Hanford 300 Area IFC Breakout Session

Multi-Scale Mass Transfer Processes Controlling Natural Attenuation and Engineered Remediation: An IFC Focused on Hanford’s 300 Area Uranium Plume

John M. Zachara and IFC Team

Pacific Northwest National Laboratory, Richland, WA 99354
Other External Participants

- Roy Haggerty – OSU, mass transfer experiments and modeling
- Douglas Kent – USGS, field injection experiments, surface complexation processes
- Alan Konopka – PU, microbial ecology and microbiological heterogeneity
- Yoram Rubin – UCB, stochastic hydrology and modeling
- Roloef Versteeg – INL, geophysics and data management
- Chunmiao Zheng – UA, hydrologic modeling and geostatistics
Hanford IFC

Science Theme ~ *Multiscale mass transfer processes influencing sorbed contaminant migration*

Associated Practical Issues

1. Accurate projection of dissipation times for groundwater plumes of sorbing contaminants
 - Sorbing solutes not equal
 - Concentrations at different scales

2. Optimal delivery of remediation reactants
 - Access
 - Kinetic formation and reaction
 - Persistence

3. Practicality and effectiveness of remediation
Hanford 300 Area in 1962
300 A Waste Streams

- Sodium aluminate (to ~1956)
 - Dissolved Al cladding from rejected fuel assemblies
 - 15% NaOH, Density of 1.5

- Effluents from REDOX and PUREX process development (1944 – 1954)
 - Nitric acid solutions containing uranyl nitrate

 - Nitric acid solutions containing U and Cu

- Different grades of enriched U as well as natural and depleted U

- Primary chemical inventory in NPP and SPP
 - 37,000 – 65,000 kg of U; 265,000 kg of Cu
Geological Cross Section

West

A

399-8-3

399-1-13A,B

399-1-12

399-1-15

399-1-16A,B,C,D

East

A'

Columbia
River

Elev. (m)

120

100

80

60

2001 WT

Hanford (U1)

Ringold Overbank Mud

Ringold E/B Gravel

Ringold Lower Mud

Basalt

0

200

400

600

800

1000

1200

Distance (m)

vertical exaggeration = 5:1
Hourly, Daily Average, and Monthly Average River Stage at the 300 Area in 1996
Vadose Zone Release Model
Seasonal Dynamics of 300 A Uranium Plume

300 Area Uranium, December 2005

300 Area Uranium, June 2006

Graphic Produced by Groundwater Performance Assessment Project (PNL)

Office of Science
U.S. Department of Energy

Environmental Protection Science

Pacific Northwest National Laboratory
Operated by Battelle for the U.S. Department of Energy
Primary Objectives

- Quantify the role of mass transfer in controlling U(VI) distribution under various geochemical, hydrologic, and remedial conditions
 - Vadose zone
 - Saturated zone

- Investigate in-situ microbiologic processes that couple with mass transfer to control phosphate barrier performance and longevity

- Create enduring field experimental data sets for model and field-scale hypothesis evaluation

- Test and improve existing models of multi-reaction chemistry and multi-scale mass transfer by comparison to new, robust experimental field data

- Proactively transfer results to site for decision making and remediation
Transport Behavior (Desorption/Sorption) in < 2 mm Sediment is Kinetically Controlled

North Process Pond Pit 1 – 14 ft

Saturated Column Study

<table>
<thead>
<tr>
<th>Size Range (mm)</th>
<th>Mass Distribution (%)</th>
<th>U_Total (nmol/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cobbles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 12.5</td>
<td>74.5</td>
<td>< 22</td>
</tr>
<tr>
<td>2.0 - 12.5</td>
<td>17.2</td>
<td>< 19</td>
</tr>
<tr>
<td>Sand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0 - 2.0</td>
<td>2.64</td>
<td>26</td>
</tr>
<tr>
<td>0.5 - 1.0</td>
<td>2.34</td>
<td>< 18</td>
</tr>
<tr>
<td>0.25 - 0.5</td>
<td>0.78</td>
<td>< 21</td>
</tr>
<tr>
<td>0.149 - 0.25</td>
<td>0.33</td>
<td>37</td>
</tr>
<tr>
<td>0.106 - 0.149</td>
<td>0.19</td>
<td>< 23</td>
</tr>
<tr>
<td>0.053 - 0.149</td>
<td>0.20</td>
<td>< 23</td>
</tr>
<tr>
<td>Silt + Clay</td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 0.053</td>
<td>1.78</td>
<td>125</td>
</tr>
</tbody>
</table>

The release of sorbed contaminant U(VI) and the adsorption of U(VI) from contaminated groundwater both show strong kinetic behavior

(Qafoku et al., 2005; Liu et al., 2007)
Approaches

- Robust 3-D geostatistical characterization of the experimental domain
 - Borehole samples and downhole logging
 - Surface and cross-borehole geophysics
 - geo-, hydro-, chemo-, bio-, and U(VI)-facies
 - Correlative transfer functions with process-specific parameters

- Field experimental campaigns based on 3 hypothesis at an integrated vadose zone-saturated zone site
 - Well field sufficient to sample heterogeneities and plume evolution
 - Infiltration experiments in vadose zone
 - Passive river stage experiments in capillary fringe
 - Injection experiments in saturated zone
 - Collaborative experiments with EM-20

- Modeling of different types
 - Stochastic-deterministic
 - Various multi-scale models (multi-rate, and multiple continuum)
 - STOMP as the integrative project code
Field Site Design to Exploit Unique Site Attributes

- Variable U concentrations and speciation through vadose zone, capillary fringe, and vadose zone

- Seasonal changes in river stage
 - Groundwater composition/U(VI) distribution
 - Hydrologic gradient, porewater velocity, and flow path trajectory
 - Access to sorbed U in the deep vadose zone and capillary fringe
 - Microbial ecology of saturated and vadose zone and capillary fringe

- Extensive supporting information
 - Geologic, hydrologic, and historic data
 - Lab geochemical information (speciation, kinetics, SCM)
 - Aquifer hydrologic models
 - EM-20 tracer experiments and well field
The 300-FF-1 Operable Unit

Red = potential IFC sites
Blue = EM-20 polyphosphate injection
North Process Pond and Excavation

The North Process Pond

One of Four Excavations Sampled

South Process Pond - Pit#2

Groundwater (18 ft bgs)
Example Opportunities for Collaborative Research

- In-situ adsorption/desorption experiments of various types
- Laboratory to field comparisons
- Evaluation of geophysical methods and inversion techniques
- Mass transfer processes of different types at different scales
- Microbiology of linked groundwater-river systems of low to high transmissivity
- Geologic, hydrologic, geochemical, and biogeochemical modeling of different types
- Microbiology and geochemistry of phosphate amended systems
Materials Available to External Investigators

- Historic U(VI)-contaminated source term materials (limited)
- Contaminated U(VI) vadose zone materials whose geochemical speciation and mass transfer properties have been determined (limited)
- Uncontaminated vadose zone and aquifer sediments from various locations
- Circumneutral site groundwaters with variable U(VI), HCO₃, and Ca concentrations
- Core materials from vadose zone and aquifer experimental plots (TBC, limited)
- Aseptic samples of vadose zone and Hanford and Ringold formation aquifer sediments (TBC, limited)

* TBC = to be collected
Anticipated Outcomes

- Outstanding, multidisciplinary collaborative effort that significantly advances science
 - Characterization, experiment design, interpretation
 - Basic underpinnings of EM-20 activities

- Enduring and accessible field experiment data sets for hypothesis and model testing

- Improved linked multi-scale mass transfer/biogeochemical models for reactive contaminants

- New conceptual understanding of mass transfer processes at different scales influencing field behavior
 - Desorption, dissolution, dissipation
 - Effective reaction kinetics
 - Contaminant immobilization
Linkage to Site Remediation, Closure and Monitored Natural Attenuation

- Operational model for infusion of DOE science into site remediation and closure decisions
 - Lab to field
 - Concept to application
 - Evaluation and testing of new models and measurement techniques

- 300 A site is representative of Hanford River Corridor locations
 - Applicability of conceptual and numeric models to other locations

- Scientific context for evaluation of remediation strategies and concepts
 - MNA versus active approaches
 - Optimization strategies
 - Expectations for remediation efficiency