

CE Marking on Eyeware

EN207:1998 vs. EN 207:2010

structure

- CE marking in Europe
- History of EN 207 Why was a new version needed?
- What is new in EN 207:2010?
- Comparison of testing conditions
- Comparison of determining scale numbers
- summary

Relevant guidelines and standards for laser safety products in Europe

- EU guideline 89/686
 - guideline describes the basic needs for PPE
- DIN EN 60825-1
 - harmonized standard dfor laser safety. (IEC 60825-1) MPE-Levels, Laser classes, ...)
- DIN EN 207
 - ■Laser safety eyewear in Europe
- DIN EN 208
 - ■Alignment filters in Europe

Marking on a laser safety product

Wellenlänge des Lasers wavelength of the laser			Werkscode LV und W (früher auch RH) manufacturer's code LV and W (old: also RH)					EG Baumuster- bescheinigung EC type approval			
M 975-805 Lasertyp D Dauerstrichlaser I Impulslaser R Riesenimpulslaser M Modengekoppelte Laser			.9 LV D		DI	Indikator fü DIN GS Programm		ir Erhöhte		Erhöhte mechanische	
D I R	laser type D continuous wave I pulsed laser R giant pulsed laser M modelocked laser			protection level			indicator for DIN GS program		or	increased mechanical robustness	

Laser impact test

EN 207 – History

One main aspect which is different to ANSI 136.7:

Laser impact test: - Why?

The laser safety filters shall protect against an accidental hit of a laser.

How is a laser impact test done?

With available laser sources. (e.g. laser laboratories of the PTB)

→ The laser impact test is only a snapshot based on the available laser systems.

How is the certification process solved?

Independent certification organisations (EU: notified bodies – listed in Brussels) interpret the test results and give a certificate with L-ratings.

Gaps between supporting points (available lasers) will be interpolated.

until 1998 there was no restriction regarding to the laser beam diameter for the impact test:

e.g. cw - laser; 1064 nm; impact test diameter: 100 µm

D L7 \rightarrow min. E=108 W/m² \rightarrow min. P = 0,8 W

Basic changes in 1998

1998:

Change in the impact test

 \rightarrow diameter of testing: D63 = 2mm

→ if there is no laser available with enough power or Energy a corrective function has to be used: 2 mm > D63 > 0.5 mm

$$\mathbf{F}(\mathbf{d}) = \mathbf{a}_0 + \mathbf{a}_1 \cdot \mathbf{e}^{-\mathbf{a}_2/\mathbf{d}}$$

	glass	plastics
a0	0.769	1
a1	18.29	5.66
a2	0.4778	0.4498

Corrective function – what does that mean?

Example of a D L6 - test acc. EN 207:1998 at 1064 nm

version 1:

cw – laser: test diameter 2 mm

DL6 \rightarrow min. E=10⁷ W/m² \rightarrow min. P=31.4 W

a test at 313W would also be a DL6 test!

- glass filter withstands the impact test up to a power of ~280W
- plastic filter withstands up to a power ~35 W
 - → D L6 for both filters (glass better than plastic)

Example of a D L6 – test acc. EN 207:1998 at 1064 nm

version 2:

```
cw – Laser: test diameter 0.5 mm
```

```
DL6 \rightarrow min. E=10<sup>7</sup> W/m<sup>2</sup> * F (0.5mm):
```

glass: $E = 7.19 \ 10^7 \ \text{W/m}^2$; $P = 14.1 \ \text{W}$ plastics: $E = 2.86 \ 10^7 \ \text{W/m}^2$; $P = 5.6 \ \text{W}$

- glass filter withstands the impact test up to ~20W
- plastic filter withstands without any problems
 - → DL6 for both filters (plastic better than glass)

Example of a D L6 - test acc. EN 207:1998 at 1064 nm

version 3:

Pulsed laser: test diameter 2 mm

DL6 \rightarrow min. E=10⁷ W/m² \rightarrow min. Pm=31.4 W; e.g.: f=10 Hz; Q=3.14 J

- glass filter withstands the test without any problems.

- plastic filter fails the impact test.

→ DL6 for glass and DL5 for plastics

Resume of the test results

summary:

- → 1. the corrective function (EN207:1998) brought the safety products to one level.
 - → the trend was: downgrade of glass and upgrade of plastics.
- → 2. existing scale numbers have been downgraded
- → 3. it was possible to "calibrate" the test parameters to get the needed scale numbers.
 - → No comparability of products with the same protection level any more

Change of the standard EN207:2010

So far

Laser impact test: - Why?

The laser safety filters shall protect against an accidental hit of a laser.

BUT: The time a laser safety product withstands the laser impact (10 s) has nothing to do with the time in case of a real laser impact!

New approach

Laser impact test: - Why?

The laser safety filters shall protect against an accidental hit of a laser.

AND: The scale numbers should give a reasonable comparability of laser safety products.

Differences in between EN 207:1998 and EN207:2010

FN 207: 2010 FN 207: 1998

test diameter: test diameter:

 $D63 = 2 \, \text{mm}$ $D63 = 1 \, \text{mm}$

time of laser impact: time of laser impact:

10 s or 100 pulses and at least 10s 5 s or 50 pulses and at least 5s

Use of the corrective function at smaller No smaller test diameter is possible. test diameters

For pulsed lasers: C5-factor only for the

For pulsed lasers: C5-factor for the choice choice of a product and for the test of a product

The choice of a laser safety product was to be done over the power/energy density.

The choice of laser safety products has to be done over power / energy density and the user can use a new corrective function.

New corrective function – only in appendix B (voluntary)

glass
$$\mathbf{F}(\mathbf{d}) = \mathbf{d}^{1,1693}$$

plastics
$$\mathbf{F}(\mathbf{d}) = \mathbf{d}^{1,2233}$$

Choice of laser safety glasses with CE

Table 1 — Scale numbers (maximum spectral transmittance and stability to laser radiation) of the filters and/or eye-protectors against laser radiations

Scale number	Maximum spectral transmittance at the laser wavelength τ(λ)	Power (E) and energy (H) density for testing the protective effect and stability to laser radiation in the wavelength range									
		1	80 nm to 315 n	m	>5	315 nm to 1 400	>1 400 nm to 1 000 μm				
		D ≥3 × 10 ⁴	I, R 10^{-9} to 3×10^4 $H_{L,B}$ J/m^2	M < 10 ⁻⁹ E _M W/m ²	D >5 × 10 ⁻⁴ E_D W/m ²	I, R 10^{-9} to 5×10^{-4}	M <10 ⁻⁹ H _M J/m ²	D >0,1 E _D W/m ²	I, R 10 ⁻⁹ to 0,1 H _{1,R} J/m ²	M <10 ⁻⁹ E _M W/m ²	
		E _D W/m ²				H _{I,R} J/m ²					
LB1	10^{-1}	0,01	3×10^{2}	3×10^{11}	10^{2}	0,05	1.5×10^{7}	10^{4}	10^{3}	1012	
LB2	10^{-2}	0,1	3×10^{3}	3×10^{12}	10 ³	0,5	1.5×10^{8}	10 ⁵	10^{4}	10^{13}	
LB3	10^{-3}	1	3×10^{4}	3×10^{13}	10^{4}	5	0,15	10 ⁶	10 ⁵	10^{14}	
LB4	10-4	10	3×10^{5}	3×10^{14}	10^{5}	5	1,5	10^{7}	10^{6}	10^{15}	
LB5	10^{-5}	10^{2}	3×10^{6}	3×10^{15}	10 ⁶	5×10^{2}	15	108	10 ⁷	10^{16}	
LB6	10^{-6}	103	3×10^{7}	3×10^{16}	107	5×10^{3}	1.5×10^{2}	10 ⁹	10 ⁸	10^{17}	
LB7	10^{-7}	10^{4}	3×10^{8}	3×10^{17}	108	5 × 10 ⁴	1.5×10^{3}	10^{10}	10^{9}	10^{18}	
LB8	10^{-8}	105	3×10^{9}	3×10^{18}	109	5×10^{5}	1.5×10^{4}	10^{11}	1010	10^{19}	
LB9	10^{-9}	10^{6}	3×10^{10}	3×10^{19}		5×10^{6}	1.5×10^{5}	10^{12}	10^{11}	10^{20}	
LB10	10^{-10}	107	3 × 10 ¹¹	3×10^{20}	10^{11}	5×10^{7}	1.5×10^{6}	10^{13}	10^{12}	10^{21}	

summary

The marking will change from L to LB

The testing conditions have been changed

The comparability should become better

There exists a new correction function for the choice of the eyewear.

Thank you for your kind attention