

NREL's LASER Safety Program 5 years after Eye Injury Event

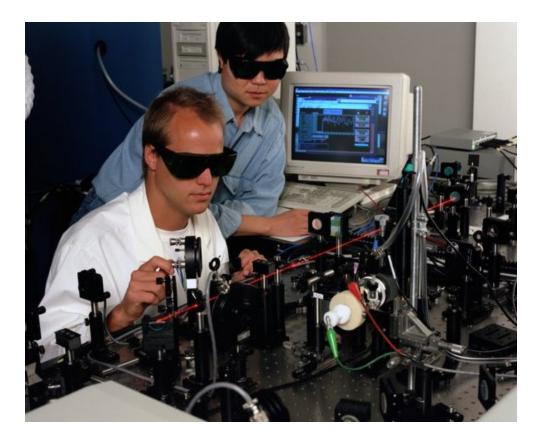
DOE LSO Workshop Barb O'Kane Deana Luke July 27, 2010 1:20-1:50 pm

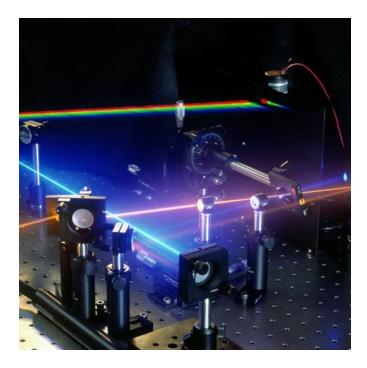
NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

NREL Research

NREL Research

Transportation




Hydrogen Technology

Alternative Fuels & Biomass

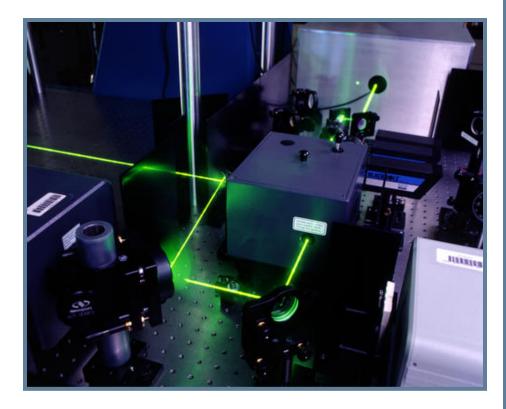
Characterization, modeling, material production (nanoparticles), deposition systems

Laboratory Status

Aspect	2005	2010
Lab population	1200	2050
# of 3B/4 Laser Systems	84	160 in use (192 registered)
# of Laser Labs	26	35
# of Laser Operators	80	120
Laser Safety Support	1	CLSO, Alternate LSO
% of open-beam systems	33%	25%

January 19, 2005 National Renewable Energy Laboratory - Golden Field Office

A researcher sustained a retinal burn to his right eye while operating a Class 4 Yttrium Aluminum Garnet laser. At the time of the incident, the researcher and his team leader were testing new sample instrumentation when a problem occurred with the instrumentation. While the team leader went to another part of the lab to obtain a different test sample, the researcher removed the neutral density filters to obtain a response from the test sample using full beam power. The researcher was not wearing his eye protection as he manipulated the test sample with a pair of stainless steel tweezers. At this point, he experienced seeing a flash of light off the test sample. (ORPS Report GO--NREL-NREL-2005-0001)


Report publically available:


https://orpspublic.hss.doe.gov/orps/reports/displayReport2.asp?crypt=%87%C3%95%9Ba%94zisb

Laser Information

Minority Carrier Lifetime Measurement and Time-Resolved MW Conductivity

Class 4 lasers – Nd:YAG; OPO Beam paths are now enclosed Operated as a Class 1 system

NATIONAL RENEWABLE ENERGY LABORATORY

Corrective Actions, per report

- 1. Improve mentoring and lab supervision
- 2. Increase the level of Laser Safety learning
- 3. Verify completion of laser safety and site specific training (recordkeeping)
- 4. Perform comprehensive assessment of Laser Program
- 5. Revise SOP format
- 6. Strengthen LSO support
- Restart process (took 6 months to get everyone back up)

Training & Mentoring

Book/Classroom learning On line computer based training Using LLNL course Refresher training every 2 years

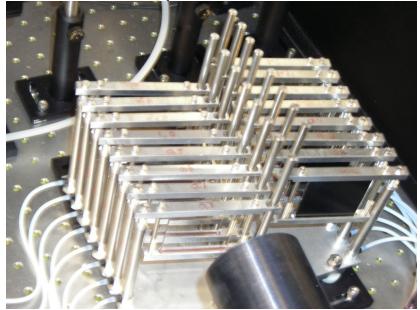
Hands on training & mentoring

•Mentoring responsibilities defined in procedure

•Appoint Laser System Supervisors – knowledgeable and willing to take the time to train others

- •LSS works with all new laser operators
- •Qualification process with LSS and line manager

Program Assessments and Improvements


Written Program Improvements "Quick Reference Guide" – the how to on one page Roles and responsibilities better defined Easy to use and reference SOP template Assessments External assessments every couple of years Self assessments by every 3B/4 laser lab annually Spot check a subset annually

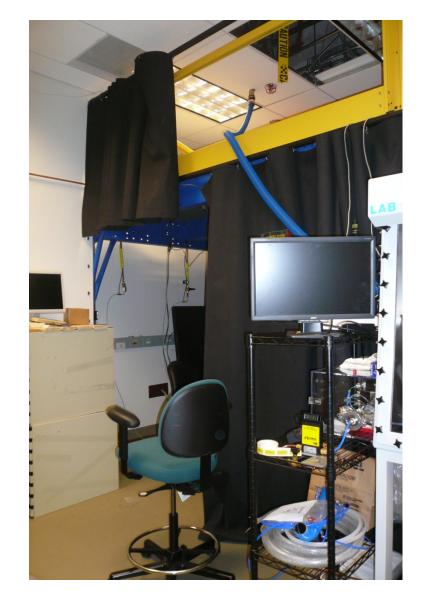
In Addition to Corrective Actions Other Good Stuff

- 1. Strong management support continues
- 2. Laser Safety Panel
- 3. Additional help ALSO
- 4. SOP improvements
 - LOTO section
 - Semi-annual inspections for eyewear and interlocks
- 5. New systems being designed with full enclosures
- 6. Creative staff find ways to avoid open beam configurations

NATIONAL RENEWABLE ENERGY LABORATORY

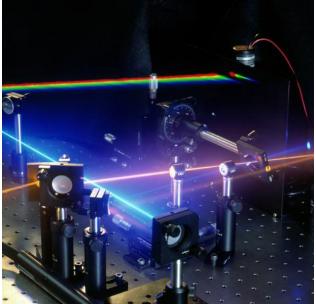
Can't Relax – We still have bumps in the road

Laser Lab Entry Events "New eyes" see things – SERF E134 (800 nm output & LPE) SERF E217 Qualification and LPE Use



The latest continuous improvement effort – Laser Safety Initiative Fund

Money awarded by EHS office for laser safety improvements. Awardees selected by laser safety panel.


Proposal Requirements

Laser systems must contain Class 3B or 4 lasers

Improvement must:

- Decrease level of risk to lab staff
 - <u>OR</u>
- Increase efficiency and ease in complying with NREL and ANSI laser safety requirements

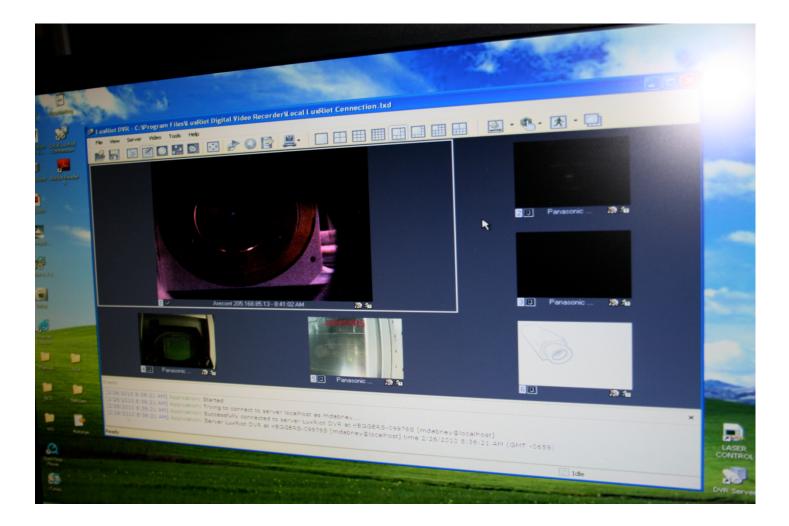
2009 Budget was \$22,000 4 projects were awarded

LSIA Project #1 Laser Scribing System

Class 4 Nd:YAG Pulsed Laser System

Improvement allows for laser alignment while beam is fullyenclosed using cameras to view beam location

Total Cost \$3600

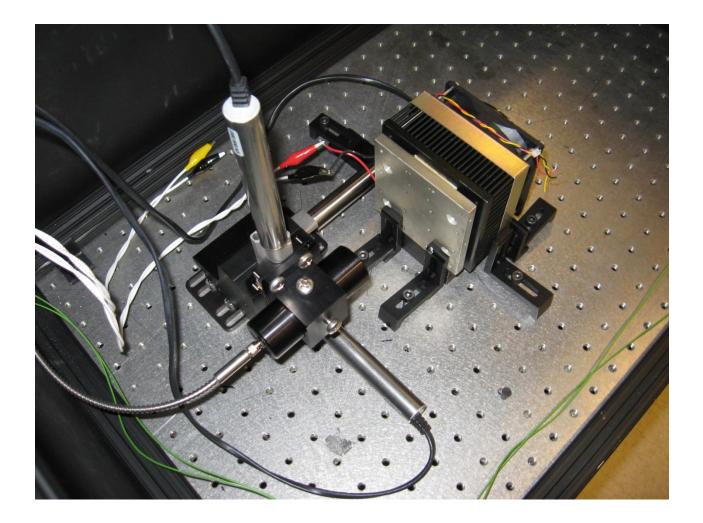

Before

Innovation for Our Energy Future

Beam Location Viewed on Computer Screen

LSIA Project #2 Laser Degradation Experiment

Class 4 Continuous Wave Diode Laser


Improvement allows for fully-enclosed system during alignment

System operates as Class 1 system during normal operation and alignment

- No exposure to laser energy
- Allows for relaxed control measures (reduces risk and costs)
- Desirable for a multi-user lab

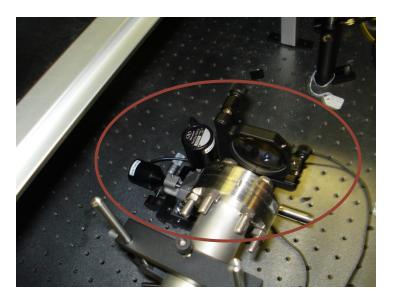
Laser Collimator Mounted on Micro-Positioner

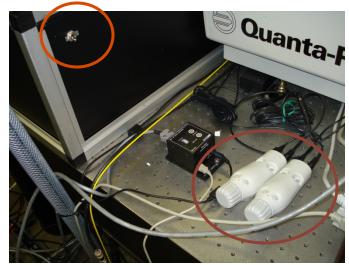
LSIA Project #3 Photoionization Laser System

Class 4 Pulsed Lasers (Nd: YAG with OPO)

Improvement provides for:

- Class 1 operation by
 - Enclosing beam with beam tubes
- Alignment with fully-enclosed beam
 - Installed motorized actuators to allow for remote alignment of optics
 - Flip mirrors for collecting power measurements


Total Cost \$5100


Externally controlled

rotation stages

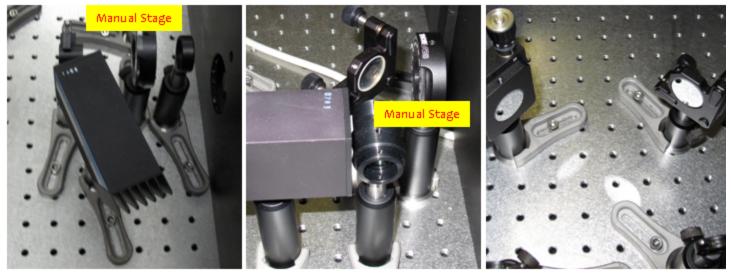
And translation stages

With easy access switches and controls.

LSIA Project #4 Coherent Anti-Stokes Raman Scattering (CARS) Microscopy

Class 4 Pulsed Lasers (Nd:VAN with OPO)

Improvement allows for daily power measurements and beam attenuation to be conducted remotely with fullyenclosed beam


Total Cost \$10,400

CARS Laser System

System Improvements

BEFORE

AFTER

NATIONAL RENEWABLE ENERGY LABORATORY

Innovation for Our Energy Future

Results of Laser Safety Initiative Award

Improves safety to lab staff

- Eliminates need for open-beam operation/alignment
- Safe laser use in multi-user labs
- Provides model for safe, state-of-art system design
 - Future NREL laser systems
 - Organizations outside of NREL

Improves efficiency

In some cases, may eliminate need for other costly laser safety controls

Funded Program again for 2010

