September 19, 2003

Building for Better Science
Short Takes
Als Crystal Images Shed More Light On Protein Synthesis
Salty Results From Sno
Windows of Opportunity
Studying Supernovae from Space
Violence in the Workplace: Zero Tolerance
Passionate About Her Profession
On Being the Guard at the Gate
Flea Market


Lab Scientist Heads Western Carbon Sequestration Effort

By Lynn Yarris

Larry Myer of Earth Sciences will look at ways to store carbon emissions like those from power plants and
industrial smoke stacks.

Larry Myer, a geological engineer and principal investigator with Berkeley Lab's Earth Sciences Division, has spent more than 20 years studying the movement of fluids through rock and how to monitor them. This extensive research experience should serve him well in his new role as director of the West Coast Regional Carbon Sequestration Partnership, which
is part of a nationwide network of partnerships created by the U.S. Department of Energy to investigate different approaches for carbon sequestration.7

"The Bush administration's goal of an 18 percent reduction in U.S. greenhouse gas emissions by 2012 is realistic if we push hard on developing carbon sequestration technologies," Myer says. "For our part, the West Coast partnership will be working to centralize the data that identify and characterize carbon dioxide sources and sinks in the region, and to develop a pilot demonstration project of what we determine to be the best carbon sequestration technology for the region at this time."

Two-hundred-plus years of indus-trialization has resulted in the emission of an enormous amount of carbon dioxide into the atmosphere. Experts predict that atmospheric carbon dioxide concentrations will double from pre-industrial levels by the middle of this century. Although the effects of doubling atmospheric carbon dioxide levels are not entirely understood, the scientific consensus is that serious environmental consequences will result if steps are not taken to curb emissions. The goal of carbon sequestration is to prevent carbon dioxide emissions from reaching the atmosphere by capturing a significant amount at the source, i.e., power plants and industrial smoke stacks, and securely storing it where no environmental harm would be done.

"The West Coast partnership will be looking at two different sequestration strategies, geological sequestration which entails burying the carbon underground, and terrestrial sequestration, which entails storing it in forests and soils," says Myer. "The western region of the United States offers some of the nation's most favorable sites for geologic and terrestrial sequestration strategies. We will also be working with partnerships in the other regions on aspects of carbon sequestration that we all share."

On August 18 of this year, DOE's National Energy Technology Laboratory named seven regional partnerships that include more than 140 federal, state, and private organizations spanning 33 states, three Native American nations, and two Canadian provinces. These partnerships are to play a key role in President Bush's Global Climate Change Initiative. The West Coast Regional Carbon equestration Partnership is led by the California Energy Commission and includes representative organizations from California, Oregon, Washington, Arizona, Nevada and Alaska. This region is responsible for about 11 percent of the nation's anthropogenic carbon dioxide emissions.

"Our partnership offers a combination of talent, experience, commitment and resources," Myer says. "The assessments we do will not only give us the best information upon which to take action now, but should also be valuable to future generations who carry on this work."

As director, Myer will be responsible for day-to-day operations and will coordinate the various research efforts undertaken by member organ-izations of the partnership. He will serve in this capacity through an appointment with the University of California's Office of the President.

The seven sequestration partnerships are shown here by region.

Berkeley Lab's scientific contribution to the partnership will be primarily carried out by researchers in the Earth Sciences Division who will focus on the development of monitoring and verification protocols and a risk assessment framework for geological sequestration. Sally Benson, Deputy Director for Oper-ations at the Lab, and a prominent national figure in carbon sequestration science, will lead the risk assessment effort.

While terrestrial sequestration through improved forest management and better conservation of agriculturally depleted soils could provide sizeable near-term carbon dioxide reductions, Myer believes that geological sequestration, initially in conjunction with enhanced oil recovery operations, will have a greater impact and may hold a significant economic edge.

"The largest costs in carbon sequestration are those associated with separating the carbon dioxide from the flue gas at the source," he says. "However, carbon dioxide injection is a proven technique for extracting oil from depleted reservoirs, such as those in southern California and on the North Slope of Alaska. Since enhanced oil recovery operations offer economic benefits that can help offset carbon sequestration costs, this strategy is an attractive candidate for a pilot project."

Myer is well-positioned to handicap the various competing carbon sequestration strategies. He has for the past three years served as co-director (with Benson) of the GEO-SEQ Project, another DOE-financed partnership for investigating geological sequestration. While he sees hydrocarbon reservoirs as the most likely carbon storage sites for the near-term, he thinks deep brine-filled formations offer the best hope for the future because of their far larger storage capacity.

"The risk of leakage is a critical factor when storing carbon in brine formations," Myer says, "which is why the risk assessment work here at the Lab is so important." The West Coast Regional Carbon Sequestration Partnership has been given 18 months to develop recommendations for a pilot demonstration project. Those projects that DOE selects for implementation are expected to be funded at about $10 million each." That funding is a big carrot for encouraging member organizations to participate in this project," Myer says.

Science Partnerships Key for Engineering

By Ron Kolb

Kem Robinson

With a view toward strongly supporting the ambitious scientific agenda that's ahead for Berkeley Lab, the Engineering Division will be retooling its infrastructure and its relationships with its work partners. The actions follow an intensive four-month review by the Engineering Task Force, commissioned in April by Deputy Director Sally Benson.

"It became clear that partner divisions recognize, respect and appreciate the level of engineering expertise available at Berkeley Lab," Benson said after reviewing the task force's final report. "But they also recognize the advances that could be possible here with a strengthened Engineering Division."

It all starts with a comprehensive Strategic Technical Plan, recommendation number one from the Task Force, according to interim Engineering Division Director Kem Robinson, who headed the 17-person review team.

"That plan will be defined by the intersection of all programmatic divisions' strategic plans with their short- and long-term engineering needs, expectations and desires," Robinson said. "It will define the priorities for all investment, discretionary spending and supplemental or external research and development."

The ultimate goal, the report states, is to achieve an Engineering Division which supports the Lab's scientific mission through competent, accessible engineering, and which enhances the Lab's scientific potential through innovation in apparatus and techniques. "A strong Engineering Division is essential for Berkeley Lab," it concludes.

Robinson was asked by management to lead the implementation effort following the resignation as Division Director earlier this week of Jim Triplett, who had guided the division since 1999. Benson praised Triplett's leadership, which she said "launched an ambitious modernization of the Laboratory's shops, enabling us to move from outdated equipment to precision, high-speed, state-of-the-art machines. At the same time, he has built new relationships with non-traditional Engineering partners, seeking to address the needs of the broadest community of Laboratory customers."

Among other recommendations made by the task force are to convene a new committee to establish a vision and strategic plan for the mechanical shops, to achieve an effective balance between centralized shops, satellite shops, and out-sourcing.
Robinson said the task force addressed the difficult circumstances that periodically confront Engineering, in which major design and construction projects at the Lab are completed and staff must be reduced when that project funding goes away.

"We sought ways to make the Division more resilient to changes and to funding fluctuations," he said. "One of the keys will be to anticipate the future needs in both Engineering's core areas (the Advanced Light Source and General Sciences, including Physics, Nuclear Sciences, and Accelerator and Fusion Research, which comprise 70 percent of the division's work) and in the so-called non-traditional divisions." And that will require closer partnerships and communication between Engineering and its divisional customers, so that essential capabilities can be identified and groomed.

"A stable workforce of the highest caliber is essential for Berkeley Lab," the task force report states. A set of career development and training initiatives is recommended, as well as actions which address issues of trust and cost between Engineering and the divisions.

Robinson said the Strategic Technical Plan should be completed as soon as feasible. "It will become the division's metric and investment guide," he said. Structural changes to develop the plan are also anticipated.

"The essential framework for the improvement of Engineering is one of safety, strong ethics, equity, fostering diversity, and openness," said Robinson, an experimental physicist who has been at Berkeley Lab for five years in the Accelerator and Fusion Research Division (AFRD). "I came here to be part of an institution that recognizes the strong value of a dynamic partnership between science and Engineering."

The Engineering Division currently has about 350 members of the staff distributed within six areas – software engineering, industrial and energy partnerships, design and fabrication, electrical engineering, mechanical engineering, and engineering science. And Robinson said, over the next few weeks, he'll try to meet with all of them.

"I want them to feel free to talk to me," he said. "Their concerns will be heard and considered. They are part of the process. This (reorganization) is something they have to do, not something that's being done to them."

Members of the division who served on the task force include co-lead Peter Denes, Alan Biocca, Jian Jin, Henrik Von Der Lippe, Daryl Oshatz, Alessandro Ratti, and Ross Schlueter. Representatives of partner divisions included co-lead Rod Keller and John Corlett (AFRD), Howard Padmore (ALS), Barry Freifeld (Earth Sciences/Envir-onmental Energy Technologies), Paul Richardson (Genomics), Damir Sudar (Life Sciences), Robert Schoenlein (Materials Sciences), Kevin Lesko (Nuclear Sciences) and Helmuth Speiler (Physics). Jane Baynes represented the Deputy Director's Office.

On behalf of the task force, Robinson thanked the "literally hundreds of people who have given input in one form or another, and we wish to formally express our gratitude for people's thoughtful and profound considerations." The effort included individual meetings and interviews, focus groups, and an Open Forum held on June 16 in the auditorium.

Building for Better Science

By D. Lyn Hunter

The Lab is known worldwide for its cutting-edge innovations. To achieve and maintain this reputation, scientists must have lab and work spaces that keep pace with the ever-changing needs of their research. Meeting this demand means the near-constant presence of construction crews on the hill. The Lab’s Facilities Division is currently overseeing numerous projects — including infrastructure upgrades, lab modernizations, and building expansions — that support the Lab’s evolving scientific research. Following is a summary of some of those projects:

Advanced Light Source Southside Expansion and User Office Buildout.
To make space for a new beam line at the Advanced Light Source (Building 6), a one-story, 20-foot-wide addition was added along the south side of the building. Upstairs, construction of eight new offices that will accommodate between 20 and 25 scientists and visiting researchers is underway. Work on the Southside Expansion is complete. Work on the new offices is planned for completion in November, 2003.

NMR Magnet at Building 31
To accommodate a new 800-megahertz, $2 million magnet to be used by the Physical Biosciences Division for nuclear magnetic resonance (NMR) research, an 18’ by 41’, environmentally-controlled fabric tent is being built inside the barn-style building, affectionately known as the “chicken ranch.” Work will be completed within the next few weeks.

Lab Space in Building 70A
To ease the shortage of lab space, approximately 2,700 square feet of space formerly used as a machine shop was recently converted into two labs for the Earth Sciences Division. The renovation included the addition of fumehoods, electrical stations, fire-rated doors, movable tables, cabinetry, sinks, utilities and offices for principal investigators.

Office, Lab Space in Building 64
Office and Lab space is also at a premium in Building 64. To help alleviate the crowded conditions there, an existing two-story laboratory and office facility will be expanded into the existing highbay to provide an additional 2,400 square feet of offices and labs. The storage area now housed there will be moved to another part of the building when construction begins in November.

A new water tank rises in the east canyon

Cafeteria Hillside
The hillside on the west side of the cafeteria has suffered from erosion over the last several years, so work has begun to shore this area up. The earth will be excavated down to the bedrock level, then rebuilt with new soil that will be heavily compacted. Work began this week and is expected to be completed by early October.

Water System Upgrade
Two miles of the Lab’s six miles of water piping were recently repaired in a one-and-a-half year project that caused considerable disruption to traffic on the hill. One mile of 60-year-old piping was completely replaced, while another mile of newer pipe was treated with a cathodic protection system to extend its life.

New Water Tank
Due to increased activity in the Lab’s east canyon — caused in part by the addition of the Hazardous Waste Handling Facility and the Genome Sciences Laboratory in this area — the need for a nearby potable and fire-fighting water source was deemed necessary. As such, a 200,000-gallon water tank is currently being erected in the canyon. Work is scheduled for completion in December 2003.

Short Takes

Ed Sayson (right) chats with a ‘Stroller’

The Lab Takes a Stroll
The number one question asked at the Berkeley Lab information booth by visitors at last Sunday’s Solano Stroll? “When’s the next Open House?” Volunteers were happy to answer this and numerous other inquiries posed by the steady stream of curious and fascinated participants who passed by the booth that day. Visitors also enjoyed receiving printed information about the origins of the universe, particle physics, nuclear science, and nanoscale science, as well as a free lecture series for high school students beginning this fall. The most popular item among the kid set: plastic neon-colored Slinkies provided by the DOE. Said Community Relations Officer Terry Powell, “We gave a strong message that the Lab is a good neighbor, supports local events, and does great science.” In addition to Powell, volunteers included Sally Nasman (ASD), Sheril Miura (Human Resources), Nancy Rothermich (Waste Management), Steve Deem (Human Resources), Don Medley (Government and Community Relations), Ed Sayson (Recruitment), Ron Tackaberry (Materials Sciences), Faye Jobes (Technical and Elec-tronic Information), and Marsha Williamson (Life Sciences).

ASD staffers line up for picnic lunch

Clock is Ticking for Congress
With less than two weeks left in the 2004 fiscal year, the U.S. Congress is running out of time to pass the 13 annual funding bills that keep the federal goverment afloat. Although the House of Representatives has passed all 13 appropriations bills, the Senate has passed only five, and no bills have yet to make it to final passage. Some predict Congress will need a two-week continuing resolution to keep the government running. Congress may also pass an omnibus spending package that wraps the bills together into one giant bill. Lawmakers must also finish work on Medicare prescription benefits and a national energy policy, and are awaiting the details of Bush’s $87 billion Iraq funding request. Meanwhile, the Senate has passed the Energy and Water Development Appropriations bill, which funds the DOE and roughly 80 percent of Berkeley Lab’s annual budget.

Lab Trees Get a Manicure

Food and Fun at ASD Picnic
Employees from the Adminis-trative Services Department (ASD) gathered on the Advanced Light Source’s patio for their annual picnic on Aug. 28. The occasion also marked the grand opening of the ASD Academy, which will provide the Lab’s administrative professionals with a range of educational, networking, and career development resources. Guests munched on food, socialized and listened to remarks by Deputy Director Sally Benson.

Lab Trees Get a Manicure
Part of what makes working on the hill so pleasant is the beautiful collection of trees that dot the landscape. Over the years, many trees have fallen victim to parasites or disease. And though some are beyond saving, a little trimming or thinning can rescue others and protect them from winter storms. Over the next couple of months, extensive work will be done on various trees across the Lab’s property. This work may require that roadways, parking and walkways be restricted or closed. Employees should approach these areas with caution. Road closure notices will be published in “Today at Berkeley Lab” the day before they take effect.

Als Crystal Images Shed More Light On Protein Synthesis

By Lynn Yarris

Jamie Cate

Protein crystallography images from the Advanced Light Source have helped researchers make new determinations about the process by which proteins get synthesized from the genetic code. The researchers made their determinations by comparing images of ribosomes taken from normal strains of the bacterium Escherichia coli to those of a mutant antibiotic-resistant strain. Ribosomes are the organelles in living cells responsible for translating the genetic code into proteins.

“This is the first time that anyone has been able to compare the structural differences between the ribosomes of normal and antibiotic-resistant strains of E.coli,” says chemist Jamie Cate of the Physical Biosciences Division (PBD) who led the research. “Such comparisons can help us learn more about the mechanisms behind protein synthesis.”

Other members of the team included UC Berkeley’s Antón Vila-Sanjurjo, William K. Ridgeway, Veysel Seymaner, and Wen Zhang, plus Steve Santoso and Kexin Yu, of the Whitehead Institute for Biomedical Research at the Massa-chusetts Institute of Technology. Their results have been published in the on-line version of the Pro-ceedings of the National Academy of Science.

Ribosomes bring together two different forms of RNA — messenger RNA (mRNA) which carries genetic information from the DNA in a cell’s nucleus, and transfer RNA (tRNA) which carries the amino acids in a cell’s cytoplasm. A chain of amino acids is then joined together by the ribosome to make proteins in accordance with the genetic blueprints provided in the mRNA.

Protein assembly on the ribosome depends upon an accurate decoding of mRNA’s genetic information for tRNA. However, even though ribosomes have been studied for more than 40 years, the way this process actually works is only now being unraveled.
A key to understanding protein synthesis is the ability to study the structure of the ribosome which is an ancient organelle so highly conserved by evolution that its core components are pretty much the same for all forms of life. Cate and his colleagues have been looking into the ribosome of the common E.coli bacterium, which has long been a valuable scientific subject for protein synthesis research.

To form the intact ribosome, known as 70S, the small 30S subunit (purple) closes with the large 50S subunit (gray).

“Many decades have been spent developing the biochemical and genetic tools necessary to study protein synthesis in E.coli,” Cate says. “Ribosomes from this organism should provide the best means for determining the atomic-resolution structure of the ribosome in all stages of protein synthesis.”

In the results reported to PNAS, Cate and his colleagues specifically compared the x-ray crystal structures of the WT and hyper-accurate forms of the 70S ribosome. The WT form is found in the wild-type or natural strain of E.coli, while the hyper-accurate form is found in a mutant strain that is resistant to the antibiotic streptomycin.

“Streptomycin binds to ribosomes and leads to error-prone protein synthesis but resistant mutations in the ribosome are able to counteract the error-inducing effects of the antibiotic,” Cate explains. “We’re looking for structural differences between ribosomes resistant and sensitive to streptomycin that might have an effect on mRNA decoding.”

Cate and his colleagues used ALS beamline 8.3.1 to image the 70S ribosome of their E.coli samples at a resolution of 10 Angstroms for the WT form, and 9 Angstroms for the hyper-accurate form. They focused on two conformational changes known to take place on 30S, the smaller of two asymmetric subunits that make up the 70S ribosome. One change is the closing of the 30S head around tRNA when this subunit is joined with the larger 50S subunit to create an intact ribosome. The second change is an RNA helical switch near the mRNA decoding site on the 30S subunit. Although both have been proposed as sites where mRNA decoding takes place, the images obtained by Cate and his colleagues indicate otherwise.

“While we do see the 30S head clamping down on tRNA much like a tape head clamps down to read data on a magnetic tape, our images suggest the clamping is independent of mRNA decoding and probably has more to do with forming the intact ribosome,” says Cate. “We saw no evidence in our images nor in subsequent biochemical tests that the RNA helical switch played any role in mRNA decoding.”

Salty Results From Sno

By Lynn Yarris

A neutrino interacts with an atomic nucleus in SNO's heavy-water-filled acrylic sphere. Surrounding photomultiplier tubes detect the flash of Cherenkov radiation and reconstruct the neutrino's energy and direction.

A two-ton dash of common table salt to the 1,000 tons of heavy water that serve as a target in the Sudbury Neutrino Observatory (SNO) tripled the sensitivity of what was already the world’s most sensitive neutrino detector. Berkeley Lab researchers were key participants in the latest results to be reported from SNO based on this enhanced sensitivity.

Kevin Lesko, a physicist with Berkeley Lab’s Nuclear Science Division (NSD), is the chair of the SNO scientific board and a veteran member of SNO’s international scientific collaboration. In discussing the significance of the latest SNO results which were reported at a major science conference earlier this month in Seattle, he said:

“In the first papers out of SNO, we proved that neutrinos can undergo a transformation in flavor (type) as they journey from the sun to the earth. In this new paper, we presented precise measurements of the parameters that govern the transformation, in particular the mixing of the neutrinos. With these new results, we’ve been able to make predictions for other neutrino experiments regarding the difference in masses.”

Neutrinos are ghostlike subatomic particles with no electric charge and little mass that are emitted out of thermonuclear reactions in the core of the sun and other stars. Despite their wraithlike presence, these enigmatic voyagers may hold the key to answering several important scientific questions including why matter was favored over antimatter in the creation of the universe.
Located about a mile underground in a Canadian nickel mine, SNO is a neutrino “telescope” that observes the interactions of neutrinos with deuterium ions or deuterons in heavy water. The number of interactions and SNO’s ability to see them can be boosted through the use of additives to the heavy water target.

Says NSD’s Alan Poon, who served as the deputy analysis coordinator of the SNO experiment being reported in Seattle, “After considering a number of alternatives, we found that sodium chloride is the easiest additive to handle.”

In addition to Lesko and Poon, other Berkeley Lab participants in the SNO salt phase experiments were NSD’s Yuen-Dat Chan, Alysia Marino, Eric Norman, Robert Stokstad, and Karsten Heeger, plus Engineering Division’s Yoichi Kajiyama. More about the latest SNO results can be read on the Web in the newest issue of Science Beat.

Windows of Opportunity

New facility not only offers great views, but enables researchers to develop energy efficient windows.

By Allan Chen

Eleanor Lee, project manager and scientist, stands beside a set of test windows
in the Advanced Window Systems Test Facility.

There’s a new building at Berkeley Lab, and it’s got a terrific view — with south-facing vistas overlooking the ALS dome and the San Francisco Bay, three rooms full of office furnishings, and windows that darken automatically when prompted by a remote-control
system.

The Advanced Window Systems Test Facility was built to test new window technology that will increase energy savings and occupant comfort. “With this facility,” says Eleanor Lee, project manager and scientist in the Environmental Energy Technologies Division, “we’ll be able to quantify the energy savings and comfort of commercially-available or prototype window systems under realistic sun and sky conditions.”

The Switchable Window
One sytem under study uses electrochromic (EC) material to switch windows from a clear state, to a tinted blue state, which reduces the transmission of visible light and infrared radiation. Typical EC windows can block from 50 to 98 percent of light while maintaining view to the outside, which, on a hot day, can reduce the need for energy-sapping air-conditioning.

Manually operated systems using conventional blinds or shades do not save as much energy as an automated system for managing solar gain and daylight. A study by Lee, Building Technologies Depart-ment Head Stephen Selkowitz, and their colleagues shows that electrochromic systems could save up to 30 percent of the energy used in commercial building perimeter zones, as well as reduce peak electric use compared to conventional window systems. Since commercial buildings spend about $100 billion a year on energy, the potential savings are considerable.

“To get there,” says Selkowitz, “we need to solve a number of problems. One of them is designing a solution that integrates the windows and other energy-saving systems in the building using control algorithms.”

Measuring the Indoor Conditions
The facility’s three rooms are currently outfitted with electrochromic windows from different manufacturers. Sensors placed throughout the rooms measure temperature and light levels, as well as energy used to cool, heat, and light each test room. Computers continuously record this data, along with the percentage of light transmittance, which will change according to the external conditions and the computer algorithm controlling the windows.

By working closely with the EC window industry, researchers can ensure the tests yield information that is accurate, objective and useful to building owners, architects, engineers, and other stakeholders, thereby moving this emerging technology closer to market adoption.

Integration the Next Stage in Window Research
The EC window research is just the latest in a long history of energy-efficient windows research at Berkeley Lab dating back to the early 1980s. “We pioneered the development of low-emissivity window coatings with our partners in the window industry,” says Selkowitz. “The windows we are testing today use energy-efficient coatings that reduce solar heat gain. Windows with low e-coatings have saved billions of dollars in winter heating energy costs, and have penetrated more than 50 percent of the annual sales in the residential window market.”

The EC windows work is part of a larger effort to combine the most advanced individual technologies into an integrated system that saves far more energy than the components working in isolation.

“System integration allows us to get cost and energy savings from many avenues,” explains Selkowitz. “Because the windows reduce the peak cooling load, the office building can use a smaller, less expensive chiller. More daylighting reduces the need for artificial lighting. This lowers energy costs to the building’s owners, as well as the utility, by redu-cing the generating capacity they need to provide under peak conditions, or the quantity of peak power they need to buy wholesale from the grid during especially hot days.“

Limited EC window tests have already started this summer. The testbed is expected to be fully operational by October.
This research is being funded by the DOE and the California Energy Commission. Private-sector partners include SAGE Electrochromics and Wausau Window and Wall Systems. The facility was built with the industrious help of Chuck Taberski and his Small Projects Group in Facilities.

Studying Supernovae from Space

by Paul Preuss

Looking through dust in galaxies can make supernovae appear dimmer, but dust also makes their light redder -- just as dust in our atmosphere makes sunsets appear red. (Galaxy image: 2MASS, with simulated SN)

The remarkable discovery that the expansion of the universe is accelerating, announced early in 1998 by the Supernova Cosmology Project (SCP) and the competing High-Z Supernova Search Team, was based on comparing the brightness and redshifts of dozens of Type Ia supernovae — almost all of them observed from the ground. The supernova search is now moving into space.

Early this week the SCP announ-ced results from a set of 11 distant Type Ia supernovae studied entirely with the Hubble Space Telescope (HST). Images of supernovae obtained from airless space are potentially much sharper and provide superior measurements of brightness than are possible from the ground.

The HST repeatedly sampled the light curves and spectra of these 11 supernovae, starting before their maximum brightness and continuing until the explosions had faded away. This makes for “a strikingly beautiful data set,” says the SCP’s Saul Perlmutter, “the largest ever studied exclusively from space.” The data analysis was led by SCP member Robert A. Knop, formerly of Berkeley Lab, now assistant professor of physics and astronomy at Vanderbilt University in Nashville, Tenn.

Because of their brightness and similarity, Type Ia supernovae are the best “standard candles” for measuring the distance to far-off galaxies. Anything other than distance affecting their brightness could throw those measurements into doubt, however. One possible cause of dimming, known to astro-nomers as “extinction,” is dust.

“The HST data provide a strong test of host-galaxy extinction,” Knop says. If dust in a galaxy were to absorb and scatter a supernova’s light, it would also redden that light, much as our sun looks redder at sunset because of particles in the atmosphere. But, says Knop, the HST data show no anomalous reddening with distance: the supernovae “pass the test with flying colors.”
The new study serves a broader purpose, eliminating some of the theoretical schemes that have proliferated to explain the mysterious whatever-it-is that goes by the name “dark energy.”

The first attempt to explain dark energy invoked Einstein’s “cosmological constant,” a term — symbolized by the Greek letter lambda — he had introduced into general relativity under the mistaken impression, shared by scientists at the time, that the universe is static. In 1929, Edwin Hubble found the universe was not static but expanding. Einstein happily abandoned the cosmological constant. But 70 years later, with the discovery that expansion was accelerating, lambda came back strong.

“For the cosmological constant, the vacuum — space itself — possesses a certain springiness,” says Eric Linder, a cosmologist at Berkeley Lab and director of the Center for Cosmology and Spacetime Physics at Florida Atlantic University. “As you stretch it, you don’t lose energy, you store extra energy in it just like a rubber band.”

Unfortunately the most obvious source for lambda’s stored energy is quantum theory’s energy of the vacuum, so much more powerful (10 to the 120th!) than what’s been observed for lambda, says Linder, that “if this were the dark energy it would have brought the universe to a swift end, a miniscule fraction of a second after it was created in the big bang.”

True to its name, the cosmological constant doesn’t change over time: stored energy increases smoothly as the universe’s volume increases. In other theoretical explanations, dark energy can change with time. “Quintessence” is a sort of universe-filling fluid that acts like it has negative gravitational mass. The new HST supernova results, however, discourage at least the simplest models of quintessence.

Quite different “topological defect” models attribute dark energy to defects created as the early universe cooled. Some of these explanations are also ruled out by the HST supernovae study.

If the case for a cosmological constant looks strong by comparison to these alternatives, many exciting possibilities remain. Some propose a cosmos in which our universe, having three dimensions of space, is afloat in a higher-dimensional world, with gravity free to interact among the dimensions. And there are many more.

“One of the goals of the SuperNova/Acceleration Probe satellite is to help us narrow the possibilities for the nature of dark energy,” says Saul Perlmutter. “That’s an exciting prospect for physicists, because understanding dark energy will be crucial to finding a final, unified picture of physics.”

“New constraints on M, L, and w from an independent set of eleven high-redshift supernovae observed with the HST,” by Robert A. Knop and 47 others (the Supernova Cosmology Project), will appear in the Astrophysical Journal.

Violence in the Workplace: Zero Tolerance

Ben Feinberg and Georgeanna Perdue of the ALS, student Lamont Harper, and Ron Acord of EHS (from left to right) simulate a hostage scenario.

One morning this past summer, a disgruntled Lab employee, worried about lax security and wanting to get the attention of senior Lab management, seized two other employees and a student at gunpoint and held them as hostages in Building 70A. After about an hour of negotiations, the employee released his hostages and was arrested without further incident. No shots were fired and nobody was injured.

Did this really happen? No, but it could.

The Occupational Safety and Health Administration puts the number of workplace assaults in the United States at about 1.5 million each year. According to the Department of Labor, these assaults result in nearly one thousand deaths a year, making workplace violence the nation’s third leading cause of fatal occupational injury.

That is why Berkeley Lab’s Emergency Responses Organization participated in a No-Notice Exercise (NNX) sponsored by DOE in which the above hostage scenario was role-played out. It is also why, starting this fall, the staff of Human Resources’ Labor and Employee Relations(LER) group will conduct a series of workplace violence training sessions for all Berkeley Lab supervisors.
Says LER manager Bill Elkins, “Workplace violence scenarios are always intellectual exercises until the real thing happens. We have to be prepared.”

Elkins has first-hand experience. He came to the Lab from the Boeing Company where he was one of the first on the scene after an employee shot and wounded three other workers. “After an incident like that, the entire workplace is traumatized,” Elkins says. “You tell yourself it could never happen here, but it can.”

To date, Berkeley Lab has had virtually no experience with workplace violence. A brief fist-fight is the only act of physical violence that the Lab’s Emergency and Security Manager Don Bell has dealt with since he came to the Lab in 1992. However, there are generally about half a dozen referrals a year to the Lab’s Crisis Action Team, which was expressly set up to deal with threats and violent acts.

“The Crisis Action Team is solution-oriented and is intended to help Lab employees who have been subjected to behavior — verbal or physical — they perceive as harass-ment or intimidation,” Bell says. “The key point is we are there to try to solve problems, not punish people.”

The Crisis Action Team is led by Elkins. Bell is a member of the team along with Tish Rzeszutko, Leslie Cobb and Shada Kuba of LER, Laboratory Counsel Glenn Woods, Peter Lichty and Connie Grondona of Medical Services, plus Kathleen Handron, a counselor with University Health Services. The idea was to put together a team that could bring to bear a broad range of skills and expertise in assessing and resolving reports of threats or violence. While the goal is to solve problems, an employee who has violated Lab policy regarding harassment or intimidation faces sanctions that can include suspension or termination of employment, or even criminal prosecution.

“We take any actual or implied threat of violence as a serious action and the Lab’s policy calls for zero tolerance,” says Elkins. “Even if an investigation concludes that the conduct in question did not constitute a threat of violence, it might still be considered disruptive and might still be subject to disciplinary action.”

Any employee who feels threatened or believes they have witnessed conduct or actions that could lead to workplace violence can report their concerns to Elkins or any other member of the Crisis Action Team. They can also report their concerns to their Human Resources representative, or to their supervisor. Any supervisor who receives such a report must relay it to a member of the Crisis Action Team.

It is to help supervisors better understand the seriousness of workplace violence and their responsibilities that Elkins and his LER staff will be conducting their upcoming training sessions. Each training session will include a video presentation and a discussion of the Lab’s workplace violence policy which can be found in the Regul-ations and Procedures Manual 2.05(F) on the Web.

“As a supervisor, you are an agent of the Laboratory,” says Elkins, “so if an incident of workplace violence or threat is reported to you, it has to be passed on for investigation. Even if, based on your personal knowledge of the individuals involved, you think the incident is nothing, it’s not your call to make. Managers and supervisors need to understand this.”

If you have a potential workplace violence situation to report or concerns you would like to discuss, Elkins can be reached by phone at extension 6747, or by e-mail at WLElkins@lbl.gov. If you feel you are facing an immediate threat you should dial extension 7911.

Passionate About Her Profession

By D. Lyn Hunter

Cheryl Fragiadakis (upper right) lunches with her husband Vaggelis, son Daniel, and daughter Gabriela during a recent visit to Greece.

Ask Cheryl Fragiadakis about her life outside work, and she is somewhat reticent. When the conversation shifts to her directorship of the Lab’s Technology Transfer Department, however, her face lights up and the words flow freely.

“For our scientists to only publish their findings is not enough,” she says of her efforts to link the work of lab researchers with the mass-production capabilities of private industry. “I think it’s important to get our innovations out into the hands of people who can develop and distribute them. What we produce here at the Lab can have such a positive impact on society, improving our environment, health, and quality of life.”

But with a little prodding, Fragiadakis quietly reveals bits and pieces of her background.

For example, her unique last name was acquired when she married her husband Vaggelis, a native of Greece, 20 years ago. They met at a nightclub in Berkeley that featured performances of traditional music from that Mediterranean nation.

After tying the knot, the couple went on to have two children: a son and daughter, ages 17 and 14, respectively. The family visits Greece often so the kids can connect with their heritage.

Travel, in fact, has been a big part of Fragiadakis’s life. Her father was in the military, so her family moved often. Florida, North Carolina, Virginia, Kansas, Texas, North Dakota, Colorado, and France are among the locales she has called home.
“It was tough to make friends,” she laments, “but one advantage was getting to start fresh after each move. There was no baggage to carry, like: ‘she was the kid who threw up on the teacher last year’.”

Fragiadakis admits she was what some might consider “nerdy,” because she liked math and was an avid reader. When contemplating career choices as a teenager, she narrowed them down to science or writing. She chose the former because she thought it a more stable profession.

After graduating from the Colorado School of Mines with a BS in chemical engineering, she began working for petroleum giant Exxon in California, and enrolled in UC Berkeley’s MBA program.

Her days at Exxon came to a close when she realized that in order to move up further within the company, she would have to transfer to their headquarters in Texas, a place she felt could not compete with the diverse culture and natural beauty of the Bay Area.

She applied for a position at the Lab, in what was then called the Energy and Environment Division, in 1985.

In 1992, she took over the reins of the Lab’s technology transfer unit, a job at which, by virtually all accounts, she has excelled.
“I listen and figure things out,” answers Fragiadakis when asked about her success there. “I have to deal with needs and desires of people from two very different cultures, research and private industry, to produce practical applications.”

During her tenure, her group has brokered many fruitful partnerships. They include work between the lab and Chiron Inc. (to create drugs to fight breast cancer), the Light Corp. (to produce energy-efficient lamps), and carmakers in Detroit (to develop more energy-efficient cars), among others.

As she describes these innovations, it’s clear she loves her job. But that hasn’t kept her from contemplating life after the lab. Upon retirement, she’d like to return to the passion she abandoned as a teenager: writing essays and fiction.

“I probably can’t afford to retire until I’m 87,” she jokes, “but I can see myself in a small Greek village or a little apartment in Paris, writing away to my heart’s content.”

On Being the Guard at the Gate

By D. Lyn Hunter

Clifford Washington waves through a Lab employee at Blackberry Gate.

Whether he’s in the grocery store, at the post office, or just walking down the street near his Lake Merritt home, people frequently approach Clifton Washington and ask, “aren’t you the guy at the gate?”

“I’m really amazed at how often I’m recognized,” he says. “Now I kind of know how movie stars feel.”

It’s not surprising Washington’s so famous. As a security guard stationed at the Lab’s Blackberry Gate, he greets the more than 2,000 employees and visitors that pass through there each and every day. And while he’s known across the Lab for his friendly disposition and bright smile, it is his quick wit that leaves the biggest impression on those who motor, walk, and pedal past him.
In fact, the 35-year-old Washington is a budding comedian who has performed at numerous talents shows and amateur nights in the Bay Area. The employees that pass through the gate make a perfect test audience for his material, he says.

“A lot of folks have told me I’m in the wrong business,” says Washington with a shrug. “Who knows, maybe someday I’ll take the plunge into show business. But for right now, I’m content sharing jokes with people here at the Lab.”

Washington — who counts Chris Farley and Chris Rock among his favorite comedians — takes great pleasure in knowing that one of his early morning quips might, later in the day, help lighten the load for a hardworking employee. Staff have grown so accustomed to daily doses of Washington’s infectious sense of humor, they’re thrown off when he’s not there to wave them through the gate.
“If I go out on vacation, temporary reassignment, or am just out ill for the day,” he explains with a grin, “they give me a hard time when I get back.”

Working at the gate has allowed Washington to become familiar with hundreds, maybe thousands, of Lab staff. This vantage point has also enabled him to get an up-close look at the feathered and furry creatures that populate the hill.

“I see deer, squirrels, raccoons, opossums, even turkeys,” he recalls. “The best is when a hawk flies by with a snake or some other form of breakfast in his claws.”

Like the hill’s wildlife, Washington is exposed to the elements during his 7 a.m. to 5 p.m. daily shift. When the temperatures sizzle, he spritzes himself with water from a small spray bottle to cool off. If it’s cold and rainy, he dons long underwear beneath his uniform and plastic poncho. When it’s time for lunch or a bathroom break, Washington and his colleagues make what they call an “escape to 88,” which means dashing over to the nearby Cyclotron Building.

When he’s not working at the Lab, Washington likes to go to movies, hang out with his girlfriend, or browse the bookstores. He also participates in the Lab’s softball league, playing for the Silver and Black team. Though he likes the Raiders, this native-born San Franciscan is a dyed-in-the-wool Niners fan. On Mondays after gameday, he can be heard celebrating or commiserating (depending on whether the Niners won or lost) with fellow sports fans who pass through the gate.

But it is comedy that seems to form the core of this well-known gatekeeper. “You see folks pulling up in the morning with scowls on their faces,” he says. “My challenge is to see if I can turn those frowns upside-down. I like making people laugh.”

Flea Market

AUTOS & SUPPLIES
96 Subaru Legacy L Wagon, Red, 125k mi, good cond, awd, abs, pw, ps, ac, roof rack, $5,300, Nick, X7177, 528-0833
96 HONDA ACCORD LX, 4dr, auto, cruise, all pwr, 75k mi, $6,900, Richard, X6221, 938-5100
92 NISSAN MAXIMA GXE Sedan 4D, 120K mi, V6 3.0 ltr engine, auto, air, all pwr, tilt, cruise control, am/fm stereo, cd, front side airbags, abs, moon roof, alloy wheels, $3,200, Rachel, (925) 895-9953
92 MAZDA MPV MINIVAN, $2,500, 160K mi, new service & batt, cruise, all pwr, rear ac, am/fm/cass, runs great, 2nd owner, 2WD, Gustavo, X4473, 524-6095
72 VOLVO 1800 ES, 4sp w/od, less than 500 mi on rebuilt engine w/100K original mi on chassis, $6,950/bo, good inter, recent paint job, alloy wheels & performance tires, complete rear brakes, battery, stereo, Randy X6517, (925) 228-9798
2003 VW GTI 1.8 Turbo w/auto tiptronic trans, sport suspension, all pwr, sunroof/moonroof, premium sound w/am/fm/cassette/cd, 16” allow wheels, 9500 mi, exc cond, w/records, $20,000, Carrie, X7567, (925) 228-7460 or cmartens@lbl.gov.
 
HOUSING
ALAMEDA, 25 min from LBNL, 1930s split level, 2+bdrm, fp, beamed ceiling, hrwd flrs, din rm, new kitchen, garage, workbench, laundry rm, fenced backyard, gardener incl $1,750/mo, avail now, William, 522-7024
ALBANY, 2bdrm house, 1bth, 900 sq ft hrdwd flrs, fp, apple tree, detached garage, on quiet st nr Solano, avail 10/1/03, $1,600/mo, $2,000 sec + 1st mo, credit report, refs, No pets/smoking, Miguel, X6443 or leave msg 847-3197 or email nmhudson@pacbell.net.
ALBANY, Short term housing, nice, furn rm w/sep bth, avail for visiting researcher, maximum stay 4 weeks, located one block off Solano ave, nr transportation/shops, $35/day, contact JLCavlina@lbl.gov, Jane, X036
BERKELEY HILLS, fully furn rm w/sep entry, full kitchen priv, w/d, quiet neighborhhd, lovely backyard, nr pub trans, avail now, $850/mo incl util, labartists@aol.com, Arun, 524-3851
BERKELEY, furn rm in priv home, close to campus, recently painted, w/d on site, on street prk, kitch priv, lease mo to mo, share w/3 other grad students, $550 per mo + utils, Sherry, 841-5699 or SjMcvickar@aol.com
Berkeley, Hearst Commons 1146-1160 Hearst, studio townhouses w/ decks, hrdwd flrs, skylights, dw, ac, sec, wired for cable/sat, Ian, 548-1831, $825/mo, lease through 7/04, hearstcommons @jps.net for pictures
BERKELEY, walk to campus, elegant furn rms & apts, hrdwd flrs, PC & DSL incl $950-1,575/mo, Paul, X7363, 845-5959, jin.young@juno.com,
EL CERRITO, fully furn big rm, in house, laundry, kitchen & bthrm, quiet neighborhhd, avail now, $500/mo, incl util, no pets/smoking, prefer Chinese, Mrs. Wu, X6665, 524-8441
KENSINGTON, sunny secluded lge studio, priv entr, semi furn, $750/mo, first/ last mo + sec dep, tenant pays half of electricity, other util incl, near shopping/trans, cat ok, Dan, (925) 946-1467 eve, X6734
LWR ROCKRIDGE, 1 bdrm flat, liv rm, eat in kitchen w/new cabinets & butcher block countertops, cedar lined bthrm w/new tiling & fixtures, parking & shared laundry, nr to freeway, cafes, shopping, no pets/smokers, 1 yr lease req, $1,300/mo, garbage & H2O incl, Gabe, X6898, (650) 283-2937
OAKLAND, furn rm in 100 yr old house, hrwd floors, deck, laundry, cable + utilities, fp, great back yard, no pets/smoking, $600/mo, 532-1935
OAKLAND, Lake Merritt studio, walk to BART, avail 10/1, $750 incl utils, Jin, X7531, 530-3760
OAKLAND, secluded mini estate in architect designed house 2+ bdrm + additional outbuilding w/plenty of rm for offices, retreat, seminars or studio, all amenities + skylights, eat in kitchen, lg fenced kennel area, 3 fp & wonderful neighbors, pets ok, showing for 10/03 occupancy, $3,400/mo, Darlene, 531-9325, darwin100@earthlink.net
ORINDA house on the edge of Tilden Park, 3bdrm house nr Berkeley & Orinda schools, 1 mi from steam train/Tilden Park, nr Grizzley Peak/Claremont intersection, close LBL & UCB, rural, quiet, secluded, gardening service pd by owner, $2,400 + $3,000 dep, pets allowed, Lam, (925) 253-3335 day or (925) 743-1438 eve.
ORINDA, on the edge of Tilden Park in law unit w/sep entr, full bth, kitchen, 1 mi from steam train/Tilden Park, nr LBL/ UCB, rural, quiet, secluded, gardening service pd by owner, pets allowed, no smoking, $1,200 + $2,000 dep, Lam, (925) 253-3335 day or (925) 743-1438 evening
 
MISC ITEMS FOR SALE
2 CONGA DRUM SET W/ STAND, Bur-gundy, brand name Lp Aspire, Quinto 10 Inches Head & Conga 11 Inches Head, very good cond, $250, Donald, (415) 641- 0233, Librarysupport@Aol.Com
ANITIQUE, hand made persian geometric tribal rug about 100 yrs, about 7ft by 10ft, $1,000/bo, Hashem, X4287, (925) 299-0560
MT.BIKE X SALE, $120 Quasar Raptor MTB, frame size 19”, tire size 26, good condition, Enrico, 486-7516, emainardi@lbl.gov
REFRIGERATOR, black office size 20x20x33, 2 shelves & vegetable crisper, w/ small freezer section, in exc cond, $50, Janice, X4943
SF OPERA TICKETS, balcony pair, 2nd row center, Magic Flute 9/20, Cavalleria Rusticana/I Pagliacci 9/27 & possibly some subsequent Sat eve, Operas, $124/pair Pau1, X5508, 526-3519
SF OPERA TIX, orch pr, row G ctr, The Magic Flute, 09/24, 7:30 PM, $300/pr, Craig 409-0600
Two lovely cats, recently orphaned by death of mistress, need a home, will sep, photo on demand, Alex, 232-9531, alexb@socrates.berkeley.edu
Search The Berkeley Lab View