Characterization of Field Experimental Sites at Hanford’s 300-Area IFC Site

1Andy Ward and 2Roelof Versteeg
1Pacific Northwest National Laboratory, Richland, WA
2Idaho National Laboratory, Idaho Falls, ID
Primary Goal

- Develop quantitative model of heterogeneity that incorporates dominant features at the significant scales, and
 - reflects geologic variability
 - reflects multi-scale nature of stratigraphy
 - honors core and well log data
 - forms basis of conceptual hydrostratigraphic models
Approach

QUANTITATIVE UNDERSTANDING OF SUBSURFACE FLOW AND REACTIVE TRANSPORT

FLOW AND TRANSPORT MODEL
Characterize:
- hydraulic/transport properties
- sorptive/reactive properties
Quantitative Analysis (e.g. water balance)
- Numerical Modeling

HYDROSTRATIGRAPHIC MODELS
e.g. – conceptual models
- definition and characterization of aquifer properties

GEOLOGICAL MODELS
e.g. – conceptual models
- landform and terrain models
- stratigraphic, architectural, and depositional models

DATABASE DEVELOPMENT
e.g. – compilation of archival data; new data collection and integration
Sedimentary Facies Concept

- Classifies formation using primary sedimentary features at scale of facies structure
 - No need to identify texture
 - Size statistics, surface area, mineralogy, fabric

- Sediment properties primarily controlled by granulometry

- Sedimentary facies
 - Electrofacies
 - Lithofacies
 - Hydrofacies
 - Chemofacies
 - Biofacies

![Graph showing relationship between Conductivity (mS/m) and CEC (meq/100 g) with R^2 = 0.7839]
Subsurface Characterization Workflow

Data input
- Information management
- GIS database

Calibration
- History Matching
- Sensitivity Analysis
- Management Decisions
- Design, Implement Remedy

Borehole Logging
- Log Interpretation
- Transition Probabilities
- Well Correlation
- Surface Identification and Mapping

Mapping
- Surface Geophysics
- Interpret Geophysical Images

Data Spatial Analysis
- Facies Modelling
- Transition Probabilities
- Borehole Testing

STOMP
- 3D Flow and Transport simulation
- Multi-phase, Density-dependent Flow
- Fully-coupled Energy Equations
- Modeling of Geochemical Reactions

3D Flow/Transport Property Model
- Upscaling to Simulation Grid

3D Geological Model
- Geological Conceptual Model
- 3D Flow/Transport Property Model
- Upscaling to Simulation Grid

Uncertainty Analysis
- Upscaling of Processes
- Flow/Transport Property Population
Hydrogeophysical Workflow 300 Area IFC

Low-resolution Reconnaissance:
- Electromagnetic Induction
- Shallow Magnetics
- Magnetic Gradiometry
- Ground Penetrating Radar
- Reflection Seismic

Identify Cultural Features
Map Local Stratigraphy
Map Basement

Best Locations for
IFC Characterization and Monitoring wells

Drill Boreholes
Sediment Samples

High-resolution Imaging:
- Seismic Reflection
- Broadband EMI
- Resistivity
- Ground Penetrating Radar
- Nuclear Magnetic Resonance

High-resolution Borehole Logs:
- Accelerator Porosity Sonde
- Triple Detector Litho-density
- Array Induction
- Cased-hole Resistivity Tool
- Magnetic Resonance Scanner
- Electromagnetic Propagation
- Elemental Capture Spectroscopy
- Spectral Gamma

Vertical and Lateral
Transition Probabilities
Spatial Correlation Structure

Identify Cultural Features
Map Local Stratigraphy
Map Basement

Best Locations for
IFC Characterization and Monitoring wells

Drill Boreholes
Sediment Samples

High-resolution Borehole Logs:
- Accelerator Porosity Sonde
- Triple Detector Litho-density
- Array Induction
- Cased-hole Resistivity Tool
- Magnetic Resonance Scanner
- Electromagnetic Propagation
- Elemental Capture Spectroscopy
- Spectral Gamma

Identify Cultural Features
Map Local Stratigraphy
Map Basement

Best Locations for
IFC Characterization and Monitoring wells

Drill Boreholes
Sediment Samples

High-resolution Borehole Logs:
- Accelerator Porosity Sonde
- Triple Detector Litho-density
- Array Induction
- Cased-hole Resistivity Tool
- Magnetic Resonance Scanner
- Electromagnetic Propagation
- Elemental Capture Spectroscopy
- Spectral Gamma

Identify Cultural Features
Map Local Stratigraphy
Map Basement

Best Locations for
IFC Characterization and Monitoring wells

Drill Boreholes
Sediment Samples

High-resolution Borehole Logs:
- Accelerator Porosity Sonde
- Triple Detector Litho-density
- Array Induction
- Cased-hole Resistivity Tool
- Magnetic Resonance Scanner
- Electromagnetic Propagation
- Elemental Capture Spectroscopy
- Spectral Gamma

Hydrogeophysical Workflow 300 Area IFC

Low-resolution Reconnaissance:
- Electromagnetic Induction
- Shallow Magnetics
- Magnetic Gradiometry
- Ground Penetrating Radar
- Reflection Seismic

Identify Cultural Features
Map Local Stratigraphy
Map Basement

Best Locations for
IFC Characterization and Monitoring wells

Drill Boreholes
Sediment Samples

High-resolution Imaging:
- Seismic Reflection
- Broadband EMI
- Resistivity
- Ground Penetrating Radar
- Nuclear Magnetic Resonance

Vertical and Lateral
Transition Probabilities
Spatial Correlation Structure

Identify Cultural Features
Map Local Stratigraphy
Map Basement

Best Locations for
IFC Characterization and Monitoring wells

Drill Boreholes
Sediment Samples

High-resolution Borehole Logs:
- Accelerator Porosity Sonde
- Triple Detector Litho-density
- Array Induction
- Cased-hole Resistivity Tool
- Magnetic Resonance Scanner
- Electromagnetic Propagation
- Elemental Capture Spectroscopy
- Spectral Gamma

Identify Cultural Features
Map Local Stratigraphy
Map Basement

Best Locations for
IFC Characterization and Monitoring wells

Drill Boreholes
Sediment Samples

High-resolution Borehole Logs:
- Accelerator Porosity Sonde
- Triple Detector Litho-density
- Array Induction
- Cased-hole Resistivity Tool
- Magnetic Resonance Scanner
- Electromagnetic Propagation
- Elemental Capture Spectroscopy
- Spectral Gamma

Identify Cultural Features
Map Local Stratigraphy
Map Basement

Best Locations for
IFC Characterization and Monitoring wells

Drill Boreholes
Sediment Samples

High-resolution Borehole Logs:
- Accelerator Porosity Sonde
- Triple Detector Litho-density
- Array Induction
- Cased-hole Resistivity Tool
- Magnetic Resonance Scanner
- Electromagnetic Propagation
- Elemental Capture Spectroscopy
- Spectral Gamma
Workflow for Quantitative Hydrostratigraphy

1. Initial 3-D Stratigraphic Model
2. Update Conditional means, Covariances, Transition Probabilities of Sedimentary Properties
3. Field Experimental Data Hydrofacies, Chemofacies, Correlation Structures
4. Criteria met?
 - Yes: Quantitative Heterogeneity Model Reflecting Geologic Variability Multi-scale Stratigraphy
 - No: Improved Estimate of 3-D Stratigraphic Model
5. Accurate Petrophysical Functions
6. Site-specific Pedotransfer Functions