April 9, 2003
Berkeley Lab Research News
Quasiparticles and more quasiparticles
Lab news releases

Sign up to receive our news releases via email

Science Beat: most recent science news here

Berkeley Lab home page

Lab A to Z website index

Search news articles archive
 
 Advanced Search  
Search Tips

Quasiparticles are mathematical entities used to predict realistic electronic behavior by including properties, like finite range, that real electrons do not possess. In metals under ordinary conditions, so-called Landau quasiparticles closely resemble familiar electrons; as Crommie's "quantum corral" showed, an STM can clearly image their interference upon scattering.

In conventional low-temperature superconductivity the situation grows more complex. Superconductivity is carried by Cooper pairs -- usually described as pairs of electrons -- that move through the crystal lattice without resistance. A broken Cooper pair is called a Bogoliubov quasiparticle. It differs from the conventional quasiparticle in metal because it combines the properties of a negatively charged electron and a positively charged hole (an electron void).

Physical objects like impurity atoms, from which quasiparticles scatter in an ordinary metal, only weakly affect the energy of a Cooper pair in a conventional superconductor. In conventional superconductors, interference between Bogoliubov quasiparticles is hard for an STM to see.

Because of their complex global electronic structures, however, high-Tc cuprate superconductors are another matter. Thus Davis and his colleagues were able to resolve distinctive patterns of quasiparticle interference in Bi-2212.

Back to main story.

Additional information

"Quasiparticle scattering interference in high temperature superconductors," by Qiang-Hua Wang and Dung-Hai Lee