Applying EMSL Capabilities to Biogeochemistry and Environmental Research

Determining Chemical Forms in Sediments and Solutions

Iron determination (Mössbauer Spectroscopy)

- Mössbauer spectra and isomeric shifts were obtained for Shewanella and Pseudomonas aerugi- nosa.
- The impact of these different coatings on mineral dissolution was monitored using (a) XPS, (b) SIMS, and (c) XRD.

Determining proteins in the outer microbial membrane (Atomic Force Microscopy)

- Atomic force microscopy (AFM) images revealed adsorption of bacterial membrane proteins to quartz surfaces.
- Concept: The impact of solution composition on iron coatings of quartz surfaces.

Characterizing Biological Systems

Visualizing the closest-to-native-state cellular morphology of hydrated bacteria

- Cryo-transmission electron microscopy (Cryo-TEM) was used to visualize the outer membrane and cytoplasm of Shewanella oneidensis.

Elongated crystals.

Shewanella Lipid membrane

Approach = 415 nm

99Tc (EMSL Radiological NMR)

10

Microbial activity was monitored by measuring

Research was performed in Support of the U.S. Department of Energy’s Office of Biological and Environmental Research

Andy Felmy, EMSL Chief Scientist

EMSL’s four Science Themes, which represent growing areas of research:

- Science of Interfacial Phenomena.
- Geochemistry/Biogeochemistry and Subsurface Science.
- Energy Biofuels.
- Materials in Environment.

Researchers are encouraged to submit a proposal centered around one of the four Science Themes and technologies.

Subsurface Flow and Transport

Examining the impacts of microbial growth

Intermediate Scale Flow Cell

Uranium determination (Laser Fluorescence Spectroscopy)

- 1.0 ppm uranium in quartz solution.
- 0.1 ppm uranium in water.

Unraveling molecular mechanisms and providing ideas for macroscopic experimentation (Molecular Simulation)

- Molecular Dynamic model of many binding to the outer membrane of Paracoccus denitrificans.
- Current work: Change in binding mechanism with pH.

Mineral Surface Chemistry

Combining techniques for unique insight (Atomic Force Microscopy)

- The impact of solution composition on redox cycling of Fe phases.
- Surface morphology to examine the Fe coatings.

Surface morphologies for Fe coating in 0.1 M NaCl (air dried)

- The impact of solution composition on Fe coatings of quartz surfaces.
- After coating (a) before, (b) after, (c) after washing with DI.

- Protein spots on silver-stained gels show the impact of solution composition on Fe coatings of quartz surfaces.

Dissociation of the key proteins being determined.

Before coating (deflection image)

After coating (deflection image)

After coating and rinsing

Rinsing with room temperature DI water and DI water

Determining surface chemical composition (Secondary Ion Mass Spectrometry and X-Ray Photoelectron Spectroscopy)

- SIMS - Scan map of surface composition.

XPS – Surface Emission image

- The relative intensity of the various elements present in the sample.

Effect of solution composition on redox cycling of Fe phases.

The impact of different coatings on mineral dissolution was monitored using (a) XPS, (b) SIMS, and (c) XRD.