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A Story In Several Parts 

The Need :  
Gaps in Sensing Networks: Examples in Seismology and Hydrogeology 
 
The Technology :  
Distributed Acoustic Sensing  
 
The Resource :  
Dark Fiber and ESnet’s Dark Fiber Testbed  
 
The Experiment :  
The FOSSA Deployment – Sacramento Basin 
 
The Results (Preliminary): 
•  Ambient Noise Surface Wave Analysis for Near-Surface Structure 
•  Observations of Regional and Teleseismic Events 
 
Next Steps & Challenges :  
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Two Challenges for California : Earthquakes & Water 

Oroville Lake 2014.  
Rich Pedroncelli, AP 

Motivation : Two long-term challenges for California are  
•  Management of water resources in a changing climate 
•  Characterizing/understanding/mitigating natural seismicity.  

Progress on both fronts are enabled by new approaches to sensing – need to provide 
•  Comprehensive approaches to groundwater process monitoring 
•  Networks for monitoring EQ ground motion, 
     small events, and characterize soil  
     conditions 

 
   

USGS/ 
SCEC 
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The Tyranny of Sparse Measurements : Part 1 
•  Despite much effort, CA’s seismic network still has significant gaps 
 

•  Stations are clustered in regions of historical tectonic activity and hard rock. 
 

•  Poor coverage in basins (Central Valley), sparsely populated regions (Modoc, west 
deserts), and offshore. 

 

•  Result : many regions with very high minimum detectable even thresholds (> M2!). 

[From SB4,  
Courtesy 
Corrine 
Bachmann] 

[Full CISN 
Combined 
Network] 

Implications :  
 
•  Difficult to detect induced 

seismicity related to O&G 
operations. 

•  Difficult to detect small (put 
potentially important) events 
on near-offshore faults. 

•  And CA is likely the best-
instrumented state in the US 

Solutions? 
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The Tyranny of Sparse Measurements : Part 2 
•  Hydrological and environmental 

monitoring networks have 
similar limitations.  

•  Large gaps even in regions with 
heavy groundwater extraction. 

•  Many wells are sparsely (and 
irregularly) sampled in time. 

•  Additionally, measurements 
have significant operator error 
and require extensive curation. 

Result : 
•  Even in heavily monitored 

basin, water table depths and 
aquifer state are poorly 
resolved in space and time. 

•  NOTE : similar limits for many 
geotechnical parameters (Vs30) 
and soil properties. 

12 wells! 
95 x 10 miles 
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Distributed Fiber-Optic Sensing :  
A Tool For Continuous Monitoring of Infrastructure 

Raman Brillouin Rayleigh 

T 

T, s 

T 

T, s 

Brillouin Raman 

T, a 

Wavelength lambda0 

Anti-Stokes Stokes 

Laser 
Fiber 

Scattering point 
Concept :  
Measure scattering from 
every point along a 
continuous fiber 
 
Changes in fiber 
environment (T, strain, 
vibration) alter 
scattering. 
 
Raman : (DTS) 
Strong T dependence 
 
Brillouin : (DTS,DSS) 
Wavelength shift during 
strain and T variation  
 
Rayleigh : (DAS) 
Amplitude variation 
induced by vibration, 
also T. 

Seismic Wave 
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•  Distributed Acoustic Sensing [DAS] is a rapidly 

advancing approach for measuring the seismic 
wavefield using commercial fibers (SM, telecom) 

•  Recent : S/N became sufficient for seismology 
around 2011. Our work started ~2012/13 out of 
CO2 GCS program (borehole applications) 

 
•  Large N : Easy to deploy in wells, behind casing, 

1000s to 100,000s of channels available (big 
data) over 10+ km (biggest current use is VSP) 

 
•  Very low cost per “sensor” : $/ft for cable 
 
•  Rugged : handles high/low T, high pressures.  

Daley et. al. 2016 (Geop Prosp.), Daley et.al. 2013, (TLE) 

Distributed Acoustic Sensing : A Platform For Seismic Monitoring  
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Comparable to Seismographs? Getting Closer 
•  Comparison between trenched (30 cm) fiber and Trillium PC120s (Lindsey et al. 2017) 
•  Regional M3.8 recorded in Fairbanks AK. 
•  After rotation and conversion to particle velocity, reasonable comparison 
•  Much lower band (0.8-1.6 Hz) – some signal even lower.  

Lindsey et al. 2017 
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•  Dark Fiber = fiber installed for telecommunication purposes but not currently used (e.g. “lit”) and lacking 
required hardware. Can we use it for sensing applications? 

•  During the 1st dot-com boom, cheap capital led to over-supply of installed fiber, subsequent improvements in 
bandwidth resulted in an even larger set of unused fiber strands. 

•  Only ~10% of fiber install cost is the physical cost of the fiber/packaging. The rest is trenching, permitting etc. 

•  Dark fiber can now be leased, bought, from providers – if not used, a stranded asset of decreasing value. Low 
cost links (down to $200/linear mile) in some corridors.  

What is Dark Fiber? 
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“Popularity” of Dark Fiber over time ….  

Google n-gram 
(1980-2008) 

Google Trends 
(2004-2017) 

Peak in the post dot-com 1 period, going down since….. 
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Where is Dark Fiber? Everywhere 

From Site 
Selection 
magazine, 
March 
2015

•  Dark Fiber is everywhere! But also poorly 
mapped. 

•  No reliable global estimates but well over 10M 
km of linear fibers.  

•  Transoceanic : a zone without traditional 
sensors globally [note: not many “dark” links in 
operative oceanic cables]. 

•  Urban, rural, and all the spaces in between 

•  Biggest strength : global reach + density 

•  Challenges : heterogeneous installation 
methodologies, access 

From 
BroadbandNow
CC

Zayo’s SF Bay 
Metro Dark 
Fiber 
Resources.

World

USMetro
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ESnet & the Dark Fiber Testbed 

Western US ESnet Dark Fiber Routes 

•  Challenge : While Dark Fiber is ubiquitous, not always easy to get access and information required 
for sensing tests! 

•  ESnet, an LBNL user facility which manages high performance fiber communication links between 
major DOE user facilities (e.g. synchrotrons, neutron sources) and super-computing centers (e.g. 
NERSC). 

•  Solution : ESnet’s Dark Fiber Testbed – developed to allow testing of long-distance fiber links. 
National extent but not fully connected. We are exploiting CA network within the testbed. 
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FOSSA : Fiber Optic Seismic Super Array  

18 

System after wiring 

I-5 

West  
Sacramento 

Woodland 

W1 

W2 
System after wiring 

I-5 

West  
Sacramento 

Woodland 

W1 

W2 
System after wiring 

I-5 

West  
Sacramento 

Woodland 

W1 

W2 
System after wiring 

I-5 

West  
Sacramento 

Woodland 

W1 

W2 

What? 
•  First test of Dark Fiber imaging concept on true vintage 
•  Large N (12500 channels, 25 km) and growing T (7 months continuous record)  
 
Why?  
•  Unknown coupling – what can we retrieve? Effect of old fiber, telecom install etc 
•  Can ambient noise field (infrastructure) be used to monitor near-surface properties? 
•  Can EQs (regional/teleseismic) be recovered in the noisy environment using DAS? 
 

End Question : How can Dark Fiber be utilized for observational seismology? 
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FOSSA : Why West Sacramento? 

19 

System after wiring 

I-5 

West  
Sacramento 

Woodland 

W1 

W2 

•  Access to ESnet Dark Fiber Testbed (not connected everywhere) 
•  Physically close enough for HD exchange (dealing with the data “fire hose”) 
•  PoP large enough and sufficiently secure to house iDAS (not all are….) 
•  In an area with active hydrologic variations zones with pumping and recharge. 
•  In a “gap” in the network – high minimum “M”. 
•  Near zones of significant dry gas production and waste water re-injection 
•  Good subsurface constraints from shallow/deep wells. 



EARTH AND ENVIRONMENTAL SCIENCES • LAWRENCE BERKELEY NATIONAL LABORATORY 20 



EARTH AND ENVIRONMENTAL SCIENCES • LAWRENCE BERKELEY NATIONAL LABORATORY 

PoP (Point-of-Presence) DAS Installation 

21 

Site after completion 

•  Where are fibers connected to? PoPs : cages for individual system access control 
 

•  Interrogator installed at West Sacramento PoP, vendor terminated fiber to cage 
 

•  Acquisition details : 
•  Silixa iDAS v.2 interrogator, installed July 2017-Mar. 2018 
•  Dedicated dark fiber strand (ESnet/CenturyLink) terminated in PoP cage 
•  Installed on vibration isolated (ThorLabs) 
•  Recording continuously at 500 hz, 2 m spatial sampling, 10 m gauge length 
•  25 km of fiber sampled (12500 channels) 
•  Data recorded on 8 TB external drives, swapped weekly and copied at LBNL  
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“Noise” in Space & Time 

•  Example to the left 
shows 10 s unfiltered 
record on 12000 
channels. 

•  Majority of noise is 
infrastructure use 
related (cars/trains) in 
the 2-30 Hz band. 

•  Freight train parallel to 
fiber near river is 
strongest noise 
source, visible 1 km 
out. 

•  Some sections with 
“reverberation” 
correspond to 
suspended pipe 
crossing a bridge 

•  Fade-out visible as 
scattered light drops 
below optical budget. 

Towards Woodland 
Signal “fade-out” 

Train 

Poor signal 
on attached 

section 

Noise 
in 

PoP Cars along River Rd 
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“Noise” in Space & Time 

Sierra Northern 

Slow train  
~18.4 miles/hr  
(8.2 m/s) 

SE End 
(West Sac) 

NW End 
(Woodland) 9 Hr RMS Amplitudes 

•  Surface waves generated by trains are orders of magnitude larger 
than cars (not surprising) 

 

•  Train location/velocity can be easily tracked using DAS – freight runs 
are very slow, 10-20 mph 

 

•  Freight runs occur at irregular times, usually 2-4 runs/day Sierra Northern 

Examples : 
 
Surface waves generated 
by vehicles … 
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Slow train  
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(West Sac) NW End 
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Different Installations? 

Slow train  
~18.4 miles/hr  
(8.2 m/s) 

SE End 
(West Sac) 

NW End 
(Woodland) 9 Hr RMS Amplitudes 

•  Surface waves generated by trains are orders of magnitude larger 
than cars (not surprising) 

 

•  Train location/velocity can be easily tracked using DAS – freight runs 
are very slow, 10-20 mph 

 

•  Freight runs occur at irregular times, usually 2-4 runs/day Sierra Northern 

•  Mix of trenching (~60 cm), shallow horizontal 
bores, and bridge attached. 

•  Bore sections are short (10-50 m) and are usually 
used to navigate around infrastructure. 

Impact on signal? 
 

•  Attached section unusable 
 

•  Bore/trench differences? 
•  On-going analysis effort 
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Concept : Turning Noise Into Soil Properties…. 
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Pre-processing & 
Interferometry 

Dispersion 
Analysis 

Surface Wave 
Inversion 

DAS Recorded 
Noise Gather 

Interferometric 
Gather 

Dispersion Transform 
& Automatic Modal Picks 

Vs Model 
[Soil Properties] 

Infrastructure Noise 

•  Even with a dense network of sensors, we need a seismic source for imaging 
•  Source mobilization is expensive for infrastructure monitoring, also limits temporal resolution. 
 
Solution  : Use infrastructure noise (cars, trucks, trains) for seismic energy source! 
How?  : Some signal processing to turn random energy into something more ordered 
Limits?  : Limited by the bandwidth and energy of noise (can’t get something for nothing). 
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FOSSA Example : One Location 

Slow train  
~18.4 miles/hr  
(8.2 m/s) 

SE End 
(West Sac) 

NW End 
(Woodland) 9 Hr RMS Amplitudes 

•  Surface waves generated by trains are orders of magnitude larger 
than cars (not surprising) 

 

•  Train location/velocity can be easily tracked using DAS – freight runs 
are very slow, 10-20 mph 

 

•  Freight runs occur at irregular times, usually 2-4 runs/day Sierra Northern 

Interferometric 
Gather 

Dispersion 
Map 

Surface Wave Inversion 
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Shallow Structure at 10 km Scale 
•  Example of a 6 km of inverted 

data. 

•  Confirmed top interface 
against CASGEM water table 
monitoring well (rock 
physics?) 

•  Silt/Sand/gravel transitions 
confirmed against driller’s 
logs. 

 

•  First example of large scale 
imaging/monitoring using 
telecom infrastructure. 
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DAS for EQ Seismology?

Channel Noise
Stack Noise

Single DAS Channel (1m)
Stack of 10 DAS Channels (10m)

Trillium PC120s
Seismometer

Seismometer Noise

(a) (b)

(c)

P S

Lindsey et al., 2017 
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DAS for EQ Seismology?

Lindsey et al., 2017 
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DAS for EQ Seismology?

Lindsey et al., 2017 

•  Large DAS arrays are also potentially useful for beamforming applications 
•  Example from RFS pilot experiment (Lindsey et al 2017) 
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Observations of Mexico M8.1 Earthquake (Teleseismic)
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Berkeley, CA M4.4, Jan. 4th, 2018 (Regional)
Left  : Note vehicle traffic has a different moveout and array excitation pattern. 
Right  : A single channel - good performance for smaller regional events. 
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Mendocino Aftershock Sequence : 
Sensitivity? 

M3 

M4.6 

M5.1 

•  Starting more quantitative sensitivity tests. 
•  Using sequence from M5.1 and after-shock sequence as sensitivity test 
•  Events from M5.1 to M1 available with very similar ray paths 
•  M5.1 clear, events in the M4 range detectable but noisy, M3s are below noise threshold 
•  Examples below for single channel (2 m) : examining optimal stacking to improve threshold 
•  Early data lacked reference stations … 



EARTH AND ENVIRONMENTAL SCIENCES • LAWRENCE BERKELEY NATIONAL LABORATORY 4/3/18 37 

November 13, 2017 
Installed Guralp CMG-3T 
Broadband Seismometer  
at FOSSA 

w. Horst Rademacher 

Understanding What We Are Recording …. 
•  Optimally, use well-calibrated sensor 

for comparisons. 
 

•  Now have 3 months of Guralp 
CMG-3T data for future evaluation. 

•  Thanks to local volunteer fire dept! 
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Looking Towards an Applied Geophysics Superfacility? 

Challenge : 
•  Data acquisition is only part of the puzzle. 
•  DAS data volumes are large (to 10s of TB/day) and growing 
•  Data needs to be transported, processed, archived, analyzed. 
•  Need real-time feedback in some cases 
•  Often data is the experimental bottleneck. 
 

Example 
•  Sacramento Dark Fiber array generates 8-16 TB/week. 
•  Current dataset is 192 TB of raw field records (a RAID shelf) 
•  We have 4 units in the field at the moment. 
•  Last 2 years, more LBNL DAS acquisition then the full IRIS 

archive (0.75 PB).  
•  Not sustainable with current project structures. 
 

Solutions? : 
•  A superfacility combining observation (DAS), data transport 

(ESnet), and storage/analysis (NERSC)? 
•  Precedence for such combinations 
•  Also require scalable + flexible environment for experimental 

seismology with non-standard processing approaches. 
•  Machine learning approaches? Need techniques which function 

on large unlabeled datasets (no cats!).  
•  DAS is new enough that we are in an exploration phase. 

“Bear” DAS 
 RAID Cluster 
 
0.75 PB RAID 6 
(PB+ this fall) 

HPPS  
Tape  
Robot 

Max bandwith: 
USPS sending 
boxes of 8TB 
drives 

NERSC’s 
Cori :  
152832 cores 
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EESA LDRD Proposal 
Presentation FY17 

Piggy-back acquisition of Dark Fiber/DAS data 
on Esnet Bldg. 50->NERSC Oakland fiber. 
•  Of 12 km cable, highly variable data 

quality. 
•  Detected :  infrastructure signatures 

(BART/trains/trucks) and seismic surface 
waves. 

•  Still exploring our first “Berkeley/Oakland” 
Dark Fiber dataset – unclear on what 
drives differences in signal. 

 

Dark Fiber & DAS for Infrastructure & Environmental 
Monitoring 

Bldg 50. 

FY18 

What Can We Do With Urban Fiber Infrastructure? 
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Next Steps for Dark Fiber... 

1.  Looking for approaches to understanding where fiber is installed (burial 
conditions, conduit, etc) and as a result, what we can measure... 

2.  What kind of environmental information can we pull from Dark Fiber 
beyond surface wave velocities?  

 

•  Local soil moisture?  
•  Soil temperature? 
•  Deep aquifer properties 

3.  How can EQ seismic measurements on dark fiber be most effectively 
utilized?   

 

•  Earthquake early warning? (P-waves closer to epicenter) 
•  More accurate hypocenters? 
•  Information on small events in zones of poor coverage? 
•  Information on induced seismicity? 
 

4.  How can urban (vs. rural) dark fiber be most effectively leveraged for     
sensing beyond prior topics? Transit sensing? Leaking pipes?  

      Many possibilities. 
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Thanks! 

          

1.  Early work SERDP/DoD 

 

2. Dark Fiber project : LBNL LDRD 

 

 

 

Support From 

Lawrence Berkeley National Laboratory 
Laboratory Directed Research & Development program 
LDRD 

Strategic 
Environmental 
Research and  
Defense 
Program 
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BACKUP 
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Building Geometry 
•  Challenge : Mapping between linear fiber location 

and true X/Y/Z (have to know where you are!). 

•  Issue : telecom install procedure with slack + 
surveying practices results in uncertain mapping. 

•  Vertical hammer test with GPS location/timing was used 
to calibrate physical location of fiber run. 

•  Used to develop mapping between linear fiber distance 
and X/Y coordinates, accurate to within 2-5 m. 
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Berkeley, CA M4.4, Jan. 4th, 2018 (Regional)
Comment : Body waves (P,S) are arriving at high angle regardless of azimuthal  
array orientation (ray-tracing through IASPEI model)  
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Gaps in CAs Seismic Catalog? 

Detected catalog, week of Jan. 22-29   
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Berkeley, CA M4.4, Jan. 4th, 2018 : Unusual Scattering?
Comment : Unusual scattered events near S body wave arrival – linear surface wave 
moveout. Unclear source but visible at 4 km offsets (!).  

Vehicles … 

? 
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Recent DAS Fiber Highlights : 
Ambient Noise & EQ Studies 
 

http://abc7news.com/science/fiber-optic-cables-
could-help-us-understand-earthquakes/
2853012/ 

Academic : GRL Cover Article, Dec. 2017 
Press/Media : ABC7, Photonics, Scientific 
American, Physics Today, Fast Company, 
Smithsonian, Science 
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Observation bias in earth science 
1/ Geotechnical 

Characterization 

2/ Earthquake 
Seismology 

1/10 

Walvoord and Kurylyk, 2016 

Long Beach  
Seismic Array 
(Schmandt and  
Clayton, 2013) 

Fiber 
Optic 

Geophysics? 

3/ Basin Scale Structural 
Imaging 
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Characteristics of DAS Recording : Directionality 

Time-Frequency Analysis  
DAS Angle Gather 

•  Straight fibers + DAS most sensitive to extensional strain rate (vector)  
•  Strong angular sensitivity, P-waves at ~ cos2 of incidence angle 
•  Result, excellent Rayleigh wave response, reasonable S, poor P in surface geometries 
•  Example below : Otway GCS surface line, yields  cos3 response. 
•  Can be improved through novel cable design (helical, twisted sin, etc).  
•  True 3C systems still theoretical. 
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Characteristics of DAS Recording: Bandwidth 
•  Frequency response dependent both on interrogator type and fiber used. 
•  Digitization out to 100 kHz (fast lasers) 
•  High end : optical noise significant f > 200 Hz, low S/N measurements to 50 kHz 
•  Low end : drop off in response but signals visible in the mHz (100 s) range 
•  Good quality data 1 Hz to 100 Hz, S/N worse than geophone data by 10-20 db 
•  Note insensitivity to electrical noise, but some box vibration induced noise. 
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Comparable to Geophone Data? 
•  3C borehole geophone vs. fiber cemented behind casing (Aquistore VSP – Miller et al 2016) 
•  One challenge : native unit conversion, strain rate to particle velocity.  
•  After conversion, wiggle-to-wiggle comparison to co-located geophone data 
•  Over exploration bandwidth (7-70 Hz), slightly worse S/N on sensor/sensor comparison 
•  Subsequent comparisons (e.g. Correa et al 2017) have yielded similar results. 

Miller, Daley, et al, 2016 
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Ambient Noise Processing : Details 

Slow train  
~18.4 miles/hr  
(8.2 m/s) 

SE End 
(West Sac) 

NW End 
(Woodland) 9 Hr RMS Amplitudes 

•  Surface waves generated by trains are orders of magnitude larger 
than cars (not surprising) 

 

•  Train location/velocity can be easily tracked using DAS – freight runs 
are very slow, 10-20 mph 

 

•  Freight runs occur at irregular times, usually 2-4 runs/day Sierra Northern 

Unusual steps : 
•  Train record selection 
 

•  Phase weighted stack 
 

•  MC inversion using HT determinant 
method (Foti et al.) 
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Temporal Stability? 

•  Timelapse surface wave analysis 
was also conducted using a rolling 
stack of 40 train events. 

•  Time-domain interferometric 
gathers (right, a) exhibited a high 
degree of stability over the July-
Oct period over which minimal 
variation in water table occurred. 

•  Auto-picked dispersion curves 
(right b) were also stable with less 
than 2% variation month to month 
in well-sampled frequency bands. 

•  Stability suggests that interface 
tracking is a reasonable target if 
large excursions occur. 

•  Waiting for large fluctuations of 
water table; winter rainy season. 
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Modest Integration times typically sufficient for 
ambient noise analysis (RFS example) 

1.  Stacking example 
from earlier RFS pilot 

2.  Contrast with lower 
frequency AN studies 

3.  Spectral RMSD is a 
measure of how the 
dispersion image is 
changing with 
sequential stacks. 
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FOSSA : Adding Data from Train Passes 
•  Virtual gathers typically converge after a relatively small number of passes (20-40). 
•  Results in temporal sampling on the 1-2 week scale with excellent S/N. 
•  Exact temporal sampling impacted by daily train schedule (!). 
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Dark Fiber and Seismicity in OK? 
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Looking Towards an Applied Geophysics Superfacility? 

Challenge : 
•  Data acquisition is only part of the puzzle. 
•  DAS data volumes are large (to 10s of TB/day) and growing 
•  Data needs to be transported, processed, archived, analyzed. 
•  Need real-time feedback in some cases 
•  Often data is the experimental bottleneck. 
 

Example 
•  Sacramento Dark Fiber array generates 8-16 TB/week. 
•  Current dataset is 192 TB of raw field records (a RAID shelf) 
•  We have 4 units in the field at the moment. 
•  Last 2 years, more LBNL DAS acquisition then the full IRIS 

archive (0.75 PB).  
•  Not sustainable with current project structures. 
 

Solutions? : 
•  A superfacility combining observation (DAS), data transport 

(ESnet), and storage/analysis (NERSC)? 
•  Precedence for such combinations (Craig Tull’s SPOT 

framework – ALS->NERSC). 
•  Also require scalable + flexible environment for experimental 

seismology with non-standard processing approaches. 
•  Machine learning approaches? Need techniques which function 

on large unlabeled datasets (no cats!).  
•  DAS is new enough that we are in an exploration phase. 

“Bear” DAS 
 RAID Cluster 
 
0.75 PB RAID 6 
(PB+ this fall) 

HPPS  
Tape  
Robot 

Max bandwith: 
USPS sending 
boxes of 8TB 
drives 

NERSC’s 
Cori :  
152832 cores 


