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SUMMARY
Dual porosity Biot-Barenblatt poroelastic model is analyzed. P-wave reflection at an
impermeable interface between elastic and dual-porosity media is investigated.
Asymptotic low-frequency analysis of the planar p-wave reflection coefficient from a
hydrocarbon reservoir shows that the frequency-dependent component is proportional
to the square root of the reservoir fluid mobility.  Frequency-dependent seismic
attribute analysis has been applied for mapping of high fluid mobility zones of
oil-saturated reservoirs.  As the obtained asymptotic scaling links reservoir rock and
fluid properties with seismic attributes, it has a great potential for hydrocarbon
exploration and production.
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Introduction 
 
The fundamental theory of elastic wave propagation in a fluid-saturated porous rock has been 
developed by Biot (1956ab).  Wave propagation in rocks with two scales of permeability was 
analyzed by Pride and Berryman (2003ab). The classical model of fractured reservoir 
developed in petroleum engineering literature (Barenblatt et al., 1960, Warren and Root, 
1963) is employed.  According to this model, the porous medium can be presented as a 
superposition of two media.  Both of them are presented in every representation elementary 
volume.  One medium, fractures, supports the transport properties of the rock, whereas the 
other one, matrix, provides the volume where the fluid is stored.  The matrix permeability is 
low relative to that of the fractures and the flow between matrix blocks can be carried out 
through the fractures only. We have developed asymptotic analysis of the reflection 
coefficient from the dual medium in the low-frequency range of seismic spectrum taking into 
account both Biot’s poroelasticity and Barenblatt’s dual medium. We use Biot-Barenblatt 
model for frequency-dependent attribute analysis of seismic data to map oil-saturated 
reservoir zones with high permeability.  
 
Governing Equation 

We have obtained the governing equations in a dimensionless form and use fi
ρ κω

ε
η

=  as the 

small dimensionless parameter in our asymptotic analysis. Here fρ  is the density of reservoir 
fluid, κ  is reservoir rock permeability, η  is fluid viscosity, ω  is the angular frequency of the 
signal and i is the imaginary unity.  Below are an asymptotic analysis of a harmonic-wave 
solution to the governing equations and a simple expression of the planar p-wave reflection 
coefficient.  
 
Denote by u the skeleton displacement, W Darcy fluid velocity and p fluid pressure.  Then, 
from the basic principles of filtration theory and linear elasticity, one obtains 
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Here t is time and x is the coordinate aligned with wave propagation; ργ  is the ratio of fluid 

density fρ  to the saturated-medium bulk density bρ , 
f

D
κ

φηβ
=  is the hydraulic diffusivity, 

where φ  is the reservoir rock porosity and fβ  is adiabatic fluid compressibility.  Velocities vb 
and vf are defined as 
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We seek a solution to system of equations (1) in the form of harmonic plane wave 
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where k is a complex wave number yet to be determined. For asymptotic analysis, the 
following dimensionless variables are introduced 
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Then, equations (1) take on the following dimensionless form 
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Where f
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= . In this study, we assume that ( )1Oθ = . We seek an 

asymptotic solution as power series with respect to the small parameter ε : 
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Two solutions corresponding to slow and fast wave are 
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Where 
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. Note that all coefficients in Equations (7)-(8) are real. Equations (4) 

and (7)-(8), in particular, imply that the slow wave propagates in the fluid, whereas the fast 
wave does not involve the fluid motion.  In addition, the first asymptotic terms of the wave 
number and attenuation factor of the slow wave are equal to each other and asymptotically 
proportional to ω : 
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For the fast wave, the wave number and attenuation factor asymptotic expressions are 
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Thus, the slow wave attenuation factor, as a function of the frequency, is of higher order than 
that of the fast wave.  

Reflection Coefficient 
 
Consider a plane interface between two media: one is the overburden formation and the other 
one is a fluid-saturated reservoir. The overburden formation is modeled as an elastic medium 
with density 1ρ  and compressibility 1β . For the reservoir, we adopt the poroelastic model. An 
incident wave arriving at the interface between the media is partially reflected and partially 
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transmitted. Asymptotic analysis performed in the previous section can now be extended to 
the investigation of the dependence of the reflection coefficient on the frequency. The 
transmitted wave has two components: the slow one and the fast one. We will denote u1 and 
u2 the skeleton displacement in the overburden and reservoir rock, respectively. Mass and 
momentum conservation at the interface leads to the following boundary conditions: 
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Let U0 be the amplitude of the incident wave.  Then the total displacement in the overburden 
is ( ) ( )1 1

0 0

i t k x i t k xU e RU eω ω− ++ , where R is the reflection coefficient. In the reservoir, the slow and 
fast waves have the amplitudes TSU0 and TFU0, respectively. Here TS and TF are transmission 
coefficients for the slow and fast components of the transmitted wave. Applying Equations 
(4), (6)-(10), for the Darcy velocity and the fluid pressure amplitude, one obtains 
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Note that the assumption ( )1Oθ =  puts the relaxation time (equivalently, the Biot’s tortuosity 
factor) into the higher-order terms, only. Substitution of Equations (12)-(13) into the 
boundary conditions (11) suggests that the asymptotic expansion of the reflection coefficients 
have the form 
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For the frequency-independent component of the reflection coefficient R0, one obtains 
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where Z1  is the acoustic impedance of the overburden formation and Z2 is an impedance for 
the reservoir medium.   
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Frequency-dependent component of the reflection coefficient (14) is strongly affected by the 
rock permeability. We have used this property of the dual medium model and expression (14) 
for frequency-dependent seismic attribute analysis of real field data. 
 



 

 

Field example 
 
Here is an example of frequency-dependent seismic attribute analysis of the oil-saturated 
reservoir based on the Biot-Barenblatt model. The 3D seismic data were recorded using 
conventional acquisition technology. The data from the well logs indicate that the reservoir is 
10-12 m thick, consist of sandstone, and is 3 km deep. The reservoir rock porosity varies 
between 0.16 and 0.18 and Core analysis shows the permeability does not exceed 100 milli-
Darcy. The produced fluid composition and production rates vary from well to well. High-
porosity and high-permeability material is distributed close to crest of the structure. Analysis 
of seismic data suggests that the wells with the highest oil production rate are located close to 
the fault zones. This observation implies that fractures resulting from faulting may contribute 
significantly to the permeability of the reservoir. The wells with the highest oil production 
rate (red circles) are located near the zones of the high deviation of the map of the first 
derivative with respect to the frequency obtained at low frequency (10 Hz). It is clear that 
frequency-dependent analysis at low frequency domain enhances detection of the 
hydrocarbons and provides information about reservoir properties. As the obtained asymptotic 
scaling links reservoir rock and fluid properties with seismic attributes, it has a great potential 
for hydrocarbon exploration and production. 
 

 
 
Figure  1.  3D seismic data (left) are used for frequency-dependent attribute analysis. The attribute map 
(right) shows the image of the first derivative (gradient) of reflected wave amplitude in frequency at 
low frequency (10 Hz). The map is done along reservoir surface. Red lines indicate faults and red 
circles show the positions of the wells with relatively high oil production rate. Anomalies of the 
gradient indicate oil-saturated reservoir zone with high permeability. 
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