Los Alamos SFA:
Pu/Actinides in the Environment

Michael H. Ebinger, POC
Hakim Boukhalfa
Amr Abdul-Fattah
Peter Lichtner
Paul Reimus
Don Reed
Robert Roback

Los Alamos National Laboratory

April 9, 2008
Collaborators

- **At Los Alamos**
 - David Clark
 - Mei Ding
 - Yixiang Duan
 - David Janecky
 - Cheryl Kuske
 - Jef Lucchini
 - Wolfgang Runde
 - Stephen Stout

- **Other Institutions**
 - John Bargar (SSRL)
 - Larry Hull, George Redden (INL)
 - Bruce Rittman (Arizona State University)
 - Peter Santschi (Texas A&M)
 - Jeff Terry (Illinois Inst. Tech)
 - Geoff Smith (New Mexico St. Univ.)
 - John Walz (Virginia Tech)
 - Pawel Weronski (Polish Academy of Science)
Pu/Actinide SFA Motives

- Pu Inventories at Several DOE Sites
 - Los Alamos
 - Hanford
 - Idaho
 - ORNL
 - Savannah River
 - Rocky Flats
 - Nevada Test Site

- What Controls Pu/Actinide Fate in the Subsurface?
 - Intrinsic colloid formation, Pu association with natural colloids
 - Biogeochemical and hydrological processes that affect Pu subsurface fate and transport (e.g., Pu-organic forms; Pu redox; colloid formation)

- How Do We Predict Pu/Actinide Subsurface Transport?
Integrated LANL Research Program

Program Scope & Direction

Colloid-Facilitated Transport

Pu/Actinide Fate & Transport in the Environment

Pu/Actinide Biogeochemistry

Site-Specific Processes and Samples

Modeling Fate and Transport

Field Experiments

Incorporate Coupled Processes for Long-Term Stewardship Decisions

Biogeochemical & Hydrological Environment

Hypothesis Testing and Modeling
Fundamental Understanding Leads to Application at Multiple Scales

- Colloid Transport
- Program Scoping
- Biogeochem.
- Site-Specific Processes and Samples
- Modeling
- Field Testing
- Applications at Multiple Scales
 - Field
 - Column
 - Pore
 - Molecular

Fundamental Process Understanding

Los Alamos National Laboratory
Earth and Environmental Sciences
SFA Drivers: Public and Programmatic

- Significant Environmental Inventory
 - LANL, INL, Hanford, NTS, and maybe 11 other sites in US
 - Larger international inventory?
 - TRU and Nuclear Repositories (YMP, WIPP)

- High Public Visibility
 - Pu contamination, perceived or real, is scrutinized, publicized, and criticized by government agencies and public interest groups (300 hits for Pu on Concerned Citizens website alone).

- Complex Behavior, not Understood Well
 - Colloid-facilitated transport: a significant factor.
 - Biological processes affect Pu redox & speciation.
 - In the Lab: multiple redox states and distinct species.
 - In environment: sorption, move as or with colloids, or soluble species.
Technical and Scientific Research Questions

- What Controls Pu/Actinide Fate and Transport?
 - Source terms and source forms.
 - Range of redox and chemical conditions in actual subsurface environments.
 - Relevant biogeochemical & hydrological mechanisms in subsurface environments?
 - Colloid and colloid-facilitated transport; soluble Pu-complexes?
 - Data needs for models?

- How are Fate and Transport Predicted in Subsurface Environments?
 - Subsurface characterization needs?
 - Modeling approaches and appropriate scales?
 - Data needs for models?
 - Calibration of model predictions/simulations?
Guiding Ideas and Hypotheses

- We can bound the range of biogeochemical hydrological conditions from site characterization data.
- Colloids and complexed Pu are key forms for transport.
- Initial waste form and subsurface biogeochemistry determine Pu species formation and stability.
- Site-specific conditions and transients are key to understanding transport.
- Redox cycling is an important process in Pu fate and transport.

Coupling of colloid behavior, biogeochemical and hydrological processes will be integrated via modeling.
Bound Biogeochemical & Hydrological Environments using Site Characterization

- Riley & Zachara review (1992) and new site characterization since (e.g., EM Programs at LANL; work at Rocky Flats; RIBRA at INL)

- Applications of new technology to existing subsurface data; Information from IFCs

- Source form could be Pu oxides, aqueous Pu, associated/complexed Pu or ?

- Source terms could vary from less than pCi/kg levels to $>10^6$ pCi/kg depending on site, processes, medium.

- Interaction between waste form and site-specific hydrology and biogeochemistry will be key in fate and transport.
Pu Transports as Colloids

- Significant fraction of source term that transports is in colloidal or Pu-colloidal form.
- Colloids/Pu-colloids behave as “fast-lane vehicles” for transport in subsurface environments.
- Pore-scale colloid attachment and detachment kinetics are important.
- Pu partitioning between solution, immobile matrix, and mobile colloids.
- Sufficient quantity, limited colloid filtration, colloids stable
Pu Transport as Soluble Complexes

- Biogeochemical and hydrological conditions (e.g., redox, pH) favorable for formation of soluble Pu complexes (e.g., Pu-siderophores; Pu-EDTA; Pu-carbonates)
 - Conditions that stabilize oxidized Pu(V) and Pu(VI) (both more soluble than reduced Pu(III) and Pu(IV))
 - Under reducing conditions redox cycling between Pu(III) and Pu(IV) that leads to increased solubility.

- Pu partitioning between solution, immobile matrix, and mobile colloids.
LANL SFA Proposed Timeline

<table>
<thead>
<tr>
<th>FY 08</th>
<th>FY 09</th>
<th>FY 10</th>
<th>FY 11</th>
<th>FY 12</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Program Scoping</td>
<td></td>
<td></td>
<td>Field Testing</td>
</tr>
<tr>
<td></td>
<td>Colloid Transport</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Biogeochem.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Site-Specific Processes and Samples</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Modeling</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
How Will We Accomplish This?

Fundamental Understanding
- Lab experiments
 - Experiments conducted with site-specific materials
 - Model experimental results
 - Molecular to column scale
 - Collaborations (SSRL, INL)

Field-Derived Samples
- Lab results & methods as guides
 - Move into larger scales (column, larger)
 - Bound experiments with biogeochemical-hydrological conditions.
 - Continue collaborations

Field Testing
- LANL as Collaborator with IFC(s)
 - Models of processes at different scales

Coupled Processes used for Long-Term Stewardship

FY 08

Review and Redirect

FY 12

Review and Redirect