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Abstract: Oblique plane imaging, using remote focusing with a tilted 
mirror, enables direct two-dimensional (2D) imaging of any inclined plane 
of interest in three-dimensional (3D) specimens. It can image real-time 
dynamics of a living sample that changes rapidly or evolves its structure 
along arbitrary orientations. It also allows direct observations of any tilted 
target plane in an object of which orientational information is inaccessible 
during sample preparation. In this work, we study the optical resolution of 
this innovative wide-field imaging method. Using the vectorial diffraction 
theory, we formulate the vectorial point spread function (PSF) of direct 
oblique plane imaging. The anisotropic lateral resolving power caused by 
light clipping from the tilted mirror is theoretically analyzed for all oblique 
angles. We show that the 2D PSF in oblique plane imaging is conceptually 
different from the inclined 2D slice of the 3D PSF in conventional lateral 
imaging. Vectorial optical transfer function (OTF) of oblique plane imaging 
is also calculated by the fast Fourier transform (FFT) method to study 
effects of oblique angles on frequency responses. 
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1. Introduction 

Oblique plane microscopy (OPM) [1–7] images 2D cross-sections of a specimen that are 
tilted from the focal plane of a microscope objective lens. This microscopy has certain 
advantages in circumstances where an interested plane of a sample is inclined to conventional 
microscope’s image plane [2–4], or biological processes of a living sample involve rapid 
changes in its structural orientation [2]. Compared to 3D scanning microscopy that typically 
extracts oblique planar information from slow 3D measurements, OPM provides a high-
speed, cost-effective imaging method. 

Commercial objective lenses satisfying the Abbe’s sine condition suffer from optical 
aberrations if they are used to image any part of objects lying out of their focal planes. 
Remote focusing [8,9], which uses a second objective lens to cancel out these optical 
aberrations, provides a solution to form an aberration-free, 3D intermediate image of an out-
of-focus object. Oblique plane imaging of this intermediate image is then conceptually 
feasible by employing another microscope with an inclined angle at the expense of partial use 
of its numerical aperture (NA) for detection, leading to resolution loss in an anisotropic 
manner. 

Dunsby [5] has estimated the imaging resolution of oblique plane microscopy by 
approximating the full-width at half-maximum (FWHM) of the PSF from an effective NA 
concept, which is inaccurate and does not provide an analytical clue on non-isotropic lateral 
resolution. Anselmi et al. [1] proposed a wide-field oblique plane imaging method by a 
remote tilting technique, which has simpler configuration than Dunsby’s. They explained 
qualitatively two mechanisms of resolution loss due to the possible light clipping and the 
inclined detection PSF. Because their experimental oblique angle was explored only up to 14° 
where such effect is small, no theoretical study on resolution was reported. On the other hand, 
Smith et al. [2,3] showed point-scanning oblique plane microscopy using a remote scanning 
technique. They studied non-isotropic lateral resolution for all oblique angles in terms of 
spatial cutoff frequencies deduced from the region of support for the 3D OTF in Fourier 
space. However, their analysis for point-scanning microscopy is not applicable to wide-field 
oblique plane imaging because their system has no light clipping with a different overall PSF. 
Accurate theoretical resolution of direct oblique plane imaging is thus still unclear. 

In this paper, we theoretically calculate the accurate optical resolution of the wide-field 
oblique plane imaging for the first time. We derive a mathematical expression of the 3D pupil 
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function influenced by light clipping in any oblique angle between 0° and 90°. Then we 
calculate 2D intensity PSFs based on the vectorial diffraction theory that gives accurate 
results even for high NA systems (NA>0.6). FWHMs of the PSFs with different oblique 
angles are calculated to characterize the lateral resolution. We also calculate vectorial OTF 
from the FFT of the PSF to examine the effects of oblique angles on the spatial cutoff 
frequency. 

2. Schematic of the oblique plane imaging 

An oblique plane imaging system [1] is schematically shown in Fig. 1. The back focal planes 
of the two aplanatic objective lenses are relayed back-to-back by the L1-L2 optics. This 
layout compensates for aberrated optical wavefronts from the out-of-focus object near focal 
regions by the odd parity condition [8,9], thereby extending the depth of field [9]. Thus for an 
object lying within this range, the diffraction-limited 3D replica is formed in the remote space 
with a 3D isotropic magnification of the ratio of object/remote medium indices. The OBJ2-L3 
constitutes another microscope to capture the oblique plane image of the remote object. 
Figure 1(a-c) shows that the α-tilted plane (xαyα) in the object space is optically conjugate 
with the detector plane in the image space due to the α/2-tilted mirror in the remote space. 
The pink beam in Fig. 1 shows how light is clipped at the OBJ2 induced by the tilted mirror. 
This light loss leads to a partial use of the OBJ2’s exit pupil (the blue arc) and this 
rotationally asymmetric pupil yields an anisotropic resolving power. The NA or half-cone 
angle of the OBJ2 should be chosen greater than the mirror tilt angle, α/2, to prevent a 
complete loss of light from detection. For example, an axial plane imaging (α = 90°) requires 
NA greater than 0.71 in air medium. In general, the use of as high NA as possible is desirable 
to minimize the clipping of the signal light. 

 

Fig. 1. Conceptual diagram of oblique plane imaging. OBJ: objective lens (EP: exit pupil; 
BFP: back focal plane); BS: beam splitter; L: lens; M: mirror. The beam path for an on-axis 
point object to the detector is shown in green, while the light clipping at the OBJ2 induced by 
the tilted mirror is illustrated in pink. Coordinates at (a) object space: an oblique plane (xαyα) 
inclined by α with respect to the focal plane (xy) of the OBJ1, (b) remote space: the 1 1x y  image 
plane conjugate with the xαyα plane is rotated back to the 1 1' 'x y  plane (the focal plane of the 
OBJ2) by the α/2-tilted mirror, and (c) image space: the lateral detection plane (2 2x y ) is 
conjugate with the xαyα object plane. Rays (green, light blue) from two points on the oblique 
xαyα plane are focused on the 2 2x y  plane. 

We note that the optical arrangement in Fig. 1 enables a 2D imaging of any oblique plane 
by controlling the tip-tilt of the small mirror M, of which size is about the working distance of 
the objective. In addition to this tip-tilt, a 3D translation of the mirror could also be realized to 
properly shift the image plane with neither specimen agitations nor additional optical 
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aberrations induced. Furthermore, the PSF in direct oblique plane imaging can be considered 
as a detection PSF in other types of oblique plane microscopy using either beam scanning or 
selective-plane illumination if the same light clipping is involved. For such a system, a variety 
of illumination methods among point-, line-scanning, light-sheet, and so on could be coupled 
through either BS1 or BS1’ or other optical paths not shown in Fig. 1. The overall PSF of the 
imaging system then becomes the multiplication of the corresponding illumination and 
detection PSFs. 

3. Theory and formulation 

Classical scalar diffraction theory simplified with the Fresnel approximation is only 
applicable to low NA or paraxial imaging systems [10]. It loses its validity in high NA 
systems (NA>0.6) which we mainly deal with for oblique plane microscopy. Scalar Debye 
theory [11], which is a more advanced version of scalar diffraction theory, does not use the 
paraxial approximation and considers an apodization factor of high aperture systems. 
However, it still neglects the vectorial nature of the light. Depolarization [11] in high NA 
imaging system influences on the PSF, making its main lobe broader along the incident 
polarization direction than that predicted by the scalar Debye theory. To accurately predict the 
performance of oblique plane imaging for any oblique angle and NA regimes, we adopt the 
vectorial diffraction theory [12] that considers the polarization of electromagnetic waves. 

3.1. Vectorial diffraction theory 

 

Fig. 2. Diffraction geometry. O: geometrical focus; X: an observation point; Y: a point on the 
exit pupil surface Σ where the incident field is refracted to 

�

SE . The distance YX  is 'R r r≡ −� � . 

Derived from a vector analogue of the Green’s second identity, the vectorial Kirchhoff 

integral [13,14] for a time-independent electric field 
�
E  at an observation point 

�
r  is 

expressed in SI unit as 

 ( ) ( ) ( )' '1 ˆ ˆ ˆ( ) ,
4

j G G G dsω
π Σ

 = × + × ×∇ + ⋅ ∇ ∫∫
� � � ��

� S S SE r N B N E N E  (1) 

where Σ is the wavefront surface over the exit pupil of an imaging system, N̂ is a unit ray 

vector (normal to the wavefront), 
�

SE  and 
�

SB  are electric and magnetic fields respectively at 

the exit pupil, ω is the temporal frequency of the field, G is the Green function of a diverging 
spherical wave /ikRe R  with the distance R shown in Fig. 2, k is the wave number in medium, 

and '∇  is the gradient operator with respect to '
�
r . Applying Gauss’s law, vector identities and 

assuming k≫1/R, Eq. (1) is reduced to 
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4

ik
G ds

π Σ

−  = − ⋅ + ⋅ ∫∫
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� S S SE r E E R N N R E  (2) 

In an aplanatic imaging system, parallel incident rays are assumed to refract at the 

spherical exit pupil towards the geometric focal point, making N̂  and - '
�
r  parallel in Fig. 2. 

This aplanatic energy projection results in an angular apodization factor of 
1
2cos θ  [15]. 

Assuming that there is no change in polarization angles upon the refraction itself, the complex 

amplitude of the field 
�

SE  is calculated on the geometric ground [16] as 

 
1
2

ˆ ˆ ˆ ˆ ˆ( ) [( ) ] ( )

ˆ ˆ ˆ ˆˆ( ) ( )[( ) ]
cos θ

× ⋅ × × × ⋅ × ×
⋅ + ⋅

× ⋅ × × ×× × ⋅

 
=  

 
 

� � � � �� �

� � �� � � �

� inc inc inc inc inc inc inc

S

inc inc inc incinc inc inc

N k E N k N k k E N k N

N k E N k N k NN k k E
E  (3) 

where 
�

incE  is an incident electric field with a wavevector of 
�

inck  (Fig. 2). 

Assuming that the observation point is very close to the focal point O compared with the 
distance R in aplanatic systems, we can use the Debye approximation [17], i.e., 

' 'ˆ ˆ( )≈ ⋅ −= −
� � � ��

N NR r r rr . Then the vectorial Kirchhoff integral, Eq. (2), is further simplified to 

the vectorial Debye integral as 

 
'

ˆ

'
( )

ikr
ike

e ds
i rλ

⋅

Σ

= ∫∫
�� ��

� S
N rE r E  (4) 

where λ is the wavelength in an immersed medium of which refractive index is n. The Debye 
approximation makes intensity distribution axially symmetric along the optical axis (z) and is 
valid if the Fresnel number NF = fNA2/(nλ0) is much greater than unity [18–20], where f is the 
focal length and λ0 is the vacuum wavelength. Most of the commercial objective lenses of any 
NA suffices NF > 100. We confirmed from our numerical calculation that this criterion assures 
negligible axial shifts and an almost perfect match between Eq. (4) and (2) for any NA. 
Equation (4) also provides a different perspective of light propagation: a superposition of 
secondary plane wavelets [21], which are not conventional spherical wavelets. 

Once the electric field is evaluated, the time-averaged electric energy density or intensity 
can be obtained by the modulus squared of the electric fields. 

3.2. Pupil function in oblique plane imaging 

An evaluation of the vectorial Kirchhoff or Debye integrals requires a mathematical 
specification of the effective pupil area as conceptually explained in Fig. 1. In this section, we 
derive the normalized 3D pupil function P(θ,φ) at the exit pupil of the object space in the 
spherical coordinate (θ: polar angle, φ: azimuthal angle). As illustrated in Fig. 3(a), an overlap 
between the original circular pupil area of the objective lens and its reflected pupil area by the 
α/2-tilted mirror forms the effective pupil. We divide this circularly asymmetric pupil in 
oblique plane imaging into Σ1 (rotationally symmetric part) and Σ2 (the rest area) for 
mathematical convenience of the integral calculation. Appendix A includes more details. Σ1 
disappears at high α regime where Cy > 0 in Eq. (10). The pupil function for both Σ1 and Σ2 

can be described as 

 
1

1, [0, ], [0,2 ], 0
( , )

0,
C Cy

P
otherwise

θ θ φ π
θ φΣ

∈ ∈ <
= 


        

   
 (5) 

 
2

max 1 21, [ , ], [ ( ), ( )]
( , )

0,
CP

otherwise

θ θ θ φ φ θ φ θ
θ φΣ

∈ ∈
= 


    

   
 (6) 
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where θC, θmax, φ1(θ), and φ2(θ) are defined in Appendix A. The bounds of θ, φ are expressed 
as a function of α, NA and n. Figure 3(c) shows several pupil functions that change with 
oblique angles. 

 

Fig. 3. (a) 2D and (b) 3D effective pupil geometry in the normalized object space. In (a), the 
circular pupil area of the objective lens and its mirror image by the α/2-tilted virtual mirror 
(red dashed line) are illustrated. Their overlapped area forms the effective pupil. (c) Oblique 
angle dependence of the effective pupil shapes (NA = 1.4, n = 1.52). 

3.3. Point spread function 

To calculate the point spread function, we assume that an uniform electric field from a quasi-
monochromatic, point source at infinity is incident to the exit pupil with a linear polarization 

angle of φ0 with respect to the x-axis, i.e., 0 0 0(cos , sin , 0)E φ φ=
�

  incE  in Fig. 2. The electric 

field near focal regions for the aplanatic oblique plane imaging system can be calculated from 
Eq. (4) (with the prefactor neglected) to be 
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1 2
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0
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,

,

sin( ) sin cos( ) cos cos

sin( ) cos cos( ) cos sin

cos( ) sin

( , ) ( , ) cos

, , ,

x

y

z

E

E
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P P

x y zφ

φ

φ

φ

φ φ φ φ φ θ φ

φ φ θ φ φ θ φ

φ φ θ

θ φ θ φ θΣ Σ

Σ

− + −

− − + −

−

+

      = =         

×

∫∫
�

�

                                      

         

E

( )sin cos sin sin cos
sin

ik x y z
d de θ φ θ φ θ θ φ θ− + −×                             

 (7) 

Then the two-dimensional, in-focus intensity PSF (IPSF) over an oblique plane with a tilt 
angle α is 
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For an unpolarized wave (see [12]), 2D IPSF can be derived as 
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 (9) 

Both Eq. (8) and (9) are evenly symmetric with respect to xα and yα. Thus a numerical 
calculation of any one quadrant is sufficient. For faster numerical calculation, Eq. (9) can be 
further modified to Eq. (15) in Appendix B. 

3.4. Optical transfer function 

In low aperture scalar theory or Fourier optics where an imaging system is linear and space-
invariant, OTF is the Fourier transform of PSF. In addition, analytical expressions for the 2D 
and 3D OTF for low aperture systems exist. The scalar Debye theory for circular, high 
aperture systems gives analytical 3D OTF. However, analytical 2D OTF does not exist and 
instead is numerically calculated from the projection of the 3D OTF [22]. No known explicit 
forms of 2D or 3D vectorial OTFs were found from our knowledge. On the other hand, they 
can be numerically calculated from either the Fourier transform of the vectorial PSF [23] or 
an autocorrelation of the vectorial pupil functions even for arbitrarily-shaped pupils [24,25]. 
Here we evaluate 2D vectorial OTFs for oblique plane imaging by performing the FFT of the 
2D vectorial PSF to study the spatial cutoff frequency. 

4. Numerical simulation results 

The OBJ1 and the OBJ2 were considered as the same oil-immersion (n = 1.52) objective lens. 
We considered three different cases of NA: 1.30, 1.40 and 1.49. The L1 and the L2 were 
considered identical. The light source was assumed to be a self-luminous, unpolarized, quasi-
monochromatic (λ0 = 519 nm), and isotropic point source. The Fresnel numbers of these high 
NA objective lenses are well above 1000, validating the Debye approximation. 

4.1. Point spread function 

The 2D intensity PSFs obtained from the vectorial Debye integral, Eq. (15), are shown in Fig. 
4. The PSF at α = 0° is equal to the conventional PSF of the circular aperture system of which 
resolution is isotropic in the lateral plane. The main lobe of the PSF stretches to the yα 
direction more apparently at higher oblique angle due to the reduced pupil area, which results 
in an anisotropic lateral resolving power. This numerical simulation shows that there is also a 
slight PSF stretch along the xα direction, which can be expected from the minor pupil loss 
along that direction as shown in Fig. 3(c). As a quantitative measure of these degradations, 
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the FWHM was calculated in Fig. 5. The optical resolution decreases when the oblique angle 
increases from α = 0° (conventional lateral imaging) to α = 90° (axial plane imaging) due to 
the reduced effective NA. The FWHM ratio of such two extreme angles at the NA of 1.30 
(1.40, 1.49) is 1.33 (1.16, 1.06) and 4.39 (2.92, 2.09) along the xα- and yα-axis, respectively. 
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Fig. 4. 2D vectorial intensity PSF of the oblique plane imaging at different oblique angles (α) 
and NAs, for λ0 = 519 nm (unpolarized) and n = 1.52 (oil immersion). The axis unit is µm. The 
PSF elongates mainly along the vertical direction (ya) where the significant light clipping 
occurs in oblique plane imaging. Higher NA makes such an anisotropic resolving power less 
sensitive to the oblique angle. 

We also compared our results of FWHMs in oblique plane imaging with those calculated 
from the inclined PSF. For the inclined PSF, as shown in the inset in Fig. 5, the 3D vectorial 
PSF from a conventional circular aperture system was rotated about the x-axis to calculate a 
FWHM for each inclination α. While this rotation keeps the FWHM along the x-axis 
unchanged (green dashed curve), it gives certain FWHM deterioration along the y-axis (green 
line curve) originated from the well-known “ellipsoidal” PSF. Thus the rate of the increase in 
FWHMy calculated from the inclined PSF slows down near 90° and the FWHM converges to 
the FWHMz of the 3D PSF. This nature is quite different from the sharp increase near 90° in 
our simulation results together with the FWHM along the yα-axis at α = 90° not limited to the 
FWHMz of the conventional PSF. It is clear that the tilt of the conventional PSF fails to 
predict both the minor x-resolution loss and the y-resolution trend over the oblique angles, 
both of which are attributed to the pupil area loss from the light clipping. This result tells that 
the inclined slice of the conventional 3D PSF is different from the light-clipped 2D PSF that 
we calculated. 
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Fig. 5. FWHM of the vectorial PSFs at different NA values along the xα- and yα-axis over the 
oblique angle. For comparison, the FWHM from the inclined 3D vectorial PSF of the circular 
aperture system (the inset in the middle) is also plotted. 

4.2. Optical transfer function 

We first verified an accuracy of OTF calculated by the FFT method. For the scalar Debye 2D 
OTF for a circular aperture system (α = 0°), we can calculate it by either the FFT of the scalar 
Debye 2D PSF or the 2D projection of the analytical scalar Debye 3D OTF. We compared the 
OTFs obtained from both methods in Fig. 6. It was found that in the FFT method PSF data 
with a sufficient number of sidelobes is essential for accurate results: although higher 
sidelobes have several orders of magnitude lower intensity than the peak intensity of the main 
lobe, they still contribute much on OTF curves especially at low-to-middle spatial frequency 
regimes. Utilizing 2D PSF data containing up to 25 sidelobes along both the x and y 
directions led to a good agreement between numerical (FFT-based) and analytical (2D 
projected) OTFs: black vs. red curve in Fig. 6(b). The relative error in modulation transfer 
function (MTF) value was smaller than 0.013 over the entire spatial frequency. A numerical 
OTF from the PSF with 60-sidelobes almost perfectly overlapped with the analytical one, but 
this required about six times more computational time. 

 

 

-5 -2.5 0 2.5 5
-5

-2.5

0

2.5

5

-8

-7

-6

-5

-4

-3

-2

-1

0

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

 

 

FFT ( 5 sidelobes)
FFT (15 sidelobes)
FFT (25 sidelobes)
Analytical

0 0.1 0.2 0.3
0.8

0.9

1

 

 

x (µm)

y 
(µ

m
)

Normalized spatial frequency

O
T

F

log10(a) (b)

 

Fig. 6. (a) Scalar Debye intensity PSF used to calculate an OTF by FFT (NA = 1.4, n = 1.52, λ0 
= 519nm, α = 0°). The green, blue and red rectangles contain 5, 15 and 25 sidelobes 
respectively. (b) A comparison between FFT-based and analytical scalar Debye OTFs in the 
normalized spatial frequency by n/λ0. The PSF with enough sidelobes is necessary for an 
accurate OTF calculation. The inset shows details near the low frequency regimes. 

After confirming the accuracy of our FFT-based method, we numerically calculated the 
vectorial OTF in oblique plane imaging which has no analytical solution. We evaluated Eq. 
(15) in MATLAB’s parallel computing environment to obtain the vectorial 2D PSF data with 
25-sidelobes along the xα and yα directions, followed by the 2D FFT operation. Figure 7 
shows the 2D vectorial OTF of direct oblique plane imaging on the spatial frequency 
coordinates mx-my (normalized by n/λ0), which correspond to the xα and yα directions in real 
space. As the oblique angle increases, the bandwidth (or cutoff frequency) along the my-
direction shrinks much faster than that along the mx-direction, which is qualitatively self-
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explanatory from the anisotropic PSFs in Fig. 4. Cross-sections of those OTFs were examined 
in Fig. 8. For α = 0°, compared with the scalar Debye OTFs, the vectorial OTFs have lower 
modulation over the spatial frequency range. This MTF degradation is caused mainly by the 
depolarized light component along the optical axis that induces PSF broadening, which is 
neglected in the scalar theory. On the other hand, the cutoff frequency in the scalar Debye 
theory is 2NA/n, i.e., 1.71 (1.84, 1.96) for the NA of 1.30 (1.40, 1.49), corresponding to 5.0 
(5.4, 5.7) cycles/µm in physical coordinate. We determined the numerical cutoff frequency of 
the vectorial OTF at a threshold MTF of 0.01% to ignore the minor MTF oscillations 
(numerical artifacts) occurring near and above the cutoff frequency. The calculated vectorial 
cutoff frequencies for α = 0° were consistent with the analytical scalar Debye cutoffs within 
1% error. 
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Fig. 7. 2D vectorial OTF of the oblique plane imaging at different oblique angles (α) and NAs 
(λ0 = 519 nm, n = 1.52). The MTF cutoff contours are drawn in red. The lateral coordinate is 
normalized by n/λ0. 
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Fig. 8. Vectorial OTF cross-sections along the horizontal (mx) and vertical (my) directions for α 
= 0, 60, and 90°. The scalar Debye OTF (both analytical and numerical) for α = 0° is also 
plotted for comparison. The spatial frequency is normalized by n/λ0 (λ0 = 519 nm, n = 1.52). 

From the OTF cross-sections for α = 60, 90° in Fig. 8, we clearly see a downward trend in 
both MTF value and cutoff frequency with the oblique angle. This change is plotted in Fig. 9. 
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The cutoff frequency along the mx axis drops by 21% (10%, 5%) for the NA of 1.30 (1.40, 
1.49) as the oblique angles increases from 0° to 90°. Similarly, the my cutoff frequency 
reduces up to 80% (71%, 60%). The cutoff frequency declines quantitatively less for lenses 
with higher NA. 
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Fig. 9. The variation in the cutoff frequency of the vectorial OTF along the horizontal (mx) and 
vertical (my) directions over the oblique angle. 

5. Conclusion and discussion 

Oblique plane imaging using the remote tilting method provides direct 2D images of any 
oblique plane of interest in 3D samples. Despite its innovative method of wide-field imaging, 
no comprehensive study on the anisotropic change in optical resolution upon the oblique 
angle due to the light clipping has been reported. Here we investigated this behavior 
quantitatively by calculating the vectorial PSF and OTF using the vectorial diffraction theory. 
Despite such variations in resolution more sensitive at higher oblique angles, sub-µm lateral 
resolution is still attainable at higher NA with visible light. The direct 2D imaging capability 
of any oblique angle that is controllable would prevail over the variable resolution in many 
biological studies. Also, we found that the oblique slice of the conventional 3D PSF based on 
a circular pupil does not explain the 2D PSF in wide-field oblique plane imaging. 

The effect of the light clipping on the resolving power could be neglected for the low 
oblique angle regime. In our numerical simulations, the PSF’s FWHM increases along the 
mirror-tilt direction less than 10% for the oblique angle up to 16° (20°, 27°) for the NA of 
1.30 (1.40, 1.49) in oil medium at the vacuum wavelength of 519 nm. Here, we assumed a 
uniformly incident electric field to the exit pupil with a perfectly unpolarized state. In an 
experimental attempt to measure the detection PSF with a fluorescent point object, what has 
to be isolated are the finite size of the object convolved into the PSF and the properties of 
dipole radiation or scattering of the object [24]. 

We emphasize that our PSF formulation is not restricted to the wide-field oblique plane 
imaging. It can be used to obtain the detection PSF for other methods of oblique plane 
imaging as long as they undergo similar light clipping caused by a tilted optical component. 

Appendix A. Derivation of the point C coordinate and the bounds of the pupil function 

In Fig. 3, the equation of the plane ABC is 21 ( / )cot / sin 0NA ny z α α−− − = . Plugging this 

equation into the unit sphere equation (x2 + y2 + z2 = 1 with x = 0) gives the coordinate values 
of the point C as 

 ( )
2 2

, ,z 0, cos 1 sin , sin 1 cos .C C C
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n n n n
α α α α
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(10) 
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With a Cartesian-to-spherical coordinate relation defined by (x, y, z) ≡ (sinθcosϕ, sinθsinϕ, 
-cosθ), the bounds of the pupil area are given by 
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Appendix B. The modification of Eq. (9) for faster numerical calculation 

For the circular symmetric area Σ1, the double integral can be reduced to a single integral as 
shown in [12,15]. For Σ2, the integration area can be reduced by half due to the even 
symmetry of the bounds of φ. These considerations lead to 
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