Marchesini, Tom McCarville, Alex Noy, Urs Rohner, Brent Segelke, Eberhard Spiller, Abraham Szöke, Bruce Woods

Uppsala: Janos Hajdu, Gösta Huldt, Carl Caleman, Magnus Bergh, Nicusor

Timeneau, David van der Spoel, Florian Burmeister, Marvin Seibert, Erik

Marklund

UC Davis: David Shapiro (now LBNL)

SLAC: Keith Hodgson, Sebastien Boutet

DESY: Thomas Tschentscher, Elke Plönjes, Marion Kulhman, Rolf Treusch,

Stefan Dusterer

TU Berlin: Thomas Möller, Christof Bostedt

LBNL: Malcolm Howells, Congwu Cui

ASU: John Spence, Uwe Weierstall, Bruce Doak

