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Preface

The use of computational modelsis an essential element of the environmental regulatory process.
The complex relationship between environmental emissions, the quality of the environment, and human
and ecological impacts are linked by modeling in the regulatory process. The U.S. Environmental
Protection Agency (EPA) may make a scientific determination of basic environmental goals, such as how
clean our air and water need to be to protect human health and the environment. But determining how
those goals can be met while simultaneously allowing for basic economic services, such as transportation,
energy, and agriculture, requires that we examine the links, for example, between the auto emission
standards and the attainment of ambient air quality standards or between the point sources of water
pollution and the quality of water. The spatial and temporal scales on which environmental controls and
environmental quality are linked generally do not allow for an observational approach to understand the
links between economic activity and environmental quality. These linkages are made by modeling.

The task undertaken by this committee for the National Academies was to assess evolving scientific
and technical issues related to the development, selection, and use of computational and statistical models
in the regulatory process at EPA. In thisreport, the committee provides advice concerning management,
evaluation, and use of models at the agency. Through public workshops and other means, the committee
has considered cross-discipline issues related to model development and use, performance evaluation,
peer review, uncertainty, and quality assurance—quality control. The committee assessed scientific and
technical criteriathat should be considered in deciding whether amodel and its results could serve as a
reasonable basis for environmental regulatory activities. It aso examined case studies of model
development, evaluation, and application as a basis for arriving at guiding principles.

This report has been reviewed in draft form by persons chosen for their diverse perspectives and
technical expertise in accordance with procedures approved by National Research Council (NRC) Report
Review Committee. The purpose of thisindependent review isto provide candid and critical comments
that will assist the institution in making its published report as sound as possible and to ensure that the
report meets institutional standards of objectivity, evidence, and responsiveness to the study charge. The
review comments and draft manuscript remain confidential to protect the integrity of the deliberative
process. We wish to thank the following for their review of thisreport: George V. Alexeeff, California
EPA; EulaBingham, University of Cincinnati; John Bredehoeft, the Hydrodynamics Group; E. Donald
Elliott, Willkie, Farr & Gallagher, LLP; Paul Gilman, Oak Ridge Center for Advanced Studies; James
Hammitt, Harvard Center for Risk Analysis; Michael Koerber, Lake Michigan Air Directors Consortium;
Charles Lucas, American International Group, Inc. (retired); Virginia McConnell, Resources for the
Future, Inc.; Jana Milford, University of Colorado and Environmental Defense; Lee Mulkey, University
of Georgia; Kenneth Reckhow, Duke University; and Scott Zeger, Johns Hopkins University.
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Although the reviewers listed above have provided many constructive comments and suggestions,
they were not asked to endorse the conclusions or recommendations, nor did they see the final draft of the
report beforeitsrelease. The review of this report was overseen by John Bailar, University of Chicago
(retired), and David Allen, University of Texas. Appointed by the NRC, they were responsible for
making certain that an independent examination of this report was carried out in accordance with
institutional procedures and that all review comments were carefully considered. Responsibility for the
final content of this report rests entirely with the committee and the institution.
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Summary

Many regulations issued by the U.S. Environmental Protection Agency (EPA) are based on
results from computer models. EPA isaglobal leader in advancing and using modelsin the
environmental regulatory decision process. Y et the agency has not sufficiently leveraged opportunities to
improve its regulatory decisions by adopting a comprehensive strategy for periodically evaluating and
refining its models. This report recommends a series of guidelines and principlesthat, if adopted, will
improve environmental regulatory models and decisions made by the agency. Moreover, adoption of
these principles will enhance the agency’ s ability to respond to recent information-quality requirements
by allowing EPA to provide more informed responses to outside challenges and reduce the likelihood of
erroneous data rel eases that can prompt challenges.

Models have along history of helping to explain scientific phenomena and of predicting
outcomes and behavior in settings where empirical observations are limited or not available. The use of
models has resulted in great advances in scientific understanding and in improvementsin awide array of
endeavors. However, by their very nature, all models are simplifications and approximations of the real
world. Complex relationships are often simplified, and relationships viewed as unimportant are
sometimes eliminated from consideration to reduce computational difficulties and increase transparency.

This report looks specifically at the use of computational models in environmental regulatory
activities, particularly at EPA. The use of computational modelsis central to the regulatory decision-
making process because the agency must do prospective analyses of its policies, including estimating
possible future effects on the environment, human health, and the economy. Obtaining a comprehensive
set of measurement datais not feasible in many cases because of time and resource constraints. The
agency uses models to generate estimates (or predictions) when data are not available. EPA also uses
models to analyze measurement data for trends and effects. The results of models can become the basis
for such decisions asinitiating environmental cleanup or regulation. In sum, models are critical tools that
help to inform and set priorities in environmental policy development, implementation, and evaluation at
EPA.

Because of the critical role played by models, EPA has developed a variety of policies and
programs to improve models and their use at the agency. One laudable step has been the establishment of
the Council for Regulatory Environmental Modeling (CREM) in 2000 to support modeling activities
across the agency and to provide an important resource for interested parties outside of EPA.

The National Research Council (NRC) convened the Committee on Models in the Regulatory
Decision Process in response to a request from CREM to independently assess evolving scientific and
technical issues related to the selection and use of computational and statistical modelsin decision-
making processes at EPA. Thefull chargeis provided in Box S-1 at the end of the Summary.

MODEL USE IN THE REGULATORY PROCESSAT EPA

Models will always be constrained by computational limitations, assumptions, and knowledge
gaps. They can best be viewed astools to help inform decisions rather than as machines to generate truth
or make decisions. Scientific advances will never make it possible to build a perfect model that accounts
for every aspect of reality or to prove that a given model is correct in all respects for a particular
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regulatory application. These characteristics make evaluation of aregulatory model more complex than
solely a comparison of measurement data with model results. They suggest that model evaluation be
viewed as an integral and ongoing part of the life cycle of amodel, from problem formulation and model
conceptualization to the development and application of a computational tool. Evaluation of regulatory
models also must address a more complex set of trade-offs than evaluation of research models for the
same class of models. Regulatory model evaluation must consider how accurately a particular model
application represents the system of interest while being reproducible, transparent, and useful for the
regulatory decision at hand. Meeting these needs may require different forms of peer review, uncertainty
analysis, and extrapolation methods. It also implies that regulatory models should be managed in away
to enhance models in atimely manner and assist users and others to understand a model’ s conceptual
basis, assumptions, input data requirements, and life history.

EPA has played a major role in advancing the science of environmental modeling. However, as
with virtually any component of regulatory decision making, improvements to EPA’s efforts are possible.
Many of the recommendations in this report are derived from areview of current modeling practices
within individual EPA research and program offices. This report aims to provide an across-agency vision
for the use of modelsin the future. 1n keeping with the study charge, the report provides a set of
guidelines for improving the use of models to support regulation. The committee offers recommendations
in three areas of the modeling process. (1) model evaluation; (2) principles for model development,
selection, and application; and (3) model management.

MODEL EVALUATION
Life-Cycle Model Evaluation

Models begin their life cycle with the identification of a need and the development of a
conceptual approach, and proceed through building of a computational model and subsequent
applications. Models also can evolve through multiple versions that reflect new scientific findings,
acquisition of data, and improved algorithms. Model evaluation is the process of deciding whether and
when amodel is suitable for itsintended purpose. This processis not a strict validation or verification
procedure but is one that builds confidence in model applications and increases the understanding of
model strengths and limitations. Model evaluation is a multifaceted activity involving peer review,
corroboration of results with data and other information, quality assurance and quality control checks,
uncertainty and sensitivity analyses, and other activities. Even when amodel has been thoroughly
evaluated, new scientific findings may raise unanticipated questions, or new applications may not be
scientifically consistent with the model’ sintended purpose.

Recommendations

Evaluation of aregulatory model should continue throughout the life of amodel. In particular,
model evaluation should not stop with the evaluation activities that often occur before the public release
of amodel but should continue throughout regulatory applications and revisions to the model. For all
models used in the regulatory process, the agency should begin by developing a life-cycle model
evaluation plan commensurate with the regulatory application of the model (for example, the scientific
complexity, the precedent-setting potential of the modeling approach or application, the extent to which
previous evaluations are still applicable, and the projected impacts of the associated regulatory decision).
Some plans may be brief, whereas other plans would be extensive. At a minimum each plan should

e Describe the model and itsintended uses.

o Describe the relationship of the model to data, including the data for both inputs and
corroboration.

o Describe how such data and other sources of information will be used to assess the ability of the
model to meet its intended task.
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o Describe al the elements of the evaluation plan by using an outline or diagram showing how the
elements relate to the model'slife cycle.

o Describe the factors or events that might trigger the need for major model revisions or the
circumstances that might prompt users to seek an alternative model. These could be fairly broad
and qualitative.

o ldentify responsibilities, accountabilities, and resources needed to ensure implementation of the
evaluation plan.

It isessential that the agency is committed to the concept that model evaluation continues
throughout a model’s life. Model evaluation should not be an end unto itself but a meansto an end,
namely, amodel fitted to its purpose. EPA should develop a mechanism that audits the evaluation
process to ensure that an evaluation plan is devel oped, resources are committed to carry it out, and
modelers respond to what islearned. Although the committee does not make organizational
recommendations or recommendations on the level of effort that should be expended on any particular
type of evaluation, it recognizes that the resource implications for implementing life-cycle model
evauation are potentially substantial. However, given the importance of modeling activitiesin the
regulatory process, such investments are critical to enable environmental regulatory modeling to meet
challenges now and in the future.

Peer Review

Peer review is an important tool for improving the quality of scientific products and isbasic to al
stages of model evaluation. One-time reviews, of the kind used for research articles published in the
literature, are insufficient for many of the models used in the environmental regulatory process. More
time, effort, and variety of expertise are required to conduct and respond to peer review at different stages
of the life cycle, especially for complex models.

Recommendations

Peer review should be considered, but not necessarily performed, at each stagein amodel’ s life
cycle. Some simple, uncontroversial models might not require any peer review, whereas others might
merit peer review at several stages. Appropriate peer review requires an effort commensurate with the
complexity and significance of the model application. When amodel peer review is undertaken, EPA
should allow sufficient time, resources, and structure to assure an adequate review. Reviewers should
receive not only copies of the model and its documentation but also documentation of its origin and
history. Peer review for some regulatory models should involve comparing the model results with known
test cases, reviewing the model code and documentation, and running the model for several types of
problems for which the model might be used. Reviewing model documentation and resultsis not
sufficient peer review for many regulatory models.

Because many stakeholders and others interested in the regulatory process do not have the
capability or resources for a scientific peer review, they need to be able to have confidence in the
evaluation process. This need requires a transparent peer review process and continued adherence to
criteriaprovided in EPA’s guidance on peer review. Documentation of all peer reviews, aswell as
evidence of the agency’ s consideration of comments in developing revisions, should be part of the model
origin and history.

Quantifying and Communicating Uncertainty

There are two critical but distinct issues in uncertainty analysis for regulatory environmental
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modeling: what kinds of analyses should be done to quantify uncertainty, and how these uncertainties
should be communicated to policy makers.

Quantifying Uncertainty

A wide range of possibilitiesis available for performing model uncertainty analysis. At one
extreme, all model uncertainties could be represented probabilistically, and the probability distribution of
any model outcome of interest could be calculated. However, in assessing environmental regulatory
issues, these analyses generally would be quite complicated to carry out convincingly, especially when
some of the uncertainties in critical parameters have broad ranges or when the parameter uncertainties are
difficult to quantify. Thus, although probabilistic uncertainty analysis is an important tool, requiring EPA
to do complete probabilistic regulatory analyses on aroutine basis would probably result in superficial
treatments of many sources of uncertainty. The practical problems of performing a complete probabilistic
analysis stem from models that have large numbers of parameters whose uncertainties must be estimated
in acursory fashion. Such problems are compounded when models are linked into a highly complex
system, for example, when emissions and meteorological model results are used asinputsinto an air
quality model.

At the other extreme, scenario assessment and/or sensitivity analysis could be used. Neither one
in its simplest form makes explicit use of probability. For example, a scenario assessment might consider
model results for arelatively small number of plausible cases (for example, “pessimistic,” “neutral,” and
“optimistic” scenarios). Such adeterministic approach is easy to implement and understand. However,
scenario assessment does not typically include information corresponding to conditions not included in
the assessment and whatever is known about each scenario’ s likelihood.

It is not necessary to choose between purely probabilistic approaches and deterministic
approaches. Hybrid analyses combining aspects of probabilistic and deterministic approaches might
provide the best solution for quantifying uncertainties, given the finite resources available for any
analysis. For example, asensitivity analysis might be used to determine which model parameters are
most likely to have the largest impacts on the conclusions, and then a probabilistic analysis could be used
to quantify bounds on the conclusions due to uncertainties in those parameters. 1n another example,
probabilistic methods might be chosen to quantify uncertainties in environmental characteristics and
expected human health impacts, and several plausible scenarios might be used to describe the
monetization of the health benefits.

Questions about which of several plausible modelsto use can sometimes be the dominant source
of uncertainty and, in principle, can be handled probabilistically. However, a scenario assessment
approach is particularly appropriate for showing how different models yield differing results.

Communicating Uncertainties

Effective decision making will require providing policy makers with more than asingle
probability distribution for a model result (and certainly more than just a single number, such asthe
expected net benefit, with no indication of uncertainty). Such summaries obscure the sensitivities of the
outcometo individual sources of uncertainty, thus undermining the ability of policy makersto make
informed decisions and constraining the efforts of stakeholders to understand the basis for the decisions.

Recommendations
Quantifying Uncertainty

In some cases, presenting results from a small number of model scenarios will provide an
adequate uncertainty analysis (for example, cases in which the stakes are low, modeling resources are

limited, or insufficient information is available). In many instances, however, probabilistic methods will
be necessary to characterize properly at least some uncertainties and to communicate clearly the overall
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uncertainties. Although afull Bayesian analysis that incorporates all sources of information is desirable
in principle, in practice, it will be necessary to make strategic choices about which sources of uncertainty
justify such treatment and which sources are better handled through less formal means, such as
consideration of how model outputs change as an input varies through a range of plausible values. In
some applications, the main sources of uncertainty will be among models rather than within models, and
it will often be critical to address these sources of uncertainty.

Communicating Uncertainty

Probabilistic uncertainty analysis should not be viewed as a means to turn uncertain model
outputs into policy recommendations that can be made with certitude. Whether or not a complete
probabilistic uncertainty analysis has been done, the committee recommends that various approaches be
used to communicate the results of the analysis. These include hybrid approaches in which some
unknown quantities are treated probabilistically and others are explored in scenari o-assessment mode by
decision makers through arange of plausible values. Effective uncertainty communication requires a
high level of interaction with the relevant decision makers to ensure that they have the necessary
information about the nature and sources of uncertainty and their consequences. Thus, performing
uncertainty analysis for environmental regulatory activities requires extensive discussion between
analysts and decision makers.

The Interdependence of Models and M easurements

The interdependence of models and measurementsis complex and iterative for several reasons.
M easurements help to provide the conceptual basis of amodel and inform model development, including
parameter estimation. Measurements are also a critical tool for corroborating model results. Once
developed, models can drive priorities for measurements that ultimately get used in modifying existing
models or in developing new ones.

Measurement and model activities are often conducted in isolation. For example, modelers often
add details to models without sufficient measurements to justify or confirm the importance of these
changes. Likewise, field and laboratory scientists might expand their compilation of samples without
understanding the utility of such information for modeling. Although environmenta data systems serve a
range of purposes, including compliance assessment, monitoring of trendsin indicators, and basic
research performance, the importance of models in the regulatory process requires measurements and
models to be better integrated. Adaptive strategies that rely on iterations of measurements and modeling,
such as those discussed in the 2003 NRC report titled Adaptive Monitoring and Assessment for the
Comprehensive Everglades Restoration Plan, provide examples of how improved coordination might be
achieved.

Recommendations

Using adaptive strategies to coordinate data collection and modeling should be a priority of
decision makers and those responsible for regulatory model development and application. The
interdependence of measurements and modeling needs to be fully considered as early as the conceptual
model development phase. Developing adaptive strategies will benefit from the contributions of
model ers, measurement experts, decision makers, and resource managers.

Retrospective Analysis of Models

EPA has been involved in the devel opment and application of computational models for



6 Prepublication Copy Models in Environmental Regulatory Decision Making

environmental regulatory purposes for as long as the agency has been in existence. Its reliance on models
has only increased over time. However, attempts to learn from prior experiences with models and to
apply these lessons have been insufficient.

Recommendations

The committee recommends that EPA conduct and document the results of retrospective reviews
of regulatory models not only on single models but also at the scale of model classes, such as models of
groundwater flow and models of health risks. The goa of such retrospective evaluations should be the
identification of priorities for improving regulatory models. One objective of this analysis would be to
investigate systematic strengths and weaknesses that are characteristic of various types of models. A
second important objective would be to study the processes (for example, approaches to model
development and evaluation) that led to successful models and model applications.

In carrying out aretrospective analysis, it might be helpful to use models or categories of models
that are old by current modeling standards, because the older models could present the best opportunities
to assess actual model performance quantitatively by using subsequent advances in modeling and in new
observations.

PRINCIPLES FOR MODEL DEVELOPMENT, SELECTION, AND APPLICATION
Model Parsimony

Models are always incomplete, and efforts to make them more complete can be problematic. As
features and capabilities are added to a model, the cumulative effect on model performance needs to be
evaluated carefully. Increasing the complexity of models without adequate consideration can introduce
more model parameters with uncertain values, and decrease the potential for amodel to be transparent
and accessible to users and reviewers. It is often preferable to omit capabilities that do not improve
model performance substantially. Even more problematic are models that accrue substantial uncertainties
because they contain more parameters than can be estimated or calibrated with available observations.

Recommendations

Models used in the regulatory process should be no more complicated than is necessary to inform
regulatory decisions. In the process of evaluating whether a model is suitable for its given application,
there should be a critical evaluation of whether the model has been made unreasonably complicated. This
evaluation should include how model developers and those that select a model for a particular application
have addressed the trade-offs between the need for a given model application to be an accurate
representation of the system of interest and the need for it to be reproducible, transparent, and useful for
the regulatory decision at hand.

Extrapolation

Model usein the environmental regulatory process may involve using the model to extrapolate
beyond conditions for which the model was constructed or calibrated or conditions for which the model
outputs cannot be verified. For example, it might be necessary to extrapolate laboratory animal datato
assessments of possible human effects or to extrapolate the recent history of global environmental
conditions to future conditions. In these circumstances, uncertainties about the form of amodel and the
parameters in the model might yield large uncertainties in model outputs. This problem can be
compounded by making a model more complex if the additional processes in the more complex model are
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unimportant; any extra parameters that need to be estimated could degrade the confidence in the estimates
of al parameters.

Recommendations

Extrapolating far beyond the available data for the model draws particular attention in the
evaluation process to the theoretical basis of the model, the processes represented in the model, and the
parameter values. When critical model parameters are estimated largely on the basis of matching model
output to historical data, care must be taken to provide uncertainty estimates for the extrapolations,
especialy for models with many uncertain parameters.

Proprietary Models

A model is proprietary if any component that is a fundamental part of the model’s structure or
functionality is not available for free to the general public. The use of proprietary modelsin the
regulatory process can produce distrust among regulated parties and other interested individuals and
groups because their use might prevent those affected by a regulatory decision from having accessto a
model that may have affected the decision. There are many ways in which amodel can be proprietary,
and some are more prone to engender distrust than others. For example, amodel that uses proprietary
algorithms may cause more concern than amodel that uses publicly available algorithms but has a
proprietary user interface.

Recommendations

The committee recommends that EPA adopt a preference for nonproprietary software for
environmental modeling. When developing amodel, EPA should establish and pursue a goal of not using
proprietary elements. It should only adopt proprietary models when a clear and well-documented case
has been made that the advantages of using such models outweigh the costs in lower credibility and
transparency that accompanies reliance on proprietary models. Furthermore, proprietary models should
be subject to rigorous quality requirements and to peer review that is equivalent to peer review for public
models. If necessary, nondisclosure agreements could be used for expertsto perform athorough review
of the proprietary portions of the model. The review process and results could then be made public
without compromising proprietary features. General-purpose proprietary software (for example, Excel,
SAS, and MATLAB) usually will not require such scrutiny, although EPA should be cognizant of the
costs that obtaining and using such software may impose on interested parties.

MODEL MANAGEMENT
Modes and Rule-makings

The sometimes contentious setting in which regulatory models are used may impede EPA’s
ability to implement some of the recommendationsin this report, including the life-cycle evaluation
process. Even high-quality models are filled with components that are incomplete and must be updated as
new knowledge arises. Y et, those attributes may provide stakeholders with opportunities to mount formal
challenges against models that produce outputs that they find undesirable. Requirements such asthosein
the Information Quality Act may increase the susceptibility of models to challenges because outside
parties may file a correction request for information disseminated by agencies.

When amodel that informs a regulatory decision has undergone the multilayered review and
comment processes, the model tendsto remain in place for sometime. Thisinertiais not alwaysideal:
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the cumbersome regulatory procedures and the finality of the rules that survive them may be at odds with
the dynamic nature of modeling and the goal of improving models in response to experience and scientific
advances.

In such an adversarial environment, EPA might perceive that arigorous life-cycle model
evauationisill-advised from alegal standpoint. Engaging in this type of rigorous review may expose the
model to a greater risk of challenges, at |east insofar as the agency’ s review is made public, because the
agency is documenting features of its models that need to be improved. Moreover, revising amodel can
trigger lengthy administrative notice and comment processes. However, an improved model isless likely
to generate erroneous results that could lead to additional challenges, and it better serves the public
interest.

Recommendations

It isimportant that EPA institute best practice standards for the evaluation of regulatory models.
Best evaluation practices may be much easier for EPA to implement if its resulting rigorous life-cycle
evaluation processis perceived as satisfying regulatory requirements, such as those of the Information
Quality Act. However, for an evaluation process to meet the spirit and intent of the Information Quality
Act, EPA’ s evaluation process must include a mechanism for any person to submit information or
correctionsto amodel. Rather than requiring a response within 60 days, as the Information Quality Act
does, the evaluation process would involve consideration of that information and response at the
appropriate time in the model evaluation process.

To further encourage life-cycle evaluation of models that support federal rule-makings,
alternative means of soliciting public comment on model revisions need to be devised. For example, EPA
could promulgate a separate rule-making that establishes an agency-wide process for the evaluation and
adjustment of models used initsrules. Such a programmatic process would allow the agency to provide
adequate opportunities for meaningful public comment at important stages of the evaluation and revision
of an individual model, without triggering the need for a separate rule-making for each revision. A more
rigorous and formalized evaluation processes for models may result in greater deference to agency models
by interested parties and by reviewing courts. Such aresponse could decrease the extent of model
challenges through adversarial processes.

Model Origin and History

Models are developed and applied over many years by participants who enter and exit the process
over time. The model origin and history can be lost when individual experiences with amodel are not
documented and archived. Without an adequate record, a model might be incorrectly applied, or
devel opers might be unable to adapt the model for a new application. Poor historical documentation
could also frustrate stakeholders who are interested in understanding amodel. Finaly, without adequate
documentation, EPA might be limited in its ability to justify decisions that were critical to model design,
development, or model selection.

Recommendation

As part of the evaluation plan, a documented history of important events regarding the models
should be maintained, especially after public release. Each documentation should have the model’ s origin
with such key elements as the identity of the model developer and institution, the decisions on critical
model design and development, and the records of software version releases. The model documentation
also should have elementsin “plain English” to communicate with nontechnical evaluators. An
understandabl e description of the model itself, justifications, limitations, and key peer reviews are
especially important for building trust.
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The committee recognizes that information relevant to model origins and historiesis aready
being collected by CREM and stored in its model database, which is available on the CREM web site.
CREM'’ s database includes over 100 models, although updating of this site has declined in recent years.
It provides information on obtaining and running the models and on the models' conceptual bases,
scientific details, and results of evaluation studies. One possible way to implement the recommendation
for devel oping and maintaining the model history may be to expand CREM’ s efforts in this direction.
The EPA Science Advisory Board review of CREM contains additional recommendations with regard to
specific improvements in CREM’ s database.

Improving M odel Accessibility

Stakeholders and others necessarily play avita rolein EPA’s use and evaluation of regulatory
models. Differing interpretations of data on risk, environmental trends, and arange of social values mean
that a broad array of participants will have a stake in the modeling exercise. Asaresult, various
constituencies and individuals must be able to participate in the modeling process through a variety of
activities, such as producing their own model results and commenting on and possibly challenging the
legitimacy or accuracy of amodel.

EPA faces a number of challengesin making its regulatory models, particularly its complex
models, accessible to these diverseinterests. Nevertheless, EPA has taken some steps to address
accessibility to models, including the CREM database of models. This information enhances the
transparency and understandability of modelsto awide array of interested participants. Despite these
efforts, however, stakeholders and others with limited resources or insufficient technical expertise still
face substantial barriers to being able to evaluate EPA’ s models, comment on important model
assumptions, or use the modelsin their own work.

Recommendations

EPA should place a high priority on ensuring that stakeholders and others have access to models
for regulatory decision making. To ensure that its models database contains all actively used models,
EPA should continue its support for the intra-agency efforts of CREM. A more formal process may be
needed to ensure that CREM’ s models database is complete and updated with information that is at least
equivalent to information provided for models currently contained in the database.

Y et, even with a high-quality models database, EPA should continue to develop initiatives to
ensure that its regulatory models are as accessible as possible to the broader public and stakehol der
community. Thelevel of effort should be commensurate with the impact of the model use. It is most
important to highlight the critical model assumptions, particularly the conceptual basis for amodel and
the sources of significant uncertainty. Meaningful stakeholder involvement should be solicited at the
model development and model application stages of regulatory activity, when appropriate. EPA could
improve model accessibility through avariety of activities, such as requiring an additional interface for
each model to help to identify the assumptions and sources of parameters and other uncertainties and
providing additional user and stakeholder training.

However, evenif full information on amodel is available, technical expertise will still be
required to judge independently its quality and suitability for regulatory application. Each of these
recommendations requires staff time and resources, which may be considerable. Thus, EPA’s effortsto
enhance opportunities for public participation in any particular case must be balanced against other
agency priorities.

CONCLUDING REMARKS

The committee anticipates that its recommendations will be met with some resistance because of
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the potentially substantial resources needed for implementing life-cycle model evaluation. However,
given the critical importance of having high-quality models for decision making, such investments are
essential if environmental regulatory modeling isto meet challenges now and in the future.

BOX S-1 Task Statement

A National Research Council committee will assess evolving scientific and technical issues related to the
selection and use of computational and statistical models in decision-making processes at the Environmental
Protection Agency (EPA). The committee will provide advice concerning the development of guidelinesand a
vision for the selection and use of models at the agency. Through public workshops and other means, the
committee will consider cross-discipline issues related to model use, performance evaluation, peer review,
uncertainty, and quality assurance/quality control. The committee will assess scientific and technical criteriathat
should be considered in deciding whether a model and its results could serve as areasonable basis for
environmental regulatory activities. It will also examine case studies of model development, evaluation, and
application to further elucidate guiding principles. The objective of the committee will be to provide areport that
will serve as afundamental guide for the selection and use of modelsin the regulatory process at EPA—the goal is
to produce areport on models similar to the NRC's 1983 “Red Book™” on risk assessment (Risk Assessment in the
Federal Government: Managing the Process). As part of its scientific assessment, the committee will need to
carefully consider the realities of EPA's regulatory mission so as to provide practical advice on model
development and use. The report will avoid an overly prescriptive and stringent set of guidelines and will
recognize the need for regulatory and policy decisions in the face of incomplete information and uncertainty. In
particular, the committee will not attempt to define anumerical standard for accuracy that all models must attain
before they can be used in the decision-making process.

The committee will address the following specific issues:

e What scientific and technical factors should be considered in devel oping model-acceptability and
application criteria that address the needs of EPA, aswell as those of interested and affected parties?

e How can the agency provide guidance on procedures for appropriate use, peer review, and evaluation of
models that is applicable across the range of interdisciplinary regulatory activities undertaken by the EPA?

e How canissuesrelated to input data quality, model sensitivity, uncertainty, and the use of model outputs
be addressed in a unified manner across the multiple disciplines that encompass modeling at EPA?

e Models developed outside of the agency must meet the same acceptability and application criteriaas
models devel oped within EPA. How can users of proprietary models meet acceptability and application criteria
for the use of modelsin environmental regulatory applications while maintaining the possible proprietary nature of
the code?

e Arethere unique evaluation issues associated with different categories of models, such as statistical dose-
response models based on epidemiological data?

e How can models be improved in an adaptive management process to allow simpler tools and modelsto be
used now while having the flexibility to incorporate new data, scientific advances, and advancesin modeling in the
future?

e How can uncertainties and limitations of models be effectively communicated to policy-makers and
others who are not experts in the detail s of the models? How should secondary uses of models be treated,
including communication of model uncertainties and limitations?

e What are the emerging scientific and technologic advances that may affect the selection and use of
models? Specifically, what are the emerging sources of data (such as remote sensing and other spatially resolved
environmental data, and genomic/proteomic data) and developments in information technology for which EPA
will need to prepare?




1
Study Background

Models have along and illustrious history as tools for helping to explain scientific phenomena
and for predicting outcomes and behavior in settings where empirical observations may not be available.
Fundamentally, all models are simplifications. Complex relationships are reduced, some relationships are
unknown, and ones perceived to be unimportant are eliminated from consideration to reduce
computational difficulties and to increase transparency. Thus, all models face inherent uncertainties
because human and natural systems are always more complex and heterogeneous than can be captured in
amodel.

This report looks at a specific aspect of computational modeling, the use of environmental models
in federal regulatory activities, particularly at the U.S. Environmental Protection Agency (EPA). Theuse
of computational modelsis central to the decision-making process at EPA because it must do prospective
analysis of its policies, including projecting impacts into the future. In addition, obtaining a
comprehensive set of measured data to support adecision is typically impracticable in terms of time and
resources or istechnically and ethically impossible. The agency uses model results to augment and assess
measured data. The results of models can become the basis for decisions, such as initiating environmental
cleanup and regulation. In sum, models help to inform and set prioritiesin environmental policy
development and implementation at EPA through the ability to evaluate aternative regulations, provide a
framework to assess compliance, and summarize available knowledge needed for regulatory decisions.

EARLY ENVIRONMENTAL MODELS

The earliest uses of mathematics to explain the physical world, an important element of
environmental models, came in response to the desire to explain and predict the movement of the night
sky, the relationship of notesin amusical scale, and other scientific observations (Mahoney 1998;
Eagleton 1999; O’ Connor and Rabertson 2003; Schichl 2004). Later developments of basic conceptual
models that helped further the connections of mathematics and modeling to science include the thirteenth
century Fibonacci sequences of rabbit population, Paracelsus' s connection of dose to disease in the
fifteenth century, and the Copernican model of planetary motions in the sixteenth century. The role that
mathematical models would play is evident in the seventeenth century roots of differential calculus,
where physical observations of moving objects led to conceptual models of motion, mathematical
representations of motions, and finally predictions of locations (Herrmann 1997).

A large expansion in the use of computational models for understanding environmental science
and management came in the nineteenth and early twentieth centuries.! Mathematical formulations of

! The committee decided to use the term “computational model” rather than “mathematical model.” These terms are
synonymous. The committee considers the the term computational model to be a better descriptor in the erawhen
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basic models were developed for many problems, including atmospheric plume motion (Taylor 1915),
human dose-response relationship (Crowther 1924), predator-prey relationships (L otka 1925), and
national economy (Tinbergen 1937). An early example of the level of sophistication possible in
computational modelsis Arrhenius's climate model for ng the greenhouse effect (Arrhenius 1896).
Arrhenius’ model is a seasonal, spatially disaggregated climate model that relies on a numerical solution
to a set of differential equations that represent surface energy balance. The numerical computations
regquired months of hand calculations (Weart 2003), similar to many early numerical models. The
computational difficulties associated with such models prompted Lewis Richardson, an early pioneer in
the use of computational fluid dynamics in weather modeling, to imagine a “forecast-factory,” having
thousands of people performing flow calculations directed by aforecast leader coordinating activities
with telegraph and colored lights (Fluent Inc. 2006).

Holmes and Wolman (2001) discussed how other model applications during this same era began
to spell out the systems-analysis approach to environmental problems that recognizes the interrelationship
of physically disparate elements in the environment and the need to understand these relationships
through modeling to devel op environmental mitigations. A semina work for understanding the modeling
complexity that developed before the invention of digital computersis the Miami Conservancy District
flood control project, planned and constructed from 1914 to 1923 (Morgan 1951; Burgess 1979). This
project, under the direction of Arthur Morgan, pioneered the use of complex hydrological, economic, and
design optimization models coupled with benefit-cost analysis and expert elicitation to quantitatively
assess pre- and post-construction conditions of a complex flood control system (Bock, 1918; Woodward,
1920; Houk, 1921; Engineering Staff of the Miami Conservancy District 1922). Morgan and staff used
sophisticated computational and graphical techniques to simulate the operation of their flood control
design during flood conditions, devel op optimizing techniques to increase the project's efficiency, and
perform a detailed economic appraisal of the project'simpact on more than 77,000 individual properties.

TRENDSIN ENVIRONMENTAL REGULATORY MODEL USE

The past 25 years has seen avast increase in the number, variety, and complexity of
computational models available for regulatory purposes at EPA. Models have increased in capabilities
and sophistication through advances in computer technology, data availability, devel oper creativity, and
increased understanding of environmental processes. Demand for models expanded as the participantsin
regulatory processes, Congress, EPA, Office of Management and Budget (OMB), stakeholders, and the
general public required improved analysis of environmental issues and the consequences of proposed
regulations. Demands also increased as policy makers have attempted to improve the ability of
environmental regulatory activities to achieve the desired environmental benefits and reduce
implementation costs. Individual histories are complex, and regulatory model usein specific fieldsistied
to specific regulatory and scientific developments. However, regulatory needs and model capabilities are
often not aligned perfectly. Box 1-1 briefly describes the history of ozone air quality modeling, one area
with alengthy modeling and regulatory history, and the uneven interactions between policy and science.

While the demand for models has grown, the conceptualization of what a model is has shifted in
recent years, especially among those closest to the modeling process. Maodels are viewed less as truth-
generating machines and much more as tools designed to fulfill specific tasks and purposes (Beck et al.
1997). Astools, models serve in the decision-making process as (1) succinctly encoded archivers of
contemporary knowledge; (2) interpreters of links between health and environmental harm from
environmental releases to motivate the making of aregulatory decision or policy; (3) instruments of
analysis and prediction to support the making of a decision or policy; (4) devices for communicating
scientific notions to a scientifically lay audience; and (5) exploratory vehicles for discovery of our
ignorance. This committee’ stask in looking at model use in the regulatory processis 1 and 2, the use of

these models are solved on computers. However, as noted in the text, computational models emerged long before
the invention of the digital computer.
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BOX 1-1 Ozone Maodeling and the Irregular Swings Between Policy and Science

The formation of ozone in the lower atmosphere (troposphere) is an exceedingly complex chemical
process involving the interaction of oxides of nitrogen (NO,), volatile organic compounds (VOCs), sunlight, and
dynamic atmospheric processes. The basic chemistry of ozone formation was known in the early 1960s (L eighton,
1961). Reduction of ozone concentrations in general requires control of either NO, or VOC emissions or a
combination of both. Due to the nonlinearity of atmospheric chemistry, the selection of the emission-control
strategy has traditionally relied on air quality models.

One of the first attempts to include the complexity of atmospheric ozone chemistry in the decision-making
process was a simple observations-based model, the so-called Appendix J curve (36 Fed. Reg. 8186 [1971]) (see
Figure 1-1). The curve was based on measurements for six U.S. cities where such data were available. Reliable
NO, datawere virtually nonexistent at that time. On the basis of the maximum ozone concentrations observed at
these cities and their estimated VOC emissions, the curve purported to indicate the percentage of VOC emission
reduction required to attain the ozone standard in an urban area as a function of the peak concentration of
photochemical oxidants observed in that area. The Appendix J curve was based on the hypothesis that reductions
of VOC emissions were the most effective emission-control path, and this conceptual model helped define
legidative mandates enacted by Congress that emphasized controlling these emissions.
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FIGURE 1-1 Appendix Jcurve. Required hydrocarbon emission control as a function of photochemical oxidant
concentration. Source: EPA 1971.

The next step in modeling complexity was the empirical kinetic modeling approach (EKMA) (Dimitriades
1977). EKMA used the improved uncertainty of chemical mechanisms that were under intense development in
the late 1970s and early 1980s (Atkinson and Lloyd 1984) to simulate the airshed of interest, assuming that it isa
well-mixed box. The final result of the modeling was three-dimensional plots of ozone concentrations as a
function of VOC and NO, emissions (Figure 1-2) that could be used for the design of emission-control strategies.

The resulting EKMA plots captured the major features and complexities of the NO,, VOC, and ozone

system. For example, they suggested that at low VOC and high NO, emissions levels, decreasesin VOC
emissions will reduce peak ozone concentrations, but decreasesin NO, emissions will have the opposite result.
Based on the available emissions inventories at the time (1977 to 1982), which turned out to greatly underestimate
VOC emissions, many urban areas appeared to be near or above the ridge of the diagram, suggesting that VOC
controls were the efficient path. Another characteristic of the EKMA plotsisthat they suggest that
implementation of either VOC or NO, controls alone is practically always preferable to controlling both ozone
precursors. The EKMA approach was heavily used for regulatory applicationsin the late 1970s and 1980s and
supported VOC control as the principal path to attain the ozone standard. (Continued)
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FIGURE 1-2 Typica EKMA diagram. Source: NRC 1991, adapted from Dodge 1977.

The development of three-dimensional grid models capable of simulating the dynamics and spatial
variability of ozone formation (commonly termed 3D chemical transport models or CTMs) also began in the
1970s, although computational demands prevented their use in regulatory activities. EPA in the mid-1970s had
committed its research efforts to supporting the development of the urban airshed model (UAM). At the same
time, other models (for example., the CIT model) were developed and used by the scientific community (Reynolds
et a. 1973). Caiforniaplayed amajor rolein supporting the development and evaluation of these first CTMs.
The emphasis of these models was on comprehensive descriptions of the atmospheric system without adjustable
parameters (no calibration). During the 1970s, UAM was used only for the Los Angles basin. In the 1980s, the
use of 3D models spread to other major metropolitan areas, and the 1990 Clean Air Act Amendments specifically
called for the use of such modelsfor al ozone nonattainment areas. The first applications of UAM in the eastern
United States also supported the need for VOC controls. Thus, from the early 1970s to the early 1990s, EPA and
Congress, with few exceptions, promoted VOC control as the principa path to attaining the ozone standard (for
example, required NO, reductions from motor vehicles).

These VOC reductions had little effect on the ozone concentrations. The incomplete and often erroneous
VOC inventories used during this period were one of the major reasons for the choice of suboptimal strategies.
For example, biogenic VOC emissions were not included in the inventories until the late 1980s. An influential
paper by Chameides et al. (1988) found that when biogenic VOC emissions were included in the inventory in
Atlanta and the southeastern United States, NO, controls were favorable. Additional field and theoretical studies
in California suggested that VOC emissions had been underestimated by a factor of approximately two, in large
part because of the underestimation of mobile-source emissions. Furthermore, the increased use of regional ozone
models that incorporated long-range transport of ozone and its precursors aso demonstrates the importance of
NOy control, especially for regional control of ozone. The debate over a more balanced approach, including
control of NO, emissions, reached a head in the NRC report Rethinking the Ozone Problem (NRC 1991; Dennis
2002). Thereport concluded, “to substantially reduce ozone concentrations in many urban, suburban, and rural
areas of the United States, the control of NO, emissions will probably be necessary in addition to, or instead of,
the control of VOCs.”

An important aspect of this refocused effort was the need for multistate modeling necessary for
addressing transport problems. Although it was originally assumed that 0zone problems within a given areawere
largely caused by emissions within that area, by the end of the 1980s, it was clear that some air quality problems
had alarger multistate component and that a substantial contribution to an area’ s ozone problem could arise from
upwind emissions sources. That finding in turn resulted in the formation of multistate organizations, such as the
Ozone Transport Commission and Ozone Transport Assessment Group, to develop technical information related
to the nature of the transport problem and identify policy options (NRC 2004). Regiona scale modeling is an
integral part of understanding the science behind new ambient air quality standards for ozone and fine particul ate
matter.

There has clearly been along exchange between policy and science regarding regulations for controlling
tropospheric ozone. The choice in the 1970s to concentrate on VOC controls was supported by early results from
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models. While new results regarding the higher than expected biogenic VOC emissions were being gathered in
the 1980s, EPA continued on its path of emphasizing VOC controls, in part because the schedule set by Congress
and EPA for attainment of ozone ambient air quality standards was not conducive to reflection on the basic
elements of the science (Dennis 2002). The shift in the 1990s toward regulatory activities focusing on NO,
controls from both large stationary sources and mobile sources (along with some VOC controls) was a correction
to the prior policy of focusing amost exclusively on VOC reductions. A further complication in the exchange
between policy and science during this history was the realization that historical estimates of emissions and the
effectiveness of various control strategies in reducing emissions were not accurate. Thus, part of the reason ozone
concentrations have not been reduced as much as hoped for over the past 3 decades has been because emissions of
some pollutants were much higher than originally estimated and have not been reduced as much as originally
predicted. Theresults of policy decisions to control NO, takes many years to fully implement, delaying a full
understanding of its effectiveness for reducing ozone concentrations. For example, the emissions standards for
new on-road diesel engineswill not be fully implemented until 2010, and afull fleet turnover will take many years
beyond that. While these policies are being implemented, observations of higher weekend ozone when ozone
precursor emissions are low (Lawson 2003) and results from an intensive atmospheric observation field campaign
in the Houston-Galveston, Texas, area, where highly reactive VOCs seem to play acritical role in ozone formation
(Daum et al. 2002), provide new complications to the understanding of the effectiveness of VOC versus NOy
controls.

Thelong history of the exchange between tropospheric ozone science and modeling and policy
demonstrates several critical points. Regulations go forward despite imperfect models and information. The
potential harm from environmental hazards can cause regulatory activities to proceed before the science and
models are perfected. The long history of controlling VOC and NO, emissions shows that the inability of the
models to predict accurately may reflect not only imperfections in the models but also inputs to the models. In the
case of ozone modeling, the inputs to the models (emissions inventories in this case) are often more important than
the model science (description of atmospheric transport and chemistry in this case) and require as careful an
evauation as the evaluation of the model. These factors paoint to the potentia synergistic role that measurements
play in model development and application. Finaly, it isclear that there has been an irregular exchange between
modeling/science and policy, which Dennis (2002) describes as “ajerky exchange” between the two, where the
policy process has been out of sync with the latest science.

models in understanding environmental impacts and devel oping and evaluating policy aternatives, that
are most prominent. Such analysis of relations and regulatory proposals form the core of regulatory
modeling analysis. However, thisis not to imply that the other uses of models are not also important for
regulatory modeling activities.

It isimportant to consider why the transition from regarding models as “truth” to regarding
models as “tools” might have occurred. Clearly, oversight agencies, such asthe OMB, and stakeholders
have made an effort to open up the modeling process to external peer review and public scrutiny. Asa
result, there might be a greater willingness to discuss model shortcomings or at least to disclose them. As
regulators become more experienced with the use of models, there might also be a greater appreciation
and awareness of the inherent strengths and limitations of models. Finally, the transition to regarding
models as tools might represent a push by modelers to educate decision makers that, although models can
play an important role in regulatory analysis, models cannot provide “the answer,” which is often what
the regulatory process demands.

MODEL LIMITATIONSAND ASSUMPTIONS

All models are simplifications of the systems or relations they represent. As aresult, the spatial
and temporal attributes of processes within amodel cannot be resolved fully against observations. Chave
and Levin (2003) highlight the intractability of this problem, noting that there is no single correct scale at
which to study the dynamics of a natural system. At one end of the spectrum, a model might not simulate
at a high enough resolution to represent all critical processes or at scales that capture system
heterogeneities. At the other end of the spectrum, an extremely detailed model might not capture large-
scale features. These limitations produce two types of uncertainties inherent to models (Morgan 2004).
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One uncertainty isin the values of key parameters, which are uncertain because of alack of knowledge
and a natural variability. The second uncertainty isin the structure of the model itself. Model uncertainty
relates to whether the structure of the model fundamentally represents the system or decision of interest.

These limitations and uncertainties contribute to an inability to ever fully validate or verify
numerical models of natural systems (Oreskes et al. 1994). Fundamentally, natural systems are never
closed, and model results are never unique. Models of natural systems are never complete, and any match
between observations and model results might occur because processes not represented in the model
canceled each other. The combination of model formulation and parameters that results in a good match
between observations and results is never unigque because another combination of model formulation and
parameters could result in an equally good match.

In addition, all regulatory model applications have assumptions and default parameters
incorporated into them, some of which may include science policy judgments (NRC 1994; EPA 2004a).
Assumptions and defaults are unavoidable, as thereis never a complete data set to develop a model, but
they might have alarger impact on modeling results. Models are commonly used to predict values into
the future or under different environmental conditions for which the models were developed, so the
assumptions and defaults are subject to debate. Further, the policy settings for regulatory models are
framed by more than scientific, technological, and economic ones. Factors related to public values and
social and political considerations enter into the modeling process and influence modeling assumptions
and defaults.

Although these fundamental uncertainties and limitations are critical to understand when using
environmental regulatory models, they do not constitute reasons why modeling should not be performed.
When done in a manner that makes effective use of existing science and in away understandable to
stakeholders and the public, models can be very effective for assessing and choosing amongst
environmental regulatory activities and communicating with decision makers and the public.

Finally, model results and the observations used to evaluate those results may be at different
temporal and/or spatial scales, making it difficult to compare model estimates to actual conditions. For
examples, models of climate change, regional groundwater contaminant transport, or human health
impacts may make estimates for time scales where observations are not available. Other models, such as
air and water quality models, may produce average pollutant concentrations for awide spatial extent (a
grid cell within the model) whereas observations may be available only at a single point within that grid
cell.

ORIGIN OF STUDY AND CHARGE TO COMMITTEE

Since the 1980s, EPA recognized the need for Agency-wide guidance on the use and
development of models, including general model evaluation protocols to test and confirm the accuracy of
models. The EPA’s Science Advisory Board (SAB), which provides independent scientific and
engineering advice to the agency, first issued general guidance on model review in 1989 and
recommended that a model's predictive capability could be enhanced through: (1) obtaining external
stakeholder input; (2) documenting the model's explicit and implicit assumptions; (3) performing
sensitivity analyses; (4) testing model predictions against laboratory and field data; and (5) conducting
peer reviews. 1n 1994 the Report on the Agency Task Force on Environmental Regulatory Modeling—
Guidance, Support Needs, Draft Criteria, and Charter (EPA 1994a) included guidance for conducting
external peer review of models. Other guidance from EPA has come from their Science Policy Council's
Peer Review Handbook and their National Center for Environmental Assessment's Guidelines for
Exposure Assessment and Guidelines for Ecological Risk Assessment and the Guidelines for Carcinogen
Risk Assessment (EPA 2006a).

Despite these efforts to establish and follow appropriate standards, EPA models have become part
of the controversies over environmental decision making. At times, Congress has examined models and
model results during public hearings, sponsored external reviews of models, or directed EPA to perform a
particular analysis (for example, Hearings before the Subcommittee on Oversight and Investigations of
the Committee on Commerce, 104th Cong., 1st Sess. 16 [1995]; GAO 1996; NRC 2000, 2001a; EPA
20014). In addition, models and their results can be prominent in of the litigation that results from
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environmental regulatory activities. EPA has had severa environmental regulations overturned because,
in the opinion of the courts, the model was considered to be so inaccurate that the regulation was deemed
“arbitrary and capricious.” McGarity and Wagner (2003) document instances where courts have ruled
against the agency because EPA had not sufficiently explained model simplifications, justified the
application of a generic model to a specific location, or justified the application of a model to new
activities or conditions not originally envisioned when the model was developed. On the other hand,
courts have sometimes upheld EPA regulations by ruling in part that EPA's modeling adequately
supported their position. In arecent example, the DC Circuit Court of Appeals substantially upheld EPA
proposed regulations on "upwind" nitrogen oxides emissions for urban ozone control in part by ruling that
the Agency's modeling was sufficient to support the determination as to which states should be regulated
(D.C. Circuit Court of Appeals, Appaachian Power Co. v. EPA; May 2001).

More recently, the executive branch has been interested in the quality of information produced by
government agencies, including EPA. The Office of Management and Budget recently issued guidelines
calling for each regulatory agency to develop its own guidance to ensure the quality, objectivity, utility,
and integrity of information (OMB 2001). Recognizing the critical roles that models have in developing
information, EPA issued information-quality guidelines that include guidance to ensure that the models
used in regulatory proceedings be objective, transparent, and reproducible (EPA 2002a). OMB has aso
issued guidance on peer review (OMB 2004), which EPA has incorporated into its evaluation of models
(EPA 20063).

To help support modeling activities across the agency, EPA established the Council for
Regulatory Environmental Modeling (CREM) in 2000. CREM was established to promote consistency
and consensus within the Agency on mathematical modeling issues, including modeling guidance,
development, and application, and to enhance both internal and external communications on modeling
activities. CREM is now focused on helping to generate information to determine whether a model and
its analytical results are of a quality sufficient to serve as the basis for a decision (Foley 2004).
Specifically, the EPA Administrator, tasked CREM with developing a guidance document on the
development, assessment and use of environmental models, making publicly accessible an inventory of
EPA’s most frequently used models; consulting with stakeholders concerning modeling issues; holding
regional workshops; and engaging with the National Academy of Sciences to produce areport on the use
of environmental and human health models for decision making (EPA 2003a). Thisreport isthe response
to thelast charge. Recognizing the importance of EPA regulatory modelsin their activities, the U.S.
Department of Transportation also participated in this study through additional funding and presentations
to the committee.

In 2005, the National Research Council (NRC) established the Committee on Modelsin the
Regulatory Decision Process. The Statement of Task set forth to the committeeis as follows:

A National Research Council committee will assess evolving scientific and technical issues
related to the selection and use of computational and statistical models in decision-making
processes at EPA. The committee will provide advice concerning the development of guidelines
and avision for the selection and use of models at the agency. Through public workshops and
other means, the committee will consider cross-discipline issues related to model use,
performance evaluation, peer review, uncertainty, and quality assurance/quality control. The
committee will assess scientific and technical criteria that should be considered in deciding
whether amodel and its results could serve as areasonable basis for environmental regulatory
activities. It will also use case examples of EPA’s model devel opment, evaluation, and
application practices to further elucidate guiding principles. The objective of the committee will
be to provide areport that will serve as afundamental guide for the selection and use of modelsin
the regulatory process at EPA—the goal isto produce areport on models similar to the NRC's
1983 “Red Book” on risk assessment (NRC 1983). As part of its scientific assessment, the
committee will need to carefully consider the realities of EPA's regulatory mission so as to
provide practical advice on model development and use. The report will avoid an overly
prescriptive and stringent set of guidelines and will recognize the need for regulatory and policy
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decisionsin the face of incomplete information and uncertainty. In particular, the committee will
not attempt to define a numerical standard for accuracy that all models must attain before they
can be used in the decision-making process.

The task statement asks the committee to address the following specific issues:

o What scientific and technical factors should be considered in devel oping model- acceptability and
application criteria that address the needs of EPA, as well as those of interested and affected parties?

¢ How can the agency provide guidance on procedures for appropriate use, peer review, and
evaluation of models that is applicable across the range of interdisciplinary regulatory activities
undertaken by EPA?

¢ How canissuesrelated to input data quality, model sensitivity, uncertainty, and the use of model
outputs be addressed in a unified manner across the multiple disciplines that encompass modeling at
EPA?

o Models developed outside of the agency must meet the same acceptability and application criteria
as models devel oped within EPA. How can users of proprietary models meet acceptability and
application criteriafor the use of modelsin environmental regulatory applications while maintaining the
possible proprietary nature of the code?

¢ Arethere unique evaluation issues associated with different categories of models, such as
statistical dose-response models based on epidemiological data?

e How can models be improved in an adaptive management process to allow simpler tools and
models to be used now while having the flexibility to incorporate new data, scientific advances, and
advances in modeling in the future?

¢ How can uncertainties and limitations of models be effectively communicated to policy makers
and others who are not experts in the details of the models? How should secondary uses of models be
treated, including communication of model uncertainties and limitations?

e What are the emerging scientific and technological advances that may affect the selection and use
of models? Specifically, what are the emerging sources of data (such as remote sensing and other
spatially resolved environmental data, and genomic/proteomic data) and developments in information
technology for which EPA will need to prepare?

COMMITTEE APPROACH TO THE CHARGE

Thetask statement and the interpretation of the task by the committee required it to review and
provide recommendations for awide array of regulatory modeling activities at EPA. The committeeis
composed of members from many disciplines. Thus, the committee' s expertise and the study charge have
led it to provide broad recommendations on guidance and principles for improving the general field of
regulatory environmental modeling. When individual modeling efforts are examined in the report, it is
for illustrative purposes with respect to the study charge. The committee’ s approach begins with several
fundamental definitions.

Basic Definitions

The committee' s charge calls for the study to focus on environmental regulatory models. Thisis
clearly asubset of all models used in science, policy making, and elsewhere. To help differentiate
environmental regulatory models from other models, the committee defines four basic terms: model,
conceptual model, computational model, and environmental regulatory model.

Recognizing the wide usage of the term in academia, policy making, and elsewhere, the
committee defines amodel as

asimplification of reality that is constructed to gain insights into select attributes of a particular
physical, biological, economic, or social system. Models can be of many different forms. They
can be computational. Computational models include those that express the rel ationships among
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components of a system using mathematical relationships. They can be physical, such as models
built to analyze effects of hydrodynamic or aeronautical conditions or to represent landscape
topography. They can be empirical, such as statistical models used to relate chemical properties
to molecular structures or human dose to health responses. Models also can be analogs, such as
when nonhuman species are used to estimate health effects on humans. And they can be
conceptual, such as aflow diagram of anatural system showing relationships and flows amongst
individual components in the environment, a business model that broadly shows the operations
and organization of abusiness, or amodel that includes the relationships among both natural and
economic components. The above definitions are not mutually exclusive. For example, a
computational model may be devel oped from conceptual and physical models and an animal
analog model can be the basis for an empirical model of human health impacts.

Although models range widely in terms of how they are constructed, models share the common
objective of aiding in the understanding of a complex and poorly accessible physical, biological,
economic, or social system. Figure 1-3 shows one type of model, a physical model for representing
planetary motions. Models help generate information to better understand the relationship among
components in a system, to extrapolate the behavior of a system to aternate designs, or to projected future
conditions. Figure 1-4 shows a second type of model, an analog model where awhite mouse is used as
analog for estimating human health impacts. Thisfigure also shows one of the issues that arise from
using such amodel, the need to extrapolate from the range of exposures for a mouse down to the range of
exposures for humans. Although the question of whether a mouse is an appropriate analog model for
estimating human health impactsis not part of this study, issues related to the statistical models that are
used to extrapolate from mice to humans are part of this study.

FIGURE 1-3 An orrery or physical model of the solar system. Source: C. Mollan, National Inventory of
Scientific Instruments, Royal Dublin Society. Image courtesy of Miruna Popescu. Reprinted with
permission; copyright 2004, Armagh Observatory.
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FIGURE 1-4 The use of amouse model for estimating human health risks. Source: Conolly 2005.

The process of building computational, physical, and other models begins with abasic
conceptualization of asystem. A conceptual model is an abstract representation that provides the general
structure of a system and the relationships within the system that are known or hypothesized to be
important. Many conceptual models have as akey component a graphical or pictorial representation of
the system.

Although the environmental regulatory process typically requires numerical analysis of proposed
regulations, the conceptual model provides critical synoptic or summary understanding of the principle
factors that influence the effectiveness of policies and, thus, is critical for regulatory analysis. 1nthe
context of environmental regulatory model applications, conceptual models are critical for both guiding
guantitative analysis and communicating with decision makers, stakeholders, and the interested public.

A subset of all models are those that use measurable variables, numerical inputs and
mathematical relationships to produce quantitative outputs. The committee defines a computational
model as

amodel that is expressed in formal mathematics using equations, statistical relationships, or a
combination of the two. Although values, judgment, and tacit knowledge are inevitably
embedded in the structure, assumptions, and default parameters, computational models are
inherently quantitative, relating phenomena through mathematical relationships and producing
numerical results.

Two examples of computational models are shown in Figures 1-5 and 1-6. Figure 1-5 (taken
from Morales et al. 2000) shows the use of statistical models to characterize the lifetime risk of
developing bladder cancer among males living in southwestern Taiwan as afunction of exposure to
arsenic in drinking water (measured in micrograms per liter). Each dot in the three panels represents the
estimated lifetime risk for subjects exposed in increments of 100 pg/L, with each panel representing a
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separate population. We will come back to these figures later in the report, since they provide avery
clear illustration of the impact of model choice on estimated dose response. Figure 1-6 showsthe
conceptual structure of the integrated exposure uptake biokinetic (IEUBK) model that is used to estimate
blood lead levelsin children. This model has been used in both air quality and hazardous waste-site
applications to support standards and cleanup goals (NRC 2005a).
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FIGURE 1-5 Examples of dose-response models for estimating lifetime risk for male bladder cancers
due to arsenic in drinking water for various exposed populations. A shows the estimated lifetime death
risk for male bladder cancer without comparison population; B shows the estimated lifetime death risk for
mal e bladder cancer with Taiwanese-wide comparison population; and C shows the estimated lifetime
death risk for male bladder cancer and the southwestern Taiwanese region comparison population. Note
that several possible statistical models are fit to each data set. Source: NRC 2001b, printed in Morales et
al. 2000.
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FIGURE 1-6 Components and functional arrangements of the IEUBK model that predicts blood lead
levelsin children. Source: EPA 1994b.

Finally, the committee’ s task statement concentrates on the application of environmental
regulatory models at the EPA. The committee defines an environmental regulatory model as

a computational model used to inform the environmental regulatory process. Some models are
independent of a specific regulation, such as water quality or air quality modelsthat are used in
an array of application settings. Other models are created to provide a regulation-specific set of
analyses completed during the development and assessment of specific regulatory proposals. The
approaches can range from single parameter linear relationship models to models with thousands
of separate components and many billions of calculations.

Environmental regulatory models range from those that come complete with source code,
documentation, and cellophane packaging to those that are simply a system of algebraic equations or
statistical operations. Models also are often coupled together for environmental regulatory applications.

In the context of their use in environmental regulatory activities, the differentiation between a
model and its application can be difficult. For example, some models developed for asingle set of
analysis may be viewed by users as inseparable from their applications, and treated synonymously. In
Figure 1-3, each lineis from a different model fitted through the same data, resulting in several possible
dose-response curves. In other cases, genera models are adapted to a particular location or particular
contaminant through problem-specific input data or modification of particular assumptions. To further
blur the distinction, analysts may use the term “model” to refer to a particular application of a general
model.

In some ways thisis merely a semantic difference. However, the development and application of
amodel pose differing evaluation issues. Further, although a model may be applicable to a given setting,
its actual application to that setting may be problematic if input parameters for that application are not
available or incorrectly specified. Thus, it is necessary to differentiate between evaluation of a general
model, evaluation of the applicability of that model to a particular circumstance, and the ultimate
implementation of that model, including the specification of parameter and/or input values. Thisreport is
not entirely about de novo model development and use, but also the application of previously developed
models to specific applications.
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What Types of Models Are Within Study Scope

A broad array of environmental models is used in the implementation of EPA’s regulatory
mission. Thisincludes the use of models in the assessment and regulation of toxic substances, the setting
of emissions and environmental standards, and the development of mitigation plans. For example,
models are used to

Assess exposures to contaminants and effects, as well as the relationshi ps between them.
Project future conditions or trends.
Extrapolate and interpolate values to situations in which observations are not available.

» Assessthe contributions of individual sourcesto a problem that results from aggregate and/or
cumul ative exposures.

» Evauate attributes and impacts of different policy alternatives or future scenarios.

» Evaluating the post-implementation adequacy of aregulation to achieve its goals.

» Consider how the actions of regulated parties might be impacted by alternate policy instruments
such as emissions standards versus emissions trading.

The types of models used in this regulatory analysis include those for emissions, environmental
fate and transport, exposure, dose (pharmacokinetic models), health effects, ecological impacts,
engineering, and economics. Chapter 2 provides more discussion of these models and how they are used
in the regulatory process. These models vary widely in complexity. One of the simplest environmental
regulatory modeling applications is the use of one-dimensional groundwater flow equationsin the
assessment of regulatory actions for leaking underground storage tanks (Weaver 2004a). Such models
use an exact solution to simple differential equations that describe straight-line flow and transport in a
homogeneous aquifer. A similar model complexity isasimple linear dose-response model that fits a
straight line to a series of individual dose-response points. At the other end of the spectrumis the highly
complex Community Multiscale Air Quality (CMAQ) model and its associated meteorological and
emissions processing models that simulates the transport, transformation, and formation of multiple
atmospheric pollutants. These three models (CMAQ for the simulation of the chemical transformation
and fate of pollutants, an emissions model for anthropogenic and natural emissions that are injected into
the atmosphere, and a meteorological model for the description of atmospheric states and motion) form a
coupled modeling system. CMAQ uses as inputs the results of the emissions and meteorol ogical models.
Thus, this suite of individual models can be an even more complex model. Regardless of their level of
complexity, all environmental regulatory models provide a quantitative tool for the development,
implementation, and assessment of environmental policies.

What Types of Models Are Outside the Study Scope

Although the environmental modeling considered part of the committee' s charge encompasses a
substantial portion of EPA’s modeling activities, some modeling applications are outside of the primary
scope. Foremost, the committee is not constituted to comment on the development and use of laboratory
animal analog models of human health responses to environmental pollutants. Assessing issues related to
the use of an animal species as an analog for human health impacts is outside the expertise of this
committee. Another NRC report describes issues related to the use of animal analog models (NRC
2001b). However, computational models, particularly statistical dose-response models, that are used to
extrapolate |aboratory animal data to humans are included.

Additionally, the committee' s focus is on models used in the development, assessment, and
implementation of environmental regulatory actions. EPA aso uses modelsin avariety of other
applications including planning, project scheduling, data collection, research, prediction, and forecasting.
In so far as these models are computational, the committee’ s recommendations may be useful for these
models and their applications. But the committee in no way focused on some of the unique attributes of
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model selection and use at EPA in these other activities. Because of the wide array of environmental
modeling at the agency, there is sometimes not a clear distinction between models used for regul atory
purposes that are within the scope of this study and models considered to be used for nonregulatory
purposes. For example, the same model may be used for both a regulatory application and aresearch
application. In thisway there is sometimes a continuum from models clearly in the regulatory domain
under the purview of this study and other applications clearly outside the scope of work. However, not all
model applications at EPA directly lead to regulation and there are clearly some model applications that
fall outside the committee’ s scope.

REPORT CONTENTS

This report documents the committee’ s response to the charge described above. The report
consists of six chapters and asummary. Chapter 2 describes the diversity of model use at EPA, how the
agency currently integrates models into its policies, and some of the challenges to model use. Chapter 3
discusses the major steps in environmental regulatory model devel opment, focusing on the main lessons
learned from previous effortsin EPA. Chapter 4 discusses the evaluation of these models. Chapter 5
describes issues that arise in selecting models for their application in environmental regulatory activities.
The report closes by discussing future environmental regulatory model activities in Chapter 6.



2

Model Usein the Environmental
Regulatory Decision Process

Regulatory model use at EPA can be contentious. Decisions based on model results might have
important public health or environmental consequences and impose substantial costs. Like other aspects
of regulation, models are used and evaluated within an environment of legislative requirements,
regulatory review, extensive comment by interest groups and other federal agencies, and legal challenge.
Within this environment, the development, maintenance, and use of models diverge in important ways
from research modeling in academia or nonregulatory modeling in the public and private sectors.

In spite of the challenges, the use of computational models within the regulatory decision process
at EPA isacontinually growing practice. This growth isin response to greater demands for quantitative
assessment of regulatory activities, including analysis of how well environmental regulatory activities
fulfill their objectives and at what cost. Models are essential for estimating a variety of relevant
characteristics—including pollutant emissions, ambient conditions, and dose—when direct observation
would be inaccessible, infeasible, or unethical. Finally, models allow regulators to move away from
technol ogy-based regulations that do not use quantitative analysis for ng their benefits. This
chapter describes the diversity of model use at EPA and the current integration of modelsinto its
regulatory policies. It highlights how EPA regulatory model use isinfluenced by legislative mandates
and executive orders aswell as oversight from the courts and outside participants.

REGULATING WITHOUT COMPUTATIONAL MODELS

Although models are essential tools if regulators are to be able to predict the risks or the effects of
their regulations on the natural and human environment, models are neither necessary nor sufficient to
produce the regulations themselves. In the 1970s, when the legidative framework underlying most of
today’ s environmental policy was first established, few sophisticated computational environmental
model s—models designed to predict the environmental consequences of human activity—existed.
Moreover, the monitoring networks capable of quantitative description of the state of the environment
were rudimentary, and the technology for measurement of pollutant discharges of various kinds and their
environmental effects were much less developed than today’ s technology. It wasin this setting that most
modern environmental regulatory statutes first appeared, including the Clean Air Act (CAA) of 1967, the
Federal Water Pollution Control Act of 1972 and renamed the Clean Water Act (CWA) in 1977, and the
Safe Drinking Water Act of 1976. Regulatory designs at the time necessarily minimized the use of
computational models in the regulatory process.

The models that did exist played little role in that process because the new environmental statutes
emphasized the use of technology-based pollution discharge regulation. Technology-based regulation
requires pollutersto adopt a particular technology (or, in some cases, achieve alevel of performance
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associated with a particular technology) without regard to the potential or actual environmental
improvements that would result.

Even before the implementation of the federal environmenta statutes, technol ogy-based
regulation partly relied on there being some level of pollution abatement practiced by at least some plants
in most industries. EPA was to find those plants and set a performance standard for al plants that was
based in some way on what most plants were doing. Usually the congressional mandate involved the use
of the words “best technology,” and it was left to EPA to interpret and give operational meaning to the
various designations of “best.” For example, industrial water pollutant dischargers had to meet “ best
practicable treatment” (BPT) technology standards by 1977 and “best available treatment economically
achievable” (BATEA or, more often, BAT) standards by 1983. In industries such as food processing and
laundries that generated wastewater that resembled domestic waste (in constituents if not in strength), the
usual interpretation of BPT was a performance standard that approximated what good secondary
(biological) treatment could do. For other industries, BPT was often defined as the “average of the best”
plantsin the industry identified as having wastewater treatment in place. For BAT, the standard was the
“best of the best,” at least until the CWA Amendments of 1977, which redirected BAT toward the control
of toxic pollutantsin wastewater.

It should be noted that technol ogy-based standards are not the only policy instrument that makes
it possible to regulate without having to predict the environmental effects of environmental regulations.
Indeed, the need to predict the consequences of regulations depends not on the policy instrument but on
the policy goal. If the goal isto achieve alevel of emissions reductions rather than environmental quality,
there is no need to inquire into environmental effects, regardless of policy instrument. Other
environmental policies proposed in the early 1970s shared that property, including several proposals using
economic incentives." Like technology-based standards, none of these proposals had an environmental
objective beyond the notion that a reduction in effluent discharges would be an improvement and that
policies could be fine-tuned later, when scientists had collected more data and achieved a better
understanding of environmental processes.

Although the CAA and CWA of the 1970s (as well as other environmental statutes) made
extensive use of technology-based standards, it would be misleading to leave the impression that their
regulatory arsenals were not limited to such standards. Both statutes also had explicit environmental
goals, measurement criteria for determining when the goals were met, and timetables for meeting them.
For example, the National Ambient Air Quality Standards (NAAQS) in the 1970 CAA focus on reducing
air pollutant concentrations to levels that are protective of human health and public welfare. This
legiglation required states to devel op state implementation plans (SIPs), which are subject to EPA
approval. Such approval was contingent on whether the plans, when implemented, would reduce
emissions enough to alow the ambient standards to be met. EPA would come to base these SIP approval
decisions on emission-inventory models linked to air quality models. In asimilar manner, the CWA
specified further regulatory action in “water-quality-limited” waters, where the imposition of the
technol ogy-based standards was considered insufficient to achieve water quality standards. Eventually,
that section of the CWA gaverise to the “total maximum daily load” program.

Technology-based regulation proved to be a crude approach to pollution abatement policy.
Moreover, it did not ultimately relieve Congress and EPA of the need for models to assess whether
abatement policies were sufficient to achieve ambient goals. However, at atime when few models were
available for linking pollution abatement to environmental improvement, technol ogy-based standards
provided a basis for regulating pollutant discharges that did not require knowledge of what the effects of
such regulation would be. Today technol ogy-based regulations are still in use, primarily in circumstances
in which data and models do not yet permit an adequate assessment of the effects of regulation on
environmental or health end points and in which other approaches have failed to generate regulations
(these two situations overlap substantially). For example, Title Il of the 1990 CAA Amendments
changed the primary focus of hazardous air pollutant (HAP) regulation from a risk-based approach to a

1n 1970, atax on sulfur emissions as a partial aternative to some of the air quality regulation then under
consideration in Congress was proposed by President Nixon. In November 1971, an effluent-charge amendment to
clean water legidation then under consideration was offered and debated in the Senate (Kelman 1982, Kneese and
Schultze 1975).
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two-step process, where the primary focus has been on a technol ogy-based approach to mandate
promulgation of emissions standards for sources based to some extent on maximum achievable control
technologies (MACT), followed by aresidual risk assessment. In the preceding regime, regulators made
little progress in producing regulations, largely because the inadequacies of data and models linking
emissions of HAPs to adverse health effects. The current approach directs EPA to develop aMACT
standard for each industrial source category, defined in part by high emissions of listed pollutants. Since
1993, EPA has promulgated over 100 MACT regulations (for the list, see EPA 2006b). After aMACT
has been applied, EPA isto perform aresidual risk assessment to evaluate the adequacy of the MACT,
which might require additional controlsif significant risks still exist.

REGULATORY MODEL CLASSIFICATIONS

There are many waysto classify the regulatory models used by EPA, each with its own
perspectives and particular advantages and disadvantages. Two broad categorizations are used here: (1) a
functional perspective that categorizes models based on their representation of scientific and other
processes that translate human activities and natural systems interactions into environmental impacts and
(2) aregulatory perspective that categorizes models based on how they are used in environmental
regulation. In short, we see these as attempting to represent how an environmental scientist, engineer, or
economist might see model use and how a regulator or stakeholder might see model use. In presenting a
science perspective and aregulatory perspective, the committee acknowledges that the user community
for environmental regulatory modelsis diverse, and a single perspective on model classification is not
possible. More perspectives provide insights into model use, insights that are not possible from asingle
perspective. Looking at the functions of models as representing different environmental and human
processes helps to emphasize the role of individual models and the need to integrate across multiple
models for many regulatory activities. Looking at models from the perspective of their role in a complex
regulatory setting helps to make clear the role of legidation and regulation in determining modeling
objectives and the separate modeling responsibilities for EPA, state, and local governments.

Given the wide range of model applications and large number of models used in environmental
regulation, the committee does not attempt to present an inventory of models used by EPA. The most
exhaustive inventory with descriptions of individual modelsis EPA’s Council on Regulatory
Environmental Models (CREM) (EPA 2006c¢), although many other web sites are devoted to describing
various programs modeling initiatives (see Table 2-1). CREM'’ s knowledge-base documents more than
100 models used by various offices at the agency. It isthe single best, although incomplete, inventory of
models at EPA. The information available on each model includes user information on obtaining and
running the model and model documentation, including conceptual basis, scientific details, and results of

TABLE 2-1 Examples of EPA’s Web Sites Containing Model Descriptions for Individual Programs

National Exposure Research Laboratory Models Web Ste
http://www.epa.gov/nerl/topics/model s.html

Atmospheric Sciences Modeling Division Web Site
http://www.epa.gov/asmdnerl/index.html

Office of Water’s Water Quality Modeling Web Site
http://www.epa.gov/waterscience/wgm

Center for Subsurface Modeling Support Web Ste
http://www.epa.gov/ada/csmos.html

National Center for Environmental Assessment’s Risk Assessment Web Ste
http://cfpub.epa.gov/ncea/cfm/nceari skassess.cfm?Act Type=Ri skAssess

National Center for Computational Toxicology Web Site
http://www.epa.gov/ncct
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evaluation studies. A full review of the knowledge base has recently been completed by EPA Science
Advisory Board and is beyond the committee’ s charge (EPA 2006d). However, we note that additions to
the CREM knowledge base have ceased since 2004, with the exception of several climate change models
that were added in 2006. For the knowledge base to reach its full capability, it needs to be updated
continually and to include all types of models used at EPA, including those in the health risk assessment
field.

Regulatory Models from a Functional Perspective

In this section, we discuss model s categorized according to how they fit into a description of the
processes that translate human activities and natural systems interactions into environmental impacts.
Figure 2-1 shows an illustration of the pathways from activities to emissions to impacts. In the figure,
individual components simulate the relationships between human activities and emissions, emissions and
concentrations, concentrations and exposures, and exposures and impacts. It also indicates the feedback
of impacts on human activities and natural processes. Appendix C provides examples of specific models
from the model categories. The figure provides an approximate categorization of how computational
models used in environmental analysis have historically been grouped, in particular, in economic,
environmental, and human health models. This perspective allows for the identification of particular
types of models and the linkages among these models. Each box is highly aggregated and could be
expanded into a diagram of sub-boxes. An example of how this aggregate representation might be
represented in more detail will be discussed with respect to human health risk assessment in a later
section.

The categories of models that are integral to environmental regulation include activity models,
natural and anthropogenic emissions models, fate and transport model's, exposure models, dose models,
human health models, environmental and ecosystem impact models, and economic impact models.
Although the categories of models shown in Figure 2-1 are not specific to environmental media, the
models that fit into each category tend to be further subdivided by media. For example, the generic
category of environmental fate and transport models can be subdivided further into various types of
subsurface containment transport models, surface-water quality models, and air quality models (Schnoor
1996; Ramasawami et al. 2005).

! !
Natural System Processes | | Human Activities
| Emission |

| Fate and Transport |

| Exposure |

Human Heath/Environment
Response

/\

| Economic Impacts | | Non-Economic impacts |

e

| . .
FIGURE 2-1 Basic modeling elements relating human activities and natural systems to environmental
impacts.
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Scope of Regulatory Modd Applications

Table 2-2 contains short descriptions of some of EPA’ sregulatory activities that rely on
modeling. These environmental regulatory modeling activities typically occur as a subset of the full
system summarized in Figure 2-1. The underlying statutory requirements, the regul ations implementing
the statutory requirements, and the importance of the activity dictate the nature of the modeling analysis.
For example, assessing the toxicity of new pesticides and other chemicals in the environment may focus
on just the fate and transport or toxicity portion of the system. Assessing the risks from leaking
underground petroleum storage tanks, especially during initial assessments, focuses solely on the fate-
transport component. The SIP process, which involves extensive emissions and air quality modeling,
stops at simulating atmospheric concentrations of air pollutants. Ideally, regulations would be informed
by understanding the whole of the paradigm, shown in Figure 2-1, from human activities through adverse
outcomes. However, only the most important regulatory assessments, such as some of those done for
federal rules that have major economic impacts, include a simulation of processes from activity to health
impacts. These are the rules that generate most of the benefits and costs of environmental regulation, and
the modeling effort can be enormous. A recent example of such an analysis is the regulatory impact
assessment (RIA) for the control of air pollutant emissions from nonroad diesel engines (EPA 2004b).
Even the extensive modeling that accompanied this rule cannot quantitatively consider all aspects of the
problem. For example, in discussing behavioral responses to increasing costs for nonroad diesel engines,
stakeholders suggested that equipment users may substitute different equipment (gasoline engines) or
even |abor (the use of alaborer and shovel instead of a backhoe) for more expensive diesel engines (EPA
20044). Such behavioral aspects were only discussed qualitatively in the report. Incorporating behavior
into environmental regulatory modelsis discussed more generally in Box 2-1.

Linkages among the different processes are not seamless. Each category often is represented by a
separate model and regulatory analyses often require that inputs and outputs of one model interface with
other models in separate categories. Sometimes temporal or spatial scales do not line up and results from
one model may not have natural counterparts in the models with which it interfaces. An exampleisfrom
the air quality analysisin which emissions from vehicles and other sources that are estimated at the
regional level must be allocated spatially and estimates of aggregated hydrocarbon emissions must be
disaggregated by species for input into the air quality model. More fundamentally, the linking of these
different categories means the linking of separate disciplines. To properly link different modeling
categories requires the building of interdisciplinary bridges, which is an ongoing effort at EPA. Although
there are software tools and integrated models that allow multiple processes to be combined into asingle
modeling framework as discussed in a subsequent section, such amodel still faces the difficulty of
needing to rely on the expertise from multiple disciplines.

Thelevel of effort dedicated to environmental regulatory applications varies greatly. This
variation is acritical consideration when devel oping recommendations, later in the report, related to
model development, evaluation, and application. At one end of the spectrum are applications that involve
asmall investment in resources and modeling effort. Leaking underground petroleum storage tanks
number in the hundreds of thousands, and preliminary screening for EPA’ s leaking underground storage
tank program typically relies on the application of an analytical model with assumed parameters (Weaver
2004b). These state-run programs may spend as little as $500 for site assessments. The new chemicals
program under the Toxic Substances Control Act (TSCA) requires EPA to review approximately 2,000
new chemicals per year and issue decisions on up to 20-30 chemicals per day (C. Fehrenbacher personal
commun., EPA Office of Pollution Prevention and Toxics, February 23, 2006). Because of these
demands, the agency relies on the quantitative structure-activity relationships (QSARs) model that uses
basic knowledge of achemical’s structure to predict physical and chemical properties and environmental
fate and transport when data are not available. At the other end of the spectrum, EPA may spend years or
even a decade ng the health and environmental consequences of other environmental pollutants,
making their modeling efforts extremely complex. Under the CAA, EPA isrequired to review NAAQS
every 5 years. Thisrequires major investments of resources and may take many years of assembling
background information and performing analyses, including modeling analyses. Somewhere between
these two extremes are the water quality management TMDL and the air quality management SIP
analyses. EPA estimates 3,000-4,000 TMDLSs, with awide array of resource requirements, will be needed
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TABLE 2-2 Examples of Magjor EPA Documents That Incorporate a Substantial Amount of
Computational Modeling Activities

Air Quality
Criteria Documents and Saff Papers for Establishing NAAQS

Summarize and assess exposures and health impacts for the criteriaair pollutants (o0zone, particul ate matter, carbon
monoxide, lead, nitrogen dioxide, and sulfur dioxide). Criteria documents include results from exposure and health
modeling studies, focusing on describing exposure-response relationships. For example, the particul ate matter
criteria document placed emphasis on epidemiological models of morbidity and mortality (EPA 2004b). The Staff
Paper takes this scientific foundation a step further by identifying the crucial health information and using exposure
modeling to characterize risks that serve as the basis for the staff recommendation of the standards to the EPA
Administrator. For example, models of the number of children exercising outdoors during those parts of the day
when ozoneis elevated had a magjor influence on decisions about the 8-hour ozone national ambient air quality
standard (EPA 1996).

Sate Implementation Plan (9 P) Amendments

A detailed description of the scientific methods and emissions reduction programs a state will use to carry out its
responsibilities under the CAA for complying with NAAQS. A SIP typically relies on results from activity,
emissions, and air quality modeling. Model-generated emissions inventories serve as input to regiona air quality
models and are used to test alternative emission-reduction schemes to see whether they will result in air quality
standards being met (e.g., ADEC 2001; TCEQ 2004). Regional scale modeling has become an integral part of
developing state implementation plans for new 8-hour ozone and fine particulate matter standards. States, local
governments, and their consultants do this analysis.

Regulatory Impact Assessments for Air Quality Rules

RIAsfor air quality regulations document the costs and benefits of major emission-control regulations. Recent RIAs
have included emissions, air quality, exposure, and health and economic impacts modeling results (EPA 2004c).
See Box 2-3 for afurther discussion of the RIA.

Water Regulations

Total Maximum Daily Load (TMDL) Determinations

For each impaired water body, a TMDL documents a state-designated water quality standard need to meet a
designated use for that water body and the amount by which pollutant loads need to be reduced to meet the standard.
TMDLs utilize water quality and/or nutrient loading models. States and their consultants do the majority of this
modeling, with EPA occasionally doing the modeling for particularly contentious TMDLSs (George 2004;
Shoemaker 2004; Wool 2004).

Leaking Underground Storage Tank Program

Assesses the potential risks associated with leaking underground gasoline storage tanks. At an initial screening
level, it may assess only one-dimensional transport of a conservative contaminant using an analytical model
(Weaver 2004b).

Development of Maximum Contaminant Level for Drinking Water

Assess drinking water standards for public water supply systems. Such assessments can include exposure,
epidemiology, and dose-response modeling. (EPA 2002b,c; NRC 2001b,c, 20063).

Pesticides and Toxic Substances Programs

Pre-manufacturing Notice Decisions

Assess risks associated with new manufactured chemicals entering the market. Most chemicals are screened
initially asto their environmental and human health risks using structure-activity relationship models.

Pesticide Reassessments

Requires that all existing pesticides undergo a reassessment based on cumulative (from multiple pesticides) and
aggregate (exposure from multiple pathways) health risk. Thisincludes the use of pesticide exposure models.

Solid and Hazar dous Wastes Regulations
Superfund Site Decision Documents

Includes the remedial investigation, proposed plan, and record of decision documents that detail the characteristics
and cleanup of Superfund sites. For many hazardous waste sites, a primary modeling task is utilizing groundwater
modeling to assess the movement of toxic substances through the substrate (Burden 2004). The remedial
investigation for a mining megasite might include water quality, environmental chemistry, human health risk, and
ecological risk assessment modeling (NRC 20053).
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Human Health Risk Assessment

Benchmark Dose (BMD) Technical Guidance Document

EPA relies on both laboratory animal and epidemiologic studies in assessing the noncancer effects of chronic
exposure to pollutants (that is, the reference dose [RfD] and the inhalation reference concentration, [RfC]). These
data are modeled to estimate the human dose-response. EPA recommends the use of BMD modeling, which
essentially fits the experimental data to use as much as the available data as possible.

Guidelines for Carcinogen Risk Assessment

The cancer guidelines set forth arevised set of recommended principles and procedures to guide EPA scientists and
others in assessing the cancer risks resulting from exposure to chemicals or other agents in the environment. One of
the principal advancements was to describe approaches that consider mode-of-action data, if available, in the
guantitative assessment. The guidelines are also used to inform agency decision makers and the public about risk
assessment procedures (EPA 2005a).

Ecological Risk Assessment

Guidelines for Ecological Risk Assessment

The ecological risk assessment guidelines provide general principles and give examples to show how ecological risk
assessment can be applied to awide range of systems, stressors, and biological, spatial, and temporal scales. They
describe the strengths and limitations of alternative approaches and emphasize processes and approaches for
analyzing data rather than specifying data collection techniques, methods, or models (EPA 1998).

BOX 2-1 Incorporating Human Behavior into Environmental Models

For regulatory purposesit isimportant to not only model natural systems but also human activities and their
interactions with natural systems. These interactions, which can always be found at either end of the causal
chain, shown in Figure 2-1, and often in the middle as well, require models from the social sciences, usually
economics. A key modeling consideration is the extent to which such models incorporate human behavior. The
earliest models used for environmental regulatory purposes had little if any behavioral content. The effects of
both regulations and environmental changes were estimated without considering the full range of responses
available to economic agents—individuals, households, and firms. One of the first models to demonstrate that
possible behaviora responses could affect the costs or effectiveness of regulations was devel oped by Gruenspecht
(1981), who pointed out that the common regulatory practice of requiring more stringent and more costly
abatement for new sources of pollutants than for existing sources could retard the turnover of existing equipment.
Behaviora responses are sensitive to the details of regulatory design, and numerous models appeared in the
economics literature describing the unintended conseguences of such real-world policies as CAFE (Kwoka 1983)
and vehicle inspection and maintenance (Hubbard 1998). Behavioral responses also affect other outcomes of
interest to EPA, including regulatory enforcement (Harrington 1987), pollution abatement subsidies (Freeman
1978; CBO 1985). Behavioral responses to adverse environmental consequences, such as private defensive
expenditures, have also been analyzed.

For many years, EPA made frequent use of behavioral models for policy analysis and regulatory impact
analysis. In casesinvolving economic incentives, behavioral models are essential because the behavioral
response iswhat drives the policy outcome. For example, analysis of proposed emissions cap-and-trade policies
to control airborne sulfur dioxide emissions from the electric power industry requires the agency to predict the
behavior of utilitiesin the permit market. For thistask, EPA uses the integrated planning model, a proprietary
dynamic linear programming model that determines the least-cost loading of generating capacity to meet
eectricity demand. The optimization simulates the expected outcome in the permit market.

Not al of EPA’sregulatory models that could incorporate behavioral responses to regulation do. For
example, the MOBILE model, which projects average regional or national motor vehicle-emission rates under a
variety of regulatory design parameters, does not consider the effects that regulatory alternatives might have on
fleet composition or vehicle use through their effects on vehicle or fuel prices. MOBILE'sfailure to anticipate
behavioral responses to regulation has been most noticeable in the motor vehicle emissions inspection and
maintenance program (1/M) component, which has underestimated the ability of motoriststo avoid I/M tests
altogether and overestimated the ability of those tests to identify high-emitting vehicles as well asthe
effectiveness of vehicle repair (e.g., NRC 2001; Holmes and Cicerone 2002, and references therein).

annually for the next 8 to 13 years to meet current deadlines (NRC 2001c). While some TMDLSs require
extensive data collection and modeling, at |east one state has proposed using a nonmodeling approach for
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catchments with little or no data (George 2004). The SIP process can be a mgjor undertaking requiring
development of emissions inventories and analysis of control options. Each local area out of attainment
must submit a plan for each pollutant. For example, there are currently 116 counties out of attainment
with the current 24-hour PM,s* standard (Bachman 2006).

Evolution of Regulatory Modeling

The elements that are included in modeling may change over time for a given type of assessment,
typically adding complexity to the modeling process. Thisisaresult of changesto regulatory
requirements, scientific understandings, and modeling capabilities. A potential example isin the health
risk assessment paradigm. Fundamentally, a health risk assessment devel oped today is conceptually
consistent with what is discussed in the NRC “Red Book” (Risk Assessment in the Federal Government:
Managing the Process, NRC 1983) and laid out in Figure 2-2 (NRC 1983). A major modeling
component is the development of dose-response rel ationships through analysis of epidemiological or
toxicological studies (Setzer 2005). The NRC reports on toxicological effects of arsenic from drinking
water provide a prime example of many of the issues associated with devel oping dose-response modeling
for a contaminant (NRC 1999a; 2001b). Box 2-2 described this case study in more detail.

However, research and practice has enabled major changes since 1983 in how the risk
components are developed. Asthe black box between exposure and effect gathered light, improvements
in risk assessment practice (Reddy et a. 2005), toxicological testing technologies (NRC in press),
biomonitoring (NRC 2006a), and understanding of the modes of action, to name afew allow for amore
mechanistic modeling approach to relating exposures to health outcomes (see Figure 2-3). For example,
analysts understand that even if humans and rats received the same external exposure, they did not receive
the same dose of active chemical to the target tissue. To understand these events, data on basic
physiological and pharmacokinetic processes and resultant physiologically based pharmacokinetic
(PBPK) modeling can integrate specific properties of chemicals with age- and organ-specific
physiological processesin different species to relate an effective experimental exposure to an effective
environmental exposure (Clewell 2005). PBPK models offer the possibility that doses of chemicals
delivered to target cells of arat could be quantitatively extrapolated to target cells of humans. These
models also offer the possibility that differencesin age or sensitivity (for example, polymorphismsin
metabolism) in the human population could be incorporated in models. However, the use of a PBPK
model in arisk assessment can be atime- and cost-intensive undertaking requiring expertise (Clewell
2005). It must be accompanied by athorough evaluation that includes the following:

e Evauation of biological plausibility of model structure and parameters.
e Verification of model code (equations and logic).

e Validation of model’s region of applicability.

e Sensitivity and uncertainty analysis.

These models may also bring with them many technical and science policy challenges. One
outcome of more mechanistic approaches to health risk assessment modeling is that regulatory end points
might be based on an upstream biochemical precursor event instead of observed adverse health outcomes.
The challenge (and controversy) then becomes sel ecting the appropriate point between an innocuous
molecular change and frank disease to usein the assessment. The risk assessment of perchlorate (NRC
2005b) offers an example of how this can be addressed by selecting a nonadverse effect (the inhibition of
iodide uptake by the thyroid gland) as a point of departure for adding uncertainty factors. More
fundamentally, as understanding increases, so do options and questions about the most appropriate
approaches to assess risks. For example, in a particular scenario, judgments may be needed as to whether

2 PM, 5 refers to a subset of particulate matter collected by a sampling device with a size-selective inlet that has a
50% collection efficiency for particles with an aerodynamic diameter of 2.5 um.
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BOX 2-2 Risk Assessment for Arsenic in Drinking Water

EPA’s 2001 risk assessment for arsenic in drinking water provides arich case study that illustrates many
of the challenges associated with using models to inform environmental regulation. Establishing a U.S. standard
for arsenic in drinking water has been a source of controversy for many decades. From the perspective of
environmental regulation, the arsenic story is an interesting one for a number of reasons. First, exposures arise
from natural sources and some have even argued that at very low dosesit is an essential element for human health.
Second, arsenic is not directly carcinogenic in animals; hence, al evidence for human health effects arises from
epidemiological studies.

Two National Research Council committees (NRC 1999a, 2001b) convened to advise EPA on this matter
suggested that regulation be based on data from 42 villages in southwestern Taiwan, which showed increased rates
of bladder and lung cancer as afunction of arsenic levels measured in village wells. While it was originally hoped
that the arsenic might provide an opportunity for using EPA’s then new guidance on carcinogen risk assessment
that allowed the use of biologically based models, the first NRC committee found that there was so much
controversy over underlying mechanisms that it was not possible to identify a suitable biologically based model.
Instead, the committee recommended reliance on more empirically based statistical models. Although the dose-
response modeling was based on human data, which removed the uncertainty associated with extrapolation of
results from animals to humans, the inherent variability associated with human data introduced other sources of
uncertainty. There were many concerns expressed about the appropriateness of relying on the Taiwanese data for
the purpose of setting regulationsin the U.S. context. Some cited differencesin dietary patterns between the
United States and Taiwan, particularly in thisrelatively poor rural area of Taiwan. Otherswere concerned that the
Taiwanese study used cancer incidence data extracted from population records and exposure crudely assessed
based on the median levels of arsenic measured in villageswells. Indeed, Moraes et a (2000) fit the datausing a
series of relatively simple empirical models that differed according to how age and exposure were incorporated
and compared the results obtained from the multistage Weibull model, which had been classically suggested for
the analysis of time-to-event data of the type encountered in the Taiwanese data set. Asshown in Figure 1-3,
these various models differed substantially in their fitted values, especially in the critical low-dose areathat is so
important for establishing the benchmark dose used to set areference dose (RfD).

Rule-making was able to move forward, despite the uncertainty, since all the models supported the
conclusion that risk levels at the then standard of 50 micrograms per liter (ug/L) were unacceptably high. Based
on thefirst NRC review, EPA lowered the standard for drinking water from 50 pg/L to 10 ug/L in January 2001.
This standard was initially delayed so that the EPA Science Advisory Board, the National Drinking Water
Advisory Council, and a second NRC committee could further examine benefits, costs, and health risks. These
reviews supported the proposed 10 pg/L standard, which was subsequently finalized by EPA.

EPA should give preference to empirical models using human epidemiology or mechanistic rodent-based
models (Preuss 2006).

Integrated M odels and Modeling Frameworks

Some models tend to fit into a single category, while other regulatory models represent multiple
categories of processes, such as modeling emissions and fate and transport together. For example, the
integrated planning model produces estimates of electricity sector activity, including fuel demands,
prices, and emission-control decisions for given levels of emissions (Napolitano and Lieberman 2004).
Models that represent pesticide exposure, such asthe CARES, DEEM/Calendex, and LifeLine models,
simulate activities that expose humans to pesticides and the residues that different pesticides producein
food and the residential environment to simulate exposure profiles (EPA 2004d).

More recently, the movement toward integration has utilized advances in software to develop
modeling frameworks that allow user flexibility to use a combination of compatible models, facilitate
multiple ssimulations, and facilitate output analysis. Examples are CMAQ/Models-3, FRAMES, 3MRA,
and BASINS. For example, the Better Assessment Science Integrating Point and Nonpoint Sources
(BASINS) is a multipurpose environmental analysis system that integrates a geographical information
system, national watershed data, and state-of-the-science environmental assessment and modeling tools
into one modeling package (EPA 2006e). The model integratesindividual stand-alone models that
simulate pollutant loadings from point and nonpoint sources and instream water quality models for
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FIGURE 2-2 Basic elements of risk assessment from the National Research Council’s Red Book.
Source: NRC 1983.

performing watershed- and water-quality-based studies. It isintended to make watershed and water
quality studies easier by bringing key data and analytical components “under one roof.” A further
discussion of improvementsin integrated model methods is contained in Chapter 6.

Regulatory Models from a Regulatory Per spective

In this section, we describe the use of modelsin six phases of the regulatory process. Strategic
planning identifies environmental problems of present and future importance and assembles data and
constructs modeling toolsto permit analysis. Rule-making translates congressional directivesinto
specific regulations. Delegation has states and localities given responsibilities for devel oping plans to
achieve environmental goals locally and writing regulations to achieve those goals. Permitting, licensing,
registration is where these rules are applied to govern the behavior of polluting individuas, firms, or other
entities. The last two phases are enforcement and ex post facto analysis.

Strategic Planning

Thefirst element in the regulatory sequence above involves the strategic use of models to inform
Congress and decision makers within EPA in deciding whether or how to legislate or regulate.
“Strategic” implies athoughtful, informed, and priority-set analysis that identifies goals and major
approaches to achieve the goals. Because strategies are inherently predictive, models are crucial. They
can inform the identification of goals that are important to achieve (for example, whether a certain air
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FIGURE 2-3 Elements of advanced mechanistic approaches to health risk assessment. Thisfigure
illustrates the fundamental elements of assessment and the models that link the elements. PBPK refers to
physiologically based pharmacokinetic models and BBDR refersto biologically based dose-response
models. Source: EPA 2003.

pollutant already regulated is still aimportant public health risk requiring additional legislation or
regulations), and they can characterize approaches to achieving them (for example, whether the
predominant source of thisair pollutant is stationary, mobile, or personal identifies optimal regulatory
targets). Examplesinclude congressional requests to assess alternative legislative proposals for
controlling multiple pollutants from power plants (EPA 2001a,b) and EPA’s internal use of modeling to
identify the population at risk from ozone exposure that guided decisions on changing the NAAQS for
this pollutant (EPA 1996). The use of modeling in strategic planning can become part of the debate
between Congress and EPA over environmental policy. An example of thisisaMay 13, 2004, letter from
Congressman Thomas Allen to EPA Administrator Michael Leavitt concerning delays of model runs
assessing control options for electric power-plant emissions of mercury (Allen 2004).

One of the broadest uses of models in environmental strategic planning was by the
congressionally mandated National Acid Precipitation Assessment Program (NAPAP), which was
directed to perform research to inform decisions on regulations of acid rain. The interagency program
(EPA and 11 other federal agencies) was funded for 10 yearsin the 1980s and produced 27 state-of-the-
science and -technology reports on all aspects of the acid rain issue. One of the primary products was the
air quality models that are precursors to the models used at EPA today. Information developed by
NAPAP was useful for changing the understanding of the scientific-information related to acid rain and
informing Congressin its development of the parts of the CAA Amendments of 1990 that dealt with acid
rain. However, this legidation was enacted before NAPAP completed its integrated assessment report of
its activities. Thisreport was intended to synthesize the science for policy makers (NAPAP 1990). Inthe
end, NAPAP was criticized on a number of different levels by both the participants and the observers
(Roberts 1991; Rubin 1992; Herrick 2000). Globa warming modeling provides a contemporary example
of the strategic use of models. The U.S. Climate Change Science Program (CCSP) has developed a
strategic plan for attempting to coordinate research, including modeling research, being done by 13
agencies and departments in the government (CCSP 2003; NRC 2004a).

Rule-making

Rule-making encompasses the tasks of regulatory design and promulgation. The goal of
regulatory design is to produce a proposed rule that complies with the legidlative requirements set down
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by Congress and that provides sufficient support and analysis of the rule. EPA’s modeling activities at
the rule-making stage can be extensive. For example, the nonroad diesel RIA included the use of activity
models, emissions models, air quality models, engineering cost models, energy forecasting models,
petroleum refinery models, and human health and agricultural impacts models to assess the benefits and
costs of the proposed regulation (EPA 2004b). Other rules incorporate less modeling. However, at this
point in the regulatory process, EPA is responsible for performing the model analysis, although other
stakeholders may submit model analysis and comments on the agency’ s modeling analysis during the
public comment period. The externa review of EPA’s modeling in support of rule-making, including the
role of the public comment period and interagency review, is discussed in alater section of this report.

Delegation

Many environmental statutes, including the CAA and CWA, delegate important roles for
compliance, which includes implementation and enforcement, to states. States may further delegate some
responsibilitiesto local agencies. Delegation of authority for implementation and enforcement is also
givento tribal governments. Modeling analysisis part of the delegated responsibility. The roles of EPA
and the state and local agencies vary by the statutes and within statutes. Under the SIP process, states or
local governments must prepare a plan for each area that does not meet NAAQS, describing how that area
will be brought into attainment. This process includes the modeling analysis described in Table 2-2. For
large urban areas, typicaly a metropolitan planning or other local air quality agency prepares the SIP that
must be then approved by the state and eventually by EPA. In the case of the Los Angeles area, it isthe
South Coast Air Quality Management District that prepares the SIP. For areas with smaller populations,
such as the Missoula, Montana, area, the state prepares any SIPs submitted for approval to EPA. For the
TMDL program, states are primarily responsible for carrying out the program, including the modeling
described in Table 2-2. However, EPA will carry out some TMDL for particularly contentious settings,
such as the establishment of a TMDL for limiting mercury in fish tissue residual in the Ochlockonee
River Watershed in Georgia (EPA 2002b). Thirty-five states run their own programs for dealing with
leaking underground storage tanks, including assessments of subsurface containment transport and risk
assessment modeling. As mentioned, tribal governments have the option of running their own
environmental programs, and some tribes have received authorization to run air quality and water quality
programs. Private consultants often are engaged to perform part of the modeling analysis required under
state delegated programs.

State-generated source-specific regulations, required by both SIP and TMDL, are based on the
effects of air and water pollutants on environmental quality. This requirement raises a host of technical,
economic, and political issues that are sometimes not sufficiently covered in the writing of federal
standards. Theissuesinclude the following:

* Interdependence. The environmental effects of emissions from any one source depend on the
emissions from numerous other sources.

» Nonpoint sources. Emissions from sources that are difficult to monitor and regulate at the
individual level either because the sources are numerous and diffuse or because the emissions are episodic
and dependent on natural processes.

» Didtributional asymmetry. The sources responsible for pollutant discharges are located in a
different area from where the environmental damages are suffered. For example, states and cities may
have no control over air pollutants that have blown in from afar.

Permitting

Other statutes, such as the Toxic Substances Control Act, Safe Drinking Water Act, and Food
Quality Protection Act, require EPA or the state to permit an activity. This activity might be required for
the construction and operation of a point emissions source or the introduction and continued use of a
chemical in the market. The statues vary in what role modeling plays and which entities perform the
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modeling. For licensing new pesticides, manufacturers supply a substantial amount of modeling of
environmental and human health risks to EPA that might be supplemented by additional agency analysis.
For the relicensing of pesticides, which is carried out under the Food Quality Protection Act’s mandate to
assess cumul ative and aggregate risks, EPA performs the modeling analysis. For the premanufacturing
determination that must be made before new chemicals can enter the market under the Toxic Substances
Control Act, EPA isresponsible for assessing risks. Theinitial screening is done using structure-activity
models, and the results of such modeling determine whether a more thorough assessment is heeded and
whether manufacturers will be required to submit more test data. Programs that permit discharges into
water, controlled under the National Pollution Discharge Elimination System (NPDES), are primarily run
by the states, although some states have only partial authority. Although many of the requirements under
the NPDES program are still driven by technol ogy-based standards, increasingly state and federal permit
writers must take into account water quality standards and watershed considerations, which increases
modeling needs. The CAA mandates that the states implement and that EPA oversee permit programs to
control and regulate pollutant emissions from major stationary sources. Under these programs, each new
major stationary source of air pollutants must apply for a permit before construction and provide
modeling to help to demonstrate that the new facility will meet appropriate emission-control standards.
Permittee modeling is subsequently reviewed by state regulators.

Compliance and Enforcement

Models are used in compliance and enforcement in several ways. For enforcing some
regulations, EPA uses models to estimate the benefit to the regulated party—usually cost savings—from
delaying or avoiding pollution control expenditures. For example, the BEN model (see
http://www.epa.gov/compliance/civil/econmodel s/index.html) cal culates a violator's economic savings
from delaying or avoiding pollution control expenditures. This estimate is then used as abasis for setting
the penalty, which ensures that the violation will not be to the regulated party’ s advantage. Other models
assess aregulated party’ s ability to afford such costs as civil penalties, Superfund cleanup costs, and
pollution control expenditures. An exampleisthe MUNIPAY model (EPA 2006f), which evaluates a
municipality's or regional utility's ability to afford compliance costs, cleanup costs, or civil penalties.
EPA may also use models to estimate “ natural resource damages’ from private actions that damage
natural resources. These natural resource damage actions arise out of legidative liability schemes under
the CWA, the Qil Pollution Act, and the Comprehensive Environmental Response, Compensation and
Liability Act. The damage estimates are generally based on contingent valuation surveys, aswell as
models that attempt to estimate the costs of restoring or replacing the damaged resources.

Ex Post Facto Auditing and Accounting of I mpacts

Like strategic planning, assessment of the performance and costs of regulations after they have
been implemented is relatively rare within EPA, although it is often carried out by other parties. The
Office of Management and Budget (OMB 2005) reviewed recent ex post facto analyses of regulations,
including environmental regulations. EPA has also received periodic requests from Congress to report on
the aggregate costs and benefits of its regulations. In the past, for example, Congress has required EPA to
periodically estimate the total costs of the CAA (under section 812) and CWA (under section 512). One
of the main sources of datafor these reports is the Pollution Abatement and Control Expenditure (PACE)
Survey conducted annually from 1978 to 1994 and conducted in 1999 by the U.S. Census Bureau on a
sample of manufacturing establishments.® In the PACE Survey, individual establishments report total
expenditures on pollution abatement, separated by receiving medium (air, water, or land). EPA usesthe
survey resultsto estimate expenditures for all manufacturing plants and adds information on expenditures
in other sectors to produce the report. These analyses are of limited use for policy assessment because
they report only on the aggregate costs of regulation rather than the costs of specific regulations.

% A new PACE survey isin development at the EPA and may soon resume.
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Similarly, EPA aso occasionally conducts ex post facto studies of benefits. The most prominent
example is the ongoing study of the benefits and costs of the CAA—a study required by section 812 of
the 1990 CAA. Thefirst major report was a retrospective study of the benefits and costs of the CAA
from 1970 to 1990 (EPA 1997a). Thisreport was followed by a prospective study of the benefits and
costs of the CAA from 1990 to 2010 (EPA 19994). A second prospective study isin progress for the
period from 2000 to 2020. The retrospective study is best known for its controversial benefit estimate of
$6 to $50 trillion in benefits over the period. It illustrates the difficulty of estimating benefits and costs of
massive, aggregate programs such asthe CAA. All benefit and cost estimates require comparison to a
“without-regulation” scenario. For very large changes, determining an appropriate without-regulation
scenario becomes a matter of achieving consensus rather than analysis and is riddled with uncertainty.
Modelers outside of federal agencies also contribute post hoc analysis of environmental regulatory
activities. The literatureisvast. Some particular examples include the assessments of compliance costs
and other impacts of the sulfur dioxide emissions trading programs (e.g., Ellerman et al. 1997; Stavins
1998; Burtraw and Mansur 1999) and the effects of “ corporate average fuel efficiency” standards on
energy consumption and emissions from motor vehicles (e.g., Kliet 1990; Harrington 1997; Greene et al.
1999; Portney et al. 2003).

CONGRESSIONAL AND EXECUTIVE BRANCH INFLUENCES

There are some particular influences and constraints on the regulatory process resulting from the
enabling statutes passed by Congress and from a series of executive orders that over time have given
OMB oversight responsibility over regulations and imposed specific reguirements on how regulatory
decisions are supported through modeling. It isessential to understand these influences.

Congressional Influence

Federal environmental statutes, such asthe CAA and CWA, usually contain statements of health
and welfare goals, schedules and deadlines for meeting them, and, often, criteriafor determining whether
the goal has been met. Table 2-3 contains a sample of some of the general and specific directives found
in several important environmental statutes. To write regulations to meet these requirements, EPA
produces much analysis to justify its decisions and show how its actions meet the congressional
directives, which require the agency to do the following:

» Explain quantitatively the magnitudes as well as the spatial and temporal patterns of present and
projected contamination.

» Tracethe contaminant back to the human activities that contribute to the contamination and trace
the contaminant forward to its health impacts.

* Project patterns of contamination and their impacts under various regulatory proposals (including
no regulation and, in some cases, deregulation).

To produce the kind of regulations authorized by such health- or welfare-oriented legislation,
therefore, requires the use of the types of models discussed in the preceding section and displayed in
Figure 2-3. Thefigure, to be sure, suggests a degree of ssimplicity that EPA does not necessarily enjoy in
itsregulatory activities. EPA must trand ate general and sometimes vague statutory prescriptions into
specific rules governing the behavior of individuals, firms, and state and local governments; pollutant
sources must be identified and brought into compliance with the rules; and periodic assessments must be
undertaken to ensure that satisfactory progressis being made to meet the statutory goals. Notionslike
“restore and maintain the chemical, physical, and biological integrity of our Nation's waters’ must be put
into regulatory practice. Such legidlative mandates often require EPA to develop or use models despite
substantial data gaps and minimal supporting theory. For example, besides requiring the use of MACT
standards for HAPs, the 1990 CAA Amendments also required a secondary regulatory phase when EPA
isinstructed to assess the “residual risk” dueto a HAP that remains after compliance with the standards.



Model Use in the Environmental Regulatory Decision Process Prepublication Copy 39

TABLE 2-3 Examples of Substantive Legidlative Directions for EPA Models

General Directions

Toxic Substances Control Act,
15 U.S.C. §2605(a)

Clean Air Act, 42 U.S.C. 8
7409(b)(1)

Federal Insecticide, Fungicide,
and Rodenticide Act, 7 U.S.C.
§ 136a(c)(5)(D)

Federal Food, Drug, and
Cosmetic Act, 21 U.S.C. §
346a

Safe Drinking Water Act, 42
U.S.C. §1412(b)(4)

Clean Water Act, 33U.S.C. 8
1313(c)(2)(A)

Resource Conservation and
Recovery Act, 42U.S.C. §
6924(m)

Comprehensive Environmental
Response, Compensation, and
Liability Act,42U.SC. §
9621(b)

Soecific Directions

Food Quality Protection Act of
1996, 21 U.S.C. 346a(h)(2)(C)
and (D)

Safe Drinking Water Act, 42
U.S.C. §300g-1 (b)(3)(B)

Resource Conservation and
Recovery Act, 42 U.S.C. §
6924(g)(10).

Authorizing regulatory action on existing toxic substances “if the administrator finds
that there is a reasonable basis to conclude that the manufacture, processing,
distribution in commerce, use, or disposal of achemical substance or mixture, or that
any combination of such activities presents or will present an unreasonable risk of
injury to health or the environment”).

NAAQS for criteria pollutants must “ protect the public health,” “allowing an adequate
margin of safety.”

Allows pesticides to be registered only if the administrator finds that “when used in
accordance with widespread and commonly recognized practice it will not generally
cause unreasonable adverse effects on the environment.”

A protective standard for pesticide residues is rebutted only once “there is a reasonable
certainty that no harm will result from aggregate exposure to these residues.”

Maximum drinking-water contaminants are “set at the level at which no known or
anticipated adverse effects on the health of persons occur and which alows an
adequate margin of safety.”

The objective of the Act isto “restore and maintain the chemical, physical, and
biological integrity of our Nation's waters." Water quality standards set by statute
“shall be such asto protect the public health or welfare. . .”

Standards for treatment of hazardous wastes disposed onto land shall specify “those
levels or methods of treatment, if any, which substantially diminish the toxicity of the
waste or substantially reduce the likelihood of migration of hazardous constituents
from the waste so that short-term and long-term threats to human health and the
environment are minimized.”

“The President shall select aremedia action that is protective of human health and the
environment, that is cost effective, and that utilizes permanent solutions and aternative
treatment technologies or resource recovery technologies to the maximum extent
practicable” and specifying additional criteria the President must consider in selecting
aremedial action.

“In the case of threshold effects ... an additional ten-fold margin of safety for the
pesticide chemical residue shall be applied for infants and children” . . . with
additional legidative specifications for the types of information that must be used in
conducting the risk assessment.

“The Administrator shall, in adocument made available to the public in support of a
regulation promulgated under this section, specify, to the extent practicable:

i) each population addressed by any estimate of public health effects;

ii) the expected risk or central estimate of risk for the specific populations;

iii) each appropriate upper-bound or lower-bound estimate of risk ...”

Requiring (for example) the Administrator to “complete a study of hazardous waste
managed [with specific types of treatment processes] . . . to characterize the risks
to human health or the environment associated with such management” “[n]ot later
than five years after March 26, 1996.”

Source: EPA 2004a.

Besides the need to interpret the meaning of the term “residual risk,” there are many technical difficulties
associated with assessing such arisk, including the methods of calculating risks and data limitations
(NRC 20044). A similar modeling challenge occurs with the mandates in the Food Quality Protection Act
that requires EPA to assess aggregate health risks from exposure to one chemical from multiple pathways
and cumulative health risks from aggregate exposure to multiple pesticides (EPA 2001c; 2002d). Though
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it may pose difficulties for modelers, the agency’s priority must be to ensure that its regulations meet the
regquirements set forth under the legidlation, not whether the regulations fit model capabilities.
Legidation aso affects how EPA uses model assumptions. For example, under the CAA, EPA is
instructed to set NAAQS for criteria pollutants that are “requisite to protect the public health” with an
“ adequate margin of safety.”* This mandate has been interpreted by the courts to require EPA to use
modelsin such away that their results are more likely to err on the side of caution with respect to
protecting public health and to prohibit the agency from taking economic costs into account in setting
standards.” The adequate margin of safety is apolicy choice of the EPA administrator’ s intended to
protect sensitive groups from adverse health effects (Murphy and Richmond 2004). The impact on
regulatory modeling is that control costs, technological feasibility, and cost-benefit comparisons are not
included in the analysis used to set NAAQS. It also causes EPA to consider avariety of sources of
modeling evidence as shown in Figure 2-4.

Executive Branch Influence

EPA is part of the executive branch and Presidents have a great deal of authority over the agency,
starting with the power to appoint the administrator and assistant administrators at the agency. This
power is not absolute, and since its founding in 1970, EPA has been the agent charged with implementing
environmental legislation passed by Congress. All executive branch agencies are in asimilar situation,
but so much environmental |egislation appeared during the 1970s that EPA was heavily influenced by
both the Congress and the President. Furthermore, the agency was under the watchful eye of advocacy
groups supporting or opposing the new legislation and hoping to influence its implementation.

Despite oversight by the Administration and Congress, and specia interest groups, the agency has
substantial discretionary authority to implement and enforce the environmental laws. With respect to
models, EPA makes most of the decisions about whether a model is needed to implement or enforce a
legislative mandate, how to select and review modelsto carry out its authorities, and when it istime to
replace one model with another. Virtually all of this committee’' s research and recommendations thus
pertain to EPA and its exercise of discretion in the use and deployment of models.

The executive branch has provided oversight of the regulatory process through analytical
requirements for the review of the costs, benefits, and effects of all major regulations. This factor has
produced extensive modeling requirements for major regulatory actions overseen primarily by the Office
of Information and Regulatory Affairs within OMB. One requirement is for an assessment of benefits
and costs for major regulations through an RIA. Box 2-3 discusses the history of the RIA requirement.
For an RIA to be required, a regulation must have estimated economic effects (costs) that exceed $100
million annually or must have important adverse effects on prices, employment, productivity, or other
economic consequences. Few regulations issued by EPA or other agencies require an RIA; in FY 2004,
for example, 4,088 rules were published in the Federal Register, but only 11 had RIAs. Of those 11, 6
were issued by EPA, 4 were issued by the Office of Air and Radiation, and 2 were issued by the Office of
Water. Despite the small numbers, OMB estimates that the rules requiring RIAs “ capture the vast
majority of total costs and benefits of all rules subject to OMB review” (OMB 2005). In addition, rules
exceeding $1 billion per year in economic effects are subject to a further requirement to include aformal
analysis of uncertainty. Only the nonroad diesel rulein FY 2004 was subject to this requirement (OMB
2005). Asdiscussed in Chapter 4, uncertainty analysis adds considerably to the analytical burden of
producing and comparing aternative regulations with unclear benefits.

In addition, the executive branch has been interested in the quality of information and peer review
practices used by federal agencies, including EPA. One set of guidelines developed by OMB is
Guidelines for Ensuring and Maximizing the Quality, Objectivity, Utility, and Integrity of Information
Disseminated by Federal Agencies (OMB 2001). These guidelines, which were mandated by the

“Criteria pollutants are air pollutants emitted from numerous or diverse stationary or mobile sources for which
NAAQS have been set to protect human health and public welfare. The criteria pollutants are ozone, particulate
matter, carbon monoxide, sulfur dioxide, nitrogen dioxide, and lead.

°Lead Indus. Assnv. EPA, 647 F.2d 1148 (D.C. Cir. 1980); American Trucking Ass nsv. EPA, 175 F.3d 1027,
1034 (D.C. Cir. 1999).
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FIGURE 2-4 Sources of information for setting various NAAQS. Source: Murphy and Richmond 2004.

BOX 2-3 The Development of the Requirement for Regulatory Impact
Analysisfor Major Federal Rules

RIAs are required currently for any regulation whose estimated economic effects (costs) exceed $100
million annually or have important adverse effects on prices, employment, productivity, or other economic
consequences. The requirement for an RIA came about as Presidents sought to have more influence over the
agendas of executive agencies by requiring areview of the costs, benefits, and effects of al major regulations.
The key event was Executive Order 12291 (EO012291), issued on February 17, 1981, announcing new rules
governing the issuance of regulations by federal agencies. EO12291 introduced two important innovations into
federal rule-making. First, it required federal agencies to produce, before certain “major” proposed regulation
could appear in the Federal Register, an assessment of the benefits and costs of the proposal and alternativesto it.
Before this executive order, economic assessment of regulations was concerned not with benefits and costs but
with “economic impacts,” which included the effect of the regulation on inflation, employment, and the profits of
affected industries.” In addition, EO12291 required centralized review of regulations and the accompanying RIA
by an oversight group, the Office of Information and Regulatory Affairs (OIRA) housed in OMB.

Each President since has either issued his own executive order affirming the RIA requirement and the
OMB review or accepted that of his predecessor. For example, EO12866, issued on September 30, 1993,
changed the procedure to increase the public’ s accessibility, added requirements to specifically address the
problem to be addressed by the regulation (usually a market failure) and examine distributional consequences of
new rules, and require only that the benefits of proposed regulations have to “justify” the costs, not “outweigh”
the costs as it had been in EO12291. For the most part, recent Presidents of both parties have retained support for
regulatory review requirements, including the RIA.

Theimplication of the RIAsfor EPA modeling is that where possible, all the effects of a proposed
regulation, positive and negative, must be expressed in monetary terms. Since most of the benefits—and many of
the costs—of environmental regulation are not traded in markets, econometric models are needed to estimate
individuals willingness to pay for the predicted physical effects of regulations, such asimproved air quality.’
The RIAs could result in the estimation of regulatory benefits and costs even for rules where the enabling
legislation has expressly forbidden the use of costs to make regulatory decisions. For example, as noted in the
preceding section, the CAA prohibits cost to be a criterion in the setting of NAAQS. However, that did not
prevent avery extensive and thorough RIA from being prepared to support the 1997 revision of the ambient
standards for ozone and fine particulates (EPA 2006g). The RIA found very large positive net benefits for both
standards, so there was no actual conflict between the RIA requirement that the costs be justified by the benefits
and the legidlative conflict that costs not be considered. The most recent OMB guidance on the preparation of
RIAsisin OMB Circular A-4 (OMB 2003), which has expanded the requirements for uncertainty analysis.

See Magat et a. (1986) for adiscussion of the preparation and use of such studies in the Effluent Guidelines rule-
making process.

’A snapshot of the state of the art in valuing mortality and morbidity reductions (by far the most important source of
monetizable environmental benefits) can be found in the proceedings of a workshop sponsored by EPA’s National
Center for Environmental Economics, EPA 2006h.
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Information Quality Act (IQA) (Treasury and General Government Appropriations Act for Fiscal Y ear
2001, Pub. L. No. 106-554, 8§ 515, 114 Stat. 2763 [2000]), called for agencies to issue information-
quality guidelinesto ensure the quality, objectivity, utility, and integrity of information. Recognizing the
critical roles that models have in developing information, EPA has developed its own guidelines for data
use to ensure that the models used in regulatory proceedings are objective, transparent, and reproducible
(EPA 2002a). In addition, as discussed in alater section, OMB has released guidance on peer review
(OMB 2004).

OVERSIGHT PROCESSES GOVERNING
REGULATORY MODELSAT EPA

After Congress or EPA has decided to use amodel for one or more regulation-relevant purposes,
the model normally goes through some internal and external oversight to ensure that it meets scientific,
stakeholder, and public approval. Although these oversight processes are not perfect and run the risk of
introducing their own sources of error or complication, they nevertheless exert an important and
independent pressure on regulatory models that is generally not present when models are devel oped and
used in nonregulatory settings.

Because the results of models can impose important costs on regulated parties and the public at
large, EPA’ s evaluation of models used for regulatory design and promulgation (the rule-making phase
from above) isthe most heavily constrained by legislative requirements, regulatory review, and legal
challenges. Figure 2-5 shows a schematic of the regulatory requirements placed on the regulatory design
and promulgation phase. Models used for other regulatory purposes—outside of rule-makings—are
generally not subjected to these extensive internal and external review requirements. Models used at the
enforcement stage, for example, are generally not required to go through peer review or even notice and
comment, but they are required to at least gain judicial acceptance before a court will enter penalties
against aviolator based on the model. Models used in environmental regulatory programs delegated to
the states, such as models used to develop SIPs and TMDLSs, can be subjected to public comments and
debate, but independent peer reviews of individual model applications are not required. Models used in
providing guidance may be subjected to scientific and public review, but generally, thisreview is done at
the agency’ s discretion. The Science Advisory Board and Science Advisory Panel, described in a
subsequent section, are two sources for peer reviews. Models used for strategic planning or priority
setting within the agency involve even fewer mandatory oversight processes. Y et in these cases, EPA still
develops guidelines for internal peer review and may voluntarily subject these modelsto sources of
external review aswell.

Because regulatory design models encounter the most extensive oversight requirements and also
tend to be an important modeling activity at EPA, regulatory design models are the focus of the remaining
discussion. In general, these models require multiple layers of review, including formal scientific peer
review, notice and comment processes, and intra-agency review. Interested parties are also provided with
an opportunity to challenge the model to the agency and in court to ensure that the model is reliable.

External Review of EPA’s Models

Thefirst and perhaps most important set of requirements involves subjecting regulatory
decisions, including the models underlying them, to review by three layers of outside reviewers. This
external review is thus conducted independently of the authors of the model or the users for a specific
application. This section summarizes the current state of EPA review activities, recognizing that thereis
no single approach. It depends on the nature of the model, its application, the needs of the model
developers and users, the peer review guidance being followed, and the requirement of the specific
regulatory environment statutes. For the purposes of this section, external reviews are categorized as peer
review, public review, and interagency review.



Model Use in the Environmental Regulatory Decision Process Prepublication Copy 43

E.g.,
Estimate E.g.,
“ten-fold margin * protect public health with “adequate margin of
of safety for the safety” without consideration of cost or feasibility
pesticide chemical * prevent “unreasonable risk”
residue. .. for * set standards “ adequate to protect
infants and children” public health and the
environment from any reasonably anticipated
adverse effects’
Sci entific
Specific Generd Inter- Public Courts IQA
NS AR
Statutory — Agency External Review _K’ Challenge
directions develops : : model
and practica  model .
limitations Propo@ Al :
Regulation Regulation

FIGURE 2-5 Flow chart of general regulatory requirements for models used at the regulatory design and
promulgation stage.

Peer Review

This category refers to technical experts reviewing the model and its application for scientific
merit. Although it is expected that key elements of models will be published in the peer reviewed
literature, this discussion does not address journal reviews. Peer review is embedded in the history of
science because of its value in improving the quality of atechnical product and providing assurance to
nonexperts that the product is of adequate quality. These values are so important that attention must be
paid to the quality of the peer review itself and to whether the comments were addressed and
appropriately incorporated into the final product. All peer reviews are not equivalent. A peer review on
model code, for example, will be useful, but inadequate to evaluate the utility of the model for a specific
application. Thus, the charge to each peer review for amodel and its application needs to be considered
relative to the criteriafor model evaluation and where the model isinitslife cycle, asdescribed in
Chapter 4.

In July 1994, EPA published Guidance for Conducting External Peer Review of Environmental
Regulatory Modeling (EPA 1994c), which was a prelude to broader peer review guidance published in
2006 (EPA 2006d). The 2006 guidance is very comprehensive and detailed, describing such elements as
matching the kind and degree of peer review to the impact of the work product (product of influential
scientific information, very influential scientific information, or other) or rule (Tier 1, 2, or 3rule),
determining resources needed for peer review, selecting peer reviewers, documenting the review, and so
forth. EPA has also created an “action development process’ for regulations and other decisions. OMB
also has published the Final Information Quality Bulletin for Peer Review (70 Fed. Reg. 2664 [2005]).
Although these three documents differ in details, they are conceptualy similar because they require peer
review of models or their applications that are most likely to have “major” or “substantial” impacts. They
al so describe the need for peer reviewers to have the necessary technical expertise and to be free of
conflicts of interest and the need for a panel to balance biases. OMB’s guidance has greater emphasis on
the need to make key elements of the review available to the public. The EPA Science Inventory keeps a
list of the different science activities and their required levels of peer review. Its activities are broad and
described at http://cfpub.epa.gov/si/si_pr_agenda.cfm.
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The guidance on regulatory models calls for reviews with the goals of “judging the scientific
credibility of the model including applicability, uncertainty, and utility (including the potential for
misuse) of results, and not for directly advising the agency on specific regulatory decisions stemming in
part from consideration of the model output” (EPA 1994c). Box 2-4 lists elements of peer review
described by EPA for use with regulatory models. This guidance also offers aframework for reviewing
model development, model application, and environmental regulatory decision making. It explains that
policy decisions resulting from the science and other factors are required by law to be made by EPA
decision makers. The policy decisions are often subject to public comment.

BOX 2-4 Elements of External Peer Review for Environmental Regulatory Models

Model Purpose/Objectives
e What istheregulatory context in which the model will be used and what broad scientific question is the model
intended to answer?
e  What isthe model's application niche?
e  What are the model's strengths and weaknesses?

Major Defining and Limiting Considerations
e Which processes are characterized by the model?
e What are the important temporal and spatial scales?
e Whatisthelevel of aggregation?

Theoretical Basis for the Model — formulating the basis for problem solution
e  What agorithms are used within the model and how were they derived?
e  What isthe method of solution?
e  What are the shortcomings of the modeling approach?

Parameter Estimation
e  What methods and data were used for parameter estimation?
o What methods were used to estimate parameters for which there were no data?
e  What are the boundary conditions and are they appropriate?

Data Quality/Quantity
Questions related to model design include:
e  What datawere utilized in the design of the model?
e How can the adequacy of the data be defined taking into account the regulatory objectives of the model?
Questions related to model application include:
e Towhat extent are these data available and what are the key data gaps?
e Do additional data need to be collected and for what purpose?

Key Assumptions
e  What are the key assumptions?
What is the basis for each key assumption and what is the range of possible aternatives?
e How sensitive isthe model toward modifying key assumptions?

Model Performance Measures
e  What criteria have been used to assess model performance?
e Did the data bases used in the performance eval uation provide an adequate test of the model ?
e  How doesthe model perform relative to other models in this application niche?

Model Documentation and Users Guide
e  Doesthe documentation cover model applicability and limitations, datainput, and interpretation of results?

Retrospective
e Doesthe mode satisfy itsintended scientific and regulatory objectives?
e How robust are the model predictions?
o  How well does the model output quantify the overall uncertainty?

Source: EPA 1994.
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EPA has several forums to conduct peer reviews. the EPA Science Advisory Board (SAB), the
EPA Clean Air Science Advisory Committee (CASAC), the EPA Science Advisory Panel (SAP), or ad
hoc committees. They are described in more detail in Box 2-5. The first three organizations are
convened under the Federal Advisory Committee Act and are subject to requirements of that act,
including that all meetings and deliberations must be public. Major ad hoc committees also hold open
meetings. Typicaly, the chargesto SAB, CASAC, and SAP are broad. Ad hoc committees are often
used for more in-depth reviews. All types of peer review are of substantial value, but the adequacy of
peer review of amodel must be judged in context with the need for evaluation of each major step from
model conception to application. Major reviews, such as those performed by SAB, besides providing
valuable input to agency scientists and managers, can become a part of the administrative record and can
be used in court challenges (EPA 1999a). Examples of model peer reviews are the SAB reviews of the
3MRA model (EPA 2004¢), the SAB review of the EPA Region 5 critical ecosystem assessment model
(EPA 2005b), and the SAP preliminary evaluation of physiologically based pharmacokinetic and
pharmacodynamic modeling for the N-methyl carbamate pesticides (EPA 2005c).

Public Review

Public review of aregulatory model concerns review and comments by stakeholders during the
public comment periods of external peer review activities or during the “notice and comment” period that
accompanies rule-making activities. Herein, “stakeholder” is defined as a person or nonfederal entity and
external to the agency not involved in the above-described peer review. They include members of the
genera public. Thus, many individuals and entities are stakeholders and have different interests,
capabilities, and capacities to perform thisrole. For example, consider the different capabilities to
generate comments on models and model results between a member of the general public with limited
abilities to perform computational analysis and a corporation or other organization with a substantial
scientific staff. These differences need to be understood and accommodated when fulfilling the intent and
actual requirements for public review. When EPA requests a peer review by CASAC, SAB, or SAP, the
document is made public, and the public is able to comment at the public meetings of these organizations
as per the Federal Advisory Committee Act. Furthermore, EPA is required by statute to solicit comments
from affected parties and the public at large on all final proposals for agency action (5 U.S.C. §553). A

BOX 2-5 The Different Types of Science Advisory Panels at EPA

The CASAC was established under the CAA to review EPA’s NAAQS and report to the EPA
administrator. It isadministratively housed in SAB. This group reviewsthe “ criteria documents” of the criteria
air pollutants to evaluate whether the information contained is adequate to support adecision. They also review
the staff paper that has the EPA staff’ s recommendations for the standard. Both documents rely on models.

SAB tracesits history to 1978. Its charge isto provide independent science and technical advice,
consultation, and recommendations to the EPA administrator on the technical bases for agency positions and
regulations. Most of its activities involve reviewing technical documents, including numerous model reviews
(e.g., EPA 2004e, 2005b). SAB also produced the Resolution on the Use of Mathematical Models by EPA for
Regulatory Assessment and Decision-Making (EPA 1989).

The federal Insecticide, Fungicide, and Rodenticide Act established SAP in 1975. The Food Quality
Protection Act mandated a science review board of scientists who would be available to SAP on an ad hoc basis.
SAP provides scientific advice, information, and recommendations to the EPA administrator on pesticides and
pesticide-related issues as to the impact of regulatory actions on health and the environment. Several SAP panels
have focused on models to predict exposures to pesticides or on pesticide health assessments that were partly
based on models. SAP panels summarize their discussions and issue recommendations in the minutes of the
meetings (e.g., EPA 2005c¢).

Ad hoc committees are often used by EPA when the document being reviewed does not have the impact
that invokes the need for SAB, CASAC, or SAP. Asrelated to models, they might involve highly technical
reviews before the SAB-level stage or might be for risk assessments that include some degree of reliance upon
models.
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mandatory “nhotice and comment” process is intended to ensure that the agency informs the public of its
activities and takes their concerns and input into account. According to statute, EPA must also make all
relevant documents in the record supporting its decision available to the public for viewing during the
comment process.

Interagency Review

EPA’ s regulations are developed and implemented as part of alarger federal fabric. For example,
some of EPA’ s regulations affect other agencies directly (for example, Department of Defense Superfund
sites) and indirectly (for example, economic consequences to policies of other agencies). A example of
an EPA model that plays a critical role in another agency’ s activitiesis the motor vehicle emissions factor
model, (MOBILE), which plays an important role in the Department of Transportation (DOT)
transportation planning activities (Ho 2004). Thishasinspired DOT to evaluation aspects of MOBILE
directly (Tang et al. 2003a; Tang et a. 2003b). Thus, there is avariety of both formal and informal
processes for interagency review of regulatory models and analysis based on these models. The majority
of interagency reviews involve mandatory oversight by OMB, although other agencies may also engage
in more informal review and comment. Under various executive directives, OMB review is generally
cursory unless the regulatory program, which the model informs, is deemed to be “significant” with
respect to its economic implications (Graham 2004). OMB oversees these process requirements and will
work with the agencies to ensure that their regulatory analyses are satisfactory. OMB review of other
agencies' rule-makingsis generally established through executive order and, while these presidential
directives are mandatory, agency violations cannot be enforced through the courts.

Completing the Review Cycle

Severa of the processes of external reviews are still not transparent in regard to the disposition of
the comments. It isunderstood that all comments are not appropriate, even though all need to be carefully
considered. Thus, the issue is transparency—those commenting, whether he or she is a prominent
scientist on SAB or a member of the general public, need to understand how their comments were
considered. EPA’s Peer Review Handbook (EPA, 2006h) discusses thisissue and calls for awritten
record of response to comments. EPA has an exemplar processin terms of transparency for the NAAQS
where a public docket contains both the original comment and the agency’ s responses.

Legal Challengesto EPA’s Models

Laws and executive orders not only provide a mechanism for increased external inputsto EPA’s
models but also provide opportunities for adversarial challenge. There are two formal opportunities for
interested parties to challenge EPA’s models. Thefirst and most established is the ability of interested
parties to challenge agency action in court. If the model supports aregulation and has been subject to
notice and comment, the courts give EPA considerable deference. Thus, challengesto EPA models are
successful only when the regulation (and/or underlying model) isin conflict with EPA’s statutory
mandate, has been determined to be inconsistent with Administrative Procedure Act requirements, or is
“arbitrary and capricious’ (5 U.S.C. §706). Asone court summarized in reviewing amodel: “This Court
must not undertake an independent review of EPA’s scientific judgments; our inquiry focuses only on
whether the agency has met the statutory requirement for * sufficient evidence.”” (National Oilseed
Processors Ass'nv. Browner, 924 F. Supp. 1193, 1209 [D.D.C. 1996], affirmed in part and reversed in
part on other grounds, Troy v. Browner, 120 F.3d 227 [D.C. Cir. 1997]). If the model has not been
subject to notice and comment but creates obligations for private parties—for example, at the permitting
or enforcement stage—those affected by the model can typically challenge either the model or its
applicationin court. 1n some of the cases, the agency may receive much less deference from the courts
compare to the situation where the model has been subject to notice and comment (for example, see
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United Statesv. Plaza Health Laboratories, Inc., 3 F.3d 643 [2d Cir. 1993]) (applying the rule of lenity,
rather than deferring to EPA, in interpreting “point source” in acriminal CWA prosecution). Generdly, a
complete model history documenting the justification for various decisions related to model design and
development may help the agency defend a model against formal challenges.

EPA’s models have sometimes been challenged, and in some cases, challengers have been
successful in forcing the model or its application back to EPA to correct what the courts view as
fundamental flaws. For example, when EPA has received comments on a model that refute one of the
model’ s critical assumptions but EPA declines to explain its decision or revise the model, the courts have
invalidated and remanded the model back to EPA. Challengers have also been successful when they
establish that EPA’s model is not applicable to a particular subset of industries, activities, or locations. If
EPA applies ageneric air dispersion model to alarge power plant located in a meteorologically unusual
setting, such as the shores of Lake Erie, EPA might have to test the location to establish that the model
provides some reliability in that setting, or it must be prepared to explain why its model should be
accepted asis (for example, State of Ohiov. EPA, 784 F.2d 224 [6th Cir. 1986] and 798 F.2d 880 [6th
Cir. 1986]).2 Finally, if challengers disagree with embedded policy judgments, such as the risk adversity
of assumptions built into arisk assessment, courts will sometimes invalidate a model and not defer to the
agency (Gulf South Insulation v. Consumer Product Safety Commission, 701 F.2d 1137 [5th Cir. 1983]).
However, thisline of casesis more complex and unpredictable (Pierce 1988).° Because these legal
challenges are time-consuming and costly, they are typically mounted only when an affected or interested
party stands to gain something important—whether it is gaining less stringent regulatory requirements or
positive publicity for members—from a challenge.

A second, more recent opportunity for external challenge to model use in the regulatory processis
through the Information Quality Act (Treasury and General Government Appropriations Act for Fiscal
Year 2001, Pub. L. No. 106-554, § 515, 114 Stat. 2763 [2000]), which isimplemented through OMB’s
Guidelines for Ensuring and Maximizing the Quality, Objectivity, Utility, and Integrity of Information
Disseminated by Federal Agencies (OMB 2001). Some of challenges under the Information Quality Act
result from EPA’s occasional ad hoc approach to developing and using models. A more rigorous and
formalized approach for model development and evaluation by EPA could ward off some of these
challenges. This statutory provision allows any interested person to file “requests for correction” on
“information” that is“unreliable” or lacks other qualities, such as objectivity or integrity. To date, courts
have refused to review these challenges, but the challenges can be appea ed inside the agency and the
agency must respond to complaints that the information, including information used in models or the
models themselves, is unreliable. However, there are continued efforts to make challenges under the
Information Quality Act reviewable by the judiciary (Shapiro et al. 2006).

Challenges filed under the Information Quality Act to date generally target technical decisions
within EPA that have important economic consequences (EPA 2006i). In at least one instance—the
Competitive Enterprise Institute’ s (CEI’ s) challenge to the climate change models used in the National
Assessment on Climate Change—the challenge has been directed specifically at agency models (EPA
2003b). Inthe case, CEIl argued that the models were not reliable and had not been adequately peer
reviewed. The agencies denied the petitions and CEIl’ sinternal appeals. CEl then appealed its case to the
D.C. District Court where CEI ultimately withdrew its case. Information Quality Act challenges brought
by affected parties sometimes seek correction of flaws or technical misstatements in agency documents,
but in other instances, as in the Competitive Enterprise Institute’ s challenge, they have requested that the
agencies cease dissemination of the information. If an agency denies a petition on appeal, as has been the
case for most QA challenges filed to date, the challenge fails.

®Remanding EPA’s air dispersion model because EPA had not adequately demonstrated that its CRSTER model
took into account the “ specific meteorological and geographic problems’ of the modeled large power plants situated
on the shores of Lake Erie. It was therefore arbitrary and capricious for EPA to alow a 400% increase in emissions
“without evaluation, validation, or empirical testing of the model at the site.”

°Arguing that judges on the D.C. Circuit may be substituting their own interpretations of ambiguous statutes for
agencies and randomly reversing agency policy making in rule-makings.
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THE CHALLENGESOF
MODELING IN A REGULATORY ENVIRONMENT

This chapter has described the types of models used in EPA’ s regulatory activities, how models
fit into the regulatory process, and legal and other constraints governing their use. Modeling is adifficult
enterprise even when it is not being conducted in an adversarial regulatory environment. Further, the
range of model applicationsis vast, and many agencies and stakeholders are involved in producing
analysis. When the demands of regulatory accountability, transparency, public accessibility, and
technical rigor are added to the challenges typically encountered in modeling, the task becomes much
more complex.

Although improvements to EPA regulatory modeling efforts are possible, EPA clearly has made
important advances in the science of environmental modeling and has been a global |eader in using
models in the environmental regulatory decision process. However, future regulatory modeling activities
will be challenged by new scientific understandings, expanding sources of environmental and human
observations, and new issues. To meet the challenges, continued improvement in model practices will be
required. In thischapter, the committee offers recommendations related to continuing improvements to
the accessibility of regulatory modeling. Later in thisreport, we offer recommendations related to model
evaluation; principles for model development, selection, and application; and model management.

Model Goals

Models are used in regulatory settings when EPA determines that a model will be useful in
reaching or enforcing aregulatory decision. Given the diversity of regulatory aims and targets, however,
awide variety of models and modeling goals can exist. At one extreme, the agency can use a model that
provides the best technical analysis of the concentrations of ambient air pollutants and resulting health
and environmental impacts most likely to result from combined industrial and nonindustrial emissions
controls. This precision is desired because of the enormous compliance costs associated with emissions
controls and the enormous health costs if air pollutants are not correctly estimated and exceed allowable
levels. At the other extreme, EPA might want to use amodel that provides only a crude and inexpensive
prediction for a system.

The regulatory environment also creates the opportunity for many different types of legal
constraints on modeling that are foreign in nonregulatory settings. Congress may instruct, for example,
that aregulation err on the side of over-predicting public health harms. Other constraints might result
from legislative mandates that EPA develop and use models in situations where resources, including both
time and financial support, are scarce.

Time and resource limitations can also lead EPA to use existing models outside their “application
niche,” aset of conditions for which the model is designed to be useful. Thereis some evidence, for
example, that EPA and other agencies have sometimes used a model in a setting where the model no
longer provides useful guidance. For example, EPA’s generic test to predict the toxicity of wastesin
landfill settings (the Toxicity Characteristic Leaching Potential Test) generally adopts worst-case
assumptions. Yet, in some disposal settings, the worst-case assumptions have been challenged
successfully as inapplicable for specific types of disposal operations, such as for the disposal of a
particular type of waste (potliner waste) in a monofill (for example, see Columbia Falls Aluminum Co. v.
U.S. Environmental Protection Agency, 139 F.3d 914 [D.C. Cir. 1998]; Edison Electric Institutev. U.S.
Environmental Protection Agency, 2 F.3d 438 [D.C. Cir. 1993]; and Association of Battery Recyclers,
Inc. v. U.S. Environmental Protection Agency, 208 F.3d 1047 [D.C. Cir. 2000]).

Technical Reliability
The sometimes contentious environment for regulatory models also creates important

impediments for ensuring the technical reliability of EPA’s models. Formal evaluation processes required
by administrative law may deter meaningful model reevaluation and adjustment over time. Once a
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regulatory action has survived the multilayered review and challenge processes, it may remain in place for
sometime. Indeed, rule-making requirements can be read to require that the agency undergo notice and
comment and the risk of judicial review every time it revises amodel that supports a rule-making, since it
must ensure that there has been “meaningful public comment” on all aspects of itsfinal rule (for example,
see Small Refiner Lead Phasedown Task Forcev. EPA, 705 F.2d 506, 540-41[D.C. Cir. 1983]). This
inertiais not ideal for any regulatory decision, but it is particularly unfortunate for models. The
cumbersome regulatory procedures and the finality of the rules that survive them are directly at odds with
the dynamic nature of modeling and the goal of improving models in response to experience. Although
some stakeholders may prefer a constant model because of the stability it provides, this model might not
reflect the most updated science.

Transparency and Accountability

In the regulatory environment, EPA has the responsibility to ensure that a model’ s devel opment
and use istransparent. Because modeling is often avery technical exercise, EPA faces achallengein
making all of the underlying decisions intertwined within a model intellectually accessible to a
nontechnical audience. A model that attempts to determine the fate of a chemical in soil, for example,
may involve choices between competing assumptions, such as the percolation rate of achemical at a
particular location. Selection of the most appropriate assumption in some cases may depend not only on
technical judgment but also on the policy goals of the modeling effort. A recent EPA report documents
how science mingles with policy in health risk assessment (EPA 20044). If the model is supposed to err
on the side of protecting health and the environment, the model may need to err on the side of quicker
percolation rates when several choices are plausible. Making these choices explicit and accessibleisa
challenge because policy judgments can be numerous and varied in their importance. Nevertheless,
administrative processes expect EPA to make many of these types of judgments and technical decisions
transparent so that affected stakeholders and the general public can comment on the model and its
regulatory implications.

Because models are uncertain and are used to make policy, stakeholders necessarily play avita
role in EPA’s development, use, and evaluation of models. Differing interpretations of risk, risk
preferences, and arange of other values and understandings mean that a broad array of participants will
have much to add to the modeling exercise. Asaresult, these various constituencies and individuals must
be able to participate in the model evaluation process through various activities, including producing their
own supporting or conflicting model results, and challenging the legitimacy or accuracy of amodel in
public comments or judicial actions.

Clearly, EPA faces many difficult challengesin making its models, particularly its complex
models, accessibleto the diverseinterests. Nevertheless, EPA has taken a major step in the right direction
through the CREM database of models. Thisinformation further enhances the transparency and
understandability of modelsto awide array of interested participants. Despite these efforts, however,
stakeholders with limited resources or technical expertise till face substantial barriersto being able to
evaluate EPA’ s models, comment on important model assumptions, or use the modelsin their own work.

Recommendations

EPA should place a high priority on ensuring that stakeholders and others have access to models
for regulatory decision making. To ensure that its models database contains all actively used models,
EPA should continue its support for the intra-agency efforts of CREM. A more formal process may be
needed to ensure that CREM’ s model s database is compl ete and updated with information that is at |east
equivaent to information provided for models currently contained in the database.

Y et, even with a high-quality models database, EPA should continue to develop initiativesto
ensure that its regulatory models are as accessible as possible to the broader public and stakehol der
community. The level of effort should be commensurate with the impact of the model use. It is most
important to highlight the critical model assumptions, particularly the conceptual basis for amodel and
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the sources of significant uncertainty. Meaningful stakeholder involvement should be solicited at the
model development and model application stages of regulatory activity, when appropriate. EPA could
improve model accessibility through a variety of activities, such as requiring an additional interface for
each model to help to identify the assumptions and sources of parameters and other uncertainties and
providing additional user and stakeholder training.

However, even if full information on amodel is available, technical expertise will still be
required to judge independently its quality and suitability for regulatory application. Each of these
recommendations requires staff time and resources, which may be considerable. Thus, EPA’s effortsto
enhance opportunities for public participation in any particular case must be balanced against other
agency priorities.



3
M odel Development

INTRODUCTION

Models are asimplification of reality that can be compared to maps. Road maps indicate certain
aspects of reality (for example, roads of a certain size) and not others (for example, sewer lines, power
lines, and buildings). No one map can include all aspects of reality and, similarly, al models, no matter
how complex, are constrained by basic assumptions, structure, and uncertainties. Model development
involves the definition of model objectives, conceptualization of the problem, translation into a
computational model, and model testing, revision, and application. Although amost al model
development follows these general steps, models designed for regulatory purposes are subject to
constraints in addition to those for models devel oped strictly for research. This chapter focuses on how
model development might best proceed toward regulatory objectives, athough there is no one route for
successful model development. Our objective is not to provide a treatise on model development. Many
other referencesin an array of disciplines provide comprehensive descriptions of model devel opment for
various types of models (Starfield and Bleloch 1991; Clemen 1995; Mesterton-Gibbons 1995; Beck
2002a; Bassetti and Woodward 2005; Ramaswami et al 2005). This chapter discusses the mgjor stepsin
regulatory model development focusing on the main lessons learned from previous effortsin EPA and
other organizations. It isintended to discuss some of the literature on model development and provide a
genera framework for EPA as it goes about its business. The wide range of environmental model types
makes our effort prone to both overgeneralization and oversimplification. To reduce such difficulties, we
will often refer to examples of regulatory model development, especialy those from air quality modeling.
Box 1-1in Chapter 1 contains a brief history of EPA’s effort to model tropospheric ozone.

ALTERNATIVE MODEL DEVELOPMENT PATHWAYS

Some regulatory models arise from those devel oped as general research tools. Others were
devel oped specifically for addressing regulatory issues. They have been developed by EPA scientists,
academia, national laboratories, or the private sector. Some of the most complex models have benefited
from contributions by almost all of the above. For example, complex regional chemical transport models
for simulating air quality usually include components contributed by multiple parties. The urban airshed
model (UAM), heavily used for the design of ozone control strategies in the 1980s and 1990s, was
developed by a private company (Systems Applications International) relying on contributions of
academia and on support from public and private organizations. The mgjor air quality model developed
used in-house by EPA isthe community multiscale air quality (CMAQ) model (EPA 1999b). EPA and
NOAA scientists developed the most recent CMAQ modéd in partnership with a nonprofit organization
(Microelectronics Center of North Carolina) and contributions by academia funded by EPA, the National
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Science Foundation and state authorities, most prominently California authorities (CMAS 2006). A
variation of CMAQ, called CMAQ-MADRID, has been developed by a private company (Atmospheric
and Environmental Research, Inc) using the CMAQ model as a starting point and adding components
developed by academic researchers or by company scientists (Zhang et al. 2004). A private organization,
Electric Power Research Institute, provided funding for the CMAQ-MADRID development. All the
above codes are in the public domain.

Under the Toxic Substances Control Act, EPA must make individual pre-manufacturing decisions
on 2,000 new chemicals per year before a new chemical can enter the market. Because of the large
number of decisions, the agency has had to rely on screening tools that predict properties from chemical
structure. EPA uses EPI (Estimation Programs Interface) Suite, which consists of several quantitative
structure-activity relationships (QSARS) models that are available in the public domain. However, the set
of models began as afew proprietary models developed by Syracuse Research Corporation. Later some
of the models were developed in collaboration with EPA, and then all the models were sold to EPA.
QSARs are able to take complex chemical structures and predict physical properties, behavior in the
environment, and toxicity (Jaworska et al. 2003; Tunkel et al. 2005). The EPI Suiteisused by EPA’s
Office of Pollution Prevention and Toxicsto predict physical-chemical properties, environmental fate and
transport, and aquatic toxicity for regulatory decisions on hew chemicals when data are not available.
The models are also used by industry for pollution prevention and by many government agencies for
identifying persistent, bioaccumulative, and toxic (PBT) chemicals (Jaworska et al. 2003).

Alhough the development paths of models may be different, many end up having long livesin the
regulatory process. Table 3-1 showsthelife history of the MOBILE model, which is used to estimate
atmospheric emissions from vehicles. This table indicates the periodic revisions that necessarily
accompany amodel that has been in use for almost 30 years. In the case of MOBILE, such revisions are
often major overhauls and updates of the model, resulting in emissions estimates being much different
from these in previous versions (NRC 2000; Holmes and Russell 2001). Along with the UAM discussed
above, the QUAL2 water quality model is an additional example of aregulatory model that has seen
multiple version and major scientific modifications and extensionsin over 2 decades of existence
(Barnwell et al. 2004).

OVERVIEW OF MODEL DEVELOPMENT

Jakeman et al. (2006) separates mode development and evaluation into the 10 steps shown in
Figure 3-1. The committee agrees with the concept shown in Figure 3-1 that model development is
typically an iterative process, especialy for long-lived models used over several decades. However, for
the purposes of this chapter, the model development process is compressed into the six phases shown in
Box 3-1. Documentation occurs at each step of the process, as do certain aspects of evaluation. Chapter
4 describes in detail the evaluation process that occurs throughout the model’ s life cycle, compressing the
model lifecycle further into 4 steps (problem identification, conceptual model devel opment,
computational model development, model use) to make the evaluation process more tractable to the
reader.

A general issue concerns the uses for which amodel is being constructed. This report includes
models that are used for two main purposes: those used before regulations are developed to strategically
plan and assess priorities and design, evaluate, and propose regulatory approaches (hereafter referred to as
pre-regulatory planning models) and those used to implement regulatory programs, including programs
that have been delegated to states and local governments (hereafter referred to as post-regulatory
implementation and compliance models). These are two quite separate uses, although some models can
be used for both purposes as discussed in Chapter 2. However, there might be some important
differences. Pre-regulatory planning models require a more general framework, allowing aternative
policy initiativesto be analyzed, perhaps by varying basic model assumptions. This analysis may be done
at the national scale and by EPA. Post-regulatory implementation and compliance models will
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TABLE 3-1 MOBILE Model Revisions

Release
Version Date Model Revisions
MOBILE1 1978 ¢ Included modeling of exhaust emissions rates as functions of vehicle age and
mileage (zero-mile levels and deterioration rates).
MOBILE2 1981 e  Updated with substantial data (available for the first time) on emission-controlled
vehicles (catalytic converters, model years 1975 and later) at higher ages and mileages.
e Provided additional model user control of input options.
MOBILE3 1984 e  Updated with substantial new in-use data.

e Elimination of California vehicle emissions rates (continued to model low- and
high-altitude emissions).

e  Added tampering (rates and associated emissions impacts) and antitampering
program benefits.

e In-use emissions-factor estimates for nonexhaust emissions adjusted for real-world
fuel volatility as measured by Reid vapor pressure (RVP).

MOBILE4 1989 e  Updated with new in-use data.

e  Added running losses as distinct emissions source from gasoline-powered vehicles.

o Modeled fuel volatility (RVP) effects on exhaust emissions rates.

e  Continued expansion of user-controlled options for input data.

MOBILE4.1 1991 e  Updated with new in-use data.

e  Added numerous features allowing user control of more parameters affecting in-use
emissions levels, including more inspection and maintenance (1/M) program designs.

¢ Included effects of various new emissions standards and related regulatory changes
(for example, test procedures).

¢ Included impact of oxygenated fuels (for example, gasohol) on CO emissions.

MOBILES 1993 e  Updated with new in-use data, including basing new basic emissions-rate equations
on much larger database derived from state-implemented 1M 240 test programs.

¢ Included effects of new evaporative emissions test procedure (impact on in-use
nonexhaust emissions levels).

¢ Included effects of reformulated gasoline (RFG).

¢ Included effects of new NO, standard of 4.0 g/bhp-hr for heavy-duty engines.

¢ Included impact of oxygenated fuels on VOC emissions.

e Included Tier 1 emissions standards under 1990 Clean Air Act Amendments.

e Added July 1 evaluation option.

¢ Included impact of low-emission vehicle (LEV) programs patterned after
Californiaregulations.

e Revised speed corrections used to model emissions factors over range of traffic
speeds.

MOBILESa 1993 e  Corrected anumber of minor errorsin MOBILES.
MOBILE5b 1996 e Included fina on-board vapor-recovery regulations.

¢ Included fina reformulated gasoline regulations.

e Added more user optionsfor I/M programs.

MOBILE6G 2002 e Added the effects of Tier 2 and new heavy-duty engine and diesel fuel rules.

e Updated with new and improved data in many areas, including in-use deterioration
of 1981 and newer vehicles, light-duty speed effects, gasoline sulfur effects, and
evaporative emissions.

¢ Revised I/M benefits algorithm; removed calculation of purge test benefit.

e Revised agorithmsfor air conditioning and high acceleration driving.

e  Expanded number of vehicle subclasses from 8 to 28.

e Added hourly calculation of emissions and emission estimates by roadway type.

e  Separated start and running exhaust emissions.

MOBILEG6.2 2004 e Added ability to model emission factors for particulate matter and six air toxics;

added ability to model additional air toxics with user-supplied emission factors.
e  Updated carbon monoxide emission factors.

Source: EPA 1999c, 2006;.
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FIGURE 3-1 Iterative stepsin model development proposed by Jakeman et a. (2006). Source: Jakeman
et a. 2006. Reprinted with permission; copyright 2006, Environmental Modelling & Software.

typically be more closely tied to site-specific observational data, producing a plan for implementing a
regulation or assessment of compliance for a given location or substance. Besides being used by EPA,
modeling of the post-regulatory process may aso be done by state and local governments and their
consultants.

INTERDEPENDENCE OF MODELSAND DATA FROM MEASUREMENTS

Developing and evaluating models typically requires dependence on measurements. In some
cases, there are plenty of measurement data for developing model parameters, boundary conditions, and
other inputs. Often, however, data are missing, which is an inherent factor in the need for models.
Optimally, measurements and models develop iteratively, each informing the other. Box 3-2 describes
some examples where measurement data have influenced model development. Although there are trade-
offs about whether it is preferable to invest in more data or in better models, the committee does not
conclude that the problem of resource alocation for data versus models can be viewed simply as an
optimization problem. The difficulty in attempting to formulate such a problem is how to define the
optimization criteria and objective function — how does one define and represent the benefit from
additional data one does not have relative to investing in additional modeling one does not have. Further,
data are typically collected to fulfill multiple objectives, including determining compliance with
environmental regulations, further complicating attempts to formulate the data versus model issue into an
optimization context.
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BOX 3-1 Basic Stepsin Modeling Development Process
Model Development Step Modeling I ssues

Definition of Model Purpose Goal
Decisions to be supported
Predictions to be made

Specification of Modeling Context Scale (spatia and temporal)
Application domain
User community
Required inputs
Desired output
Evaluation criteria

Conceptual Model Formulation Assumptions (dynamic, static, stochastic, deterministic)
State variables represented
Level of process detail necessary
Scientific foundations

Computational Model Development Algorithms
Mathematical/computational methods
Inputs
Hardware platforms and software infrastructure
User interface
Cadlibration/parameter determination
Documentation

Model Testing and Revision Theoretical corroboration
Model components verification
Corroboration (independent data)
Sensitivity analysis
Uncertainty analysis
Robustness determination
Comparison to evaluation criteria set during formulation

Model Use Analysis of Scenarios
Predictions evaluation
Regulations assessment
Policy analysis and evaluation

BOX 3-2 Interdependence of Models and Data from Measurements

Models are devel oped and evaluated using a wide range of data, theories, and assumptions and are revised
in the process. The wisdom of iteration of measurements and modeling isillustrated by three examples.

Persistent organic pollutants (POPs) in the Arctic. POPs are chemical substances that persist in the
environment, bioaccumulate through the food web, and pose arisk of causing adverse effects to human health and
the environment. The first evidence for long-range transport of these substances came about when measurementsin
animals and the environment of the Arctic revealed the presence of POPs that were never produced there. The lack
of reliable emissions data led to a number of modeling efforts used to explore hypotheses regarding the atmospheric
transport of and deposition of POPsin the Arctic. For example, Wania and Mackay (1995, 1999) introduced
multimedia global distribution models for persistent organic chemicals with afocus on transport and deposition to
the Arctic. Then Scheringer (1996, 1997) devel oped evaluative models to assess global persistence and spatial

(Continued)
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range as end pointsin screening level assessments. These models and their results provided key insight both to
international agencies, such as the United Nations, and to innovative scientists working independently to measure
how POP concentrations vary with latitude. These new measurements provided important feedback that made it
possible to develop the next generation of models by merging results from both the first generation of models and
the new measurements.

Pharmacokinetic modeling. Andersen et al. (2005) describe examples of how integrated measurements
and modeling have advanced risk assessment modeling by providing more insight on how intake of chemicals by
humans relates to tissue dose and metabolism. Early pharmacokinetic models of the time course of absorption,
distribution, metabolism, and excretion of chemicals relied on concepts buttressed by rudimentary informetion. By
the 1950s, data on tissue volume, blood flow, and metabolic pathways were emerging, resulting in early
physiologically based pharmacokinetic (PBPK) models. These models, in turn, led to the identification of key input
variables (for example, blood flow through various tissues and metabolic parameters), the measurement of which
would advance the models. Thefirst use of a PBPK model in aformal risk assessment was for dichloromethanein
1987. Advances were made in assessment methods (for example, EPA’ s reference concentration method) as well as
in PBPK models of specific chemicals (acrylic acid, vinyl chloride, and dioxin). This iterative process continues
today to inform risk assessments that can be used in regulation. It also provides a platform for more novel
computationa and biological systems approaches of the future. (Anderson et a. 2005)

Comprehensive Everglades Restoration Plan. The planned restoration of the Florida Evergladesis the
largest ecosystem restoration effort ever undertaken in terms of it geographical extent and number of individual
components. The NRC Committee on Restoration of the Greater Everglades Ecosystem, which was charged with
providing scientific advice on this effort, describes the role that modeling and measurements should play in
implementing an adaptive approach to restoration (NRC 2003). Under the committee’ s vision, monitoring of
hydrological and ecological performance measures should be integrated with mechanistic modeling and
experimentation to better understand how the Everglades functions and how the system will respond to management
practices and external stresses. Because the individual components of the restoration plan will be staggered in time,
the early components can be used as experiments to provide scientific feedback to guide and refine implementation
of later components of the plan.

MODEL DEVELOPMENT PHASES
Definition of Model Purpose

The first step involves defining the major purpose or purposes for which the model is devel oped.
As discussed in Chapter 4, this occurs at the problem identification stage when decision makers, model
devel opers, and other analysts must consider regulatory needs and whether modeling could contribute to
the regulatory process. If thereis sufficient need for computational modeling, modelers must work with
decision makersto define the goal of the model, the decisions it supports, and the groups that might use
the model.

Addressing these questions is important for setting the direction of the model. Asdescribed in
Chapter 2, legidative, regulatory, or policy mandates will often drive model development and
implementation. For example, alegidative or policy mandate may require that EPA protect the most
exposed individual, the most vulnerable individual, or reasonably highly exposed individual and that the
agency consider long-term average exposure, the highest one-day exposure, the most exposed
subpopulation, or the location of highest concentration. Indeed, legislative mandates may sometimes
force devel opment of new models or require major modifications to existing ones. Thisinitial stage sets
the direction for the conceptual model and the computational model development. The sidebar from Alice
in Wonderland illustrates this message. If you do not know where you want to go, it may appear to others
that the direction you take is not particularly important. The key goal of thisinitial phaseisto identify
whether modeling would be an effective tool for the problem at hand.

Potential uses of an environmental model include the following (Jakeman et a. 2006):

e Long-term prediction (both extrapolating from the past and answering “what if” questions).
e  Short-term forecasting.
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Interpolation (estimating variables that have not or cannot be measured directly).
Concise summarizing of data.

Data assessment (coverage, limitations, inconsistencies, and gaps).

Control system design (monitoring, diagnosis, decision making, and action taking).

Regulatory models are also used to do the following:

Help determine compliance with a particular regulation.

Evaluate a variety of alternative regulations.

Provide a genera framework to assess compliance with multiple regulations.
Summarize available knowledge needed for regulatory decisions.

Insight from Alice's Adventuresin Wonderland by Lewis Carroll

Alice speaking to the Cheshire cat: “ Would you tell me, please, which way | ought to go from here?”
Cheshire cat: “ That depends a good deal on where you want to get to.”

Alice: | don’'t much care where.”

Cheshire cat: “ Then it doesn’t matter which way you go.”

Even if defining the model purpose appears to be a straightforward and easy step, it is often
difficult to be clear about the purposes of an environmental model and its application domain. For
scientists, the major objective is often to describe the processes dominating the behavior of the system,
and for a decision maker, the objective might be to provide clear assessments of policy options. These
motives are not mutually exclusive, but neither do they overlap completely. In addition, policy makers
may want results for policy variables not directly represented in the model, or they may want results at
scales not easily represented by amodel. In any case, it isimportant to establish clearly the purpose and
priorities of the specific model.

Specification of M odeling Context

After determining the purposes of the model, the modeler must devel op specifications for the
model context. This task involves addressing such questions as

o At what temporal and spatial scalesisthe model to be applied? This question involvesthe grain
(resolution in time and space) and the extent (spatial and temporal domain) at which the model isto be
focused.

o Who will be the major model users and what constraints does that imply for model application
once developed? What is the level of expertise of the proposed users?

e What type of input data must the model users provide? How can these data be obtained (from
other models and measurements)?

e What sources of data are available to support model evaluation?

o What are the basic outputs needed and must they be constrained by a deterministic approach or is
a probabilistic approach allowable? What additional outputs, although not strictly required, might be
useful to enhance model transparency (for example, ability to explain it to various stakeholders and users)
and flexibility (for example, capacity for the model to be modified and applied to situations for which it
was not constructed)?

o What level of reliability isrequired?
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o What evaluation criteria should be applied to determine the applicability of the model or of
particular model components?

For example, when devel oping a cancer health assessment of a chemical, considerations include
whether to use alinear or anonlinear model. If the latter is chosen, the model specifications will need to
be based on interpretation of the mode of action. A second example is the assessment of human exposure
to mobile-source emissions of particulate matter. Here the model developers must work with othersto
determine whether the objectiveis to estimate cumulative exposure, time history of exposure, peak
exposure, or another measure of exposure. Model developers and others must consider whether they need
to consider particle mass, particle number, and particle volume as a metric of exposure. They must also
consider the spatial and temporal resolution in the data and parameters that probably will be available for
themodel. Finally, if the goa isto create linkages to broader health assessments of particul ate matter,
they must make decisions on whether to consider mobile-source contributions only or mobile sources as a
component of all sources of airborne particul ate matter.

The mismatch between data needed by the model and data available to the model often resultsin
failure of the model exercise, even if the model itself may be an accurate representation of the science
governing the behavior of the specific system. For example, air quality models require two major types
of input: weather fields and emissions inventories. Thisinput can be large (gigabytes of information)
and impossible to abtain exclusively from measurements, so meteorological and emissions models
estimate the input data and prepare the corresponding input files. Ideally, the input to the meteorological
and emissions models would be based on actual measurements (for example, wind speed and direction in
specific locations, vertical profiles of atmospheric properties, vehicle activity patterns, and emissions
factors). Often, however, these models must use default inputs (for example, those based on emission
factors from other parts of the country or even the world without taking into account the local conditions).
Improving model inputs with measurements can be costly, and especially for emissions, measurement
costs may overwhelm the actual modeling cost. Dealing with the issue of how to obtain the required
inputs before devel oping the computational model and before building bridges with the measurement
communities can make a substantial differencein the success of the modeling effort.

All the above questions apply to both pre- and post-regulatory models. Some specific questions
probably will arise for each model, including the following:

For pre-regulatory planning models:
e What range of plans and scenarios must be considered?
o What array of impactsisto beincluded in the assessments of aternatives?

For post-regulatory planning and compliance models:

e |stherequired decision a*“bright line” compliant/noncompliant one or is a broader view (for
example risk of noncompliance) allowable?

¢ What constraints are there on computational complexity? Will usersinsist on rapid assessments
from the model (for example does this need to be available in field situations) that preclude more
advanced computational equipment?

Conceptual Model Formulation

A conceptual model formulates the basic model organization, sometimes expressed graphically
without the details of individual model components or assumptions. As discussed in Chapter 1, such an
abstract representation provides the general structure of a system and the relationships within the system
that are known or hypothesized to be important. Figure 3-2 provides an example of a conceptual model
for assessing eutrophication. This conceptual model can be viewed as a map summarizing the structure of
amodel, the inputs, the state variables and outputs, and possibly the domain of applicability. Indeed, one
of the critical roles of the conceptual model isto provide avisual description to decision makers,
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stakeholders, and interested parties of the model, including the fundamental relationships within the
model and how inputs lead to outputs. Determination of an appropriate conceptual model reliesfirst upon
the problem formul ation decisions discussed above as well as the decisions on the following:

e What basic scientific principles are involved in the model (for example, areas of physics,
chemistry, and biology that need to be considered on the basis of the objectives)? | s there agreement
about these principles or does their inclusion potentially result in controversy (in which case, allowing for
aternative assumptions might be necessary)?

e Isan appropriate model formulation already extant?

e What level of aggregation is appropriate to the model objectives? This question applies to the
scales for the model (for example, spatial and temporal averaging may be needed) and the structure of
model components (for example, including demographic structure or putting al ages into asingle class).

o What are the variables for the model (for example, what will it explicitly track in characterizing
the system) and how are they related (often characterized by a box and arrow diagram, flow chart,
influence diagram, or similar graphic)?

e What are the means by which the variables will be expressed? Are they deterministic (discrete,
continuous, nominal), stochastic (discrete, continuous, nominal), and spatially or temporally dependent or
static?
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o What level of mechanistic detail is needed (for example, processes operating at what level should
be included: cell, tissue, individual organism, population, and so forth)? Is a purely empirical approach
(for example, a data-driven model, including many statistical ones) appropriate? |s a mixture of these
necessary?

o What are the model inputs and the scales at which the inputs will be provided?

There are distinct trade-offs in model development that should be addressed at the time of the
conceptual model formulation. No one model can do everything. Development of a more comprehensive
model will not necessarily resolve or even reduce all uncertainties in understanding and in predicting how
asystemwill react. Itisat this stage of model development that constraints, assumptions, and
acceptability criteria should be established. Given financial or effort limitations, it is appropriate to set
“stopping” criteria for when to decide that amodel is sufficiently useful to be applied, even while
acknowledging its limitations.

All the above trade-offs apply to both pre- and post-regulatory models. Some specific questions
probably will arise for each model, including the following:

For pre-regulatory planning models:

o How are dternative plans formulated or specified? Do they arise from modifications of asingle
plan (say, by varying constraints on structures allowabl e to be built) or are they chosen from a broad array
of options?

e What metrics are applied to compare and contrast alternative plans?

For post-regulatory implementation and compliance models:

o What criteria determine compliance versus noncompliance and how do they relate to the model
state variables?

e What level of detail isneeded in applications involving regulatory implementation?

Computational Model Development

This stage requires formulating the model explicitly by translating the model assumptions from
the previous step into a mathematical formulation, by determining the detailed structure of the model, and
by encoding the resulting model. This stage requires decisions about the following:

e Mode equations that determine the relationships between variables (rules, statements, equations,
statistics) and account for the mathematical structure of the model (for example, static, dynamic, discrete,
continuous).

o Parameter estimations (from either data or underlying scientific assumptions) to determine input
model parameters or distribution of such parametersin the case of a stochastic formulation.

e Appropriate software design and engineering tools to encode and/or solve the model, appropriate
computational algorithms, and appropriate model interface to ensure applicability by the user community.
e Methodsfor analysis of model results, including graphic outputs and the capability to conduct

sensitivity and uncertainty analysis.

e Flexibility to modify model structure and inputsin the future as new data arise, aternative
objectives are specified, or different regulations are assessed.

o Documentation to allow for transparency of the model based on the needs of the user community
and the potential for future modification. Such documentation maintains the history of major revisions of
the model.

One critical issue iswhether to revise an existing model or to develop anew one. “Maodel
recycling” can save a huge development effort by applying atested model to a purpose that is different
fromitsoriginal one. Furthermore, modelers often face the difficult decision between the devel opment
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of one model that describes everything (the “ swiss army knife” of models) and can be used for a variety
of purposes and the development of multiple smaller models that have a common core but are devel oped
separately for different purposes.

For example, the main purpose of the CMAQ model isto simulate concentrations of fine
particulate matter and ozone in the lower atmosphere and to assist the analysis of the corresponding
regulations. Asacomplex model, it describes the concentrations of more than 100 air pollutants in space
and time. It has become afamily of models (for example, CMAQ-MADRID and CMAQ-HQ) addressing
arange of different air quality problems, including visibility reduction and acid deposition. Given that
the different versions of CMAQ take advantage of the core of the model (atmospheric transport, gas-
phase chemistry, and so forth) without violating any of the major assumptions of CMAQ), the strategy isa
good one. For example, CMAQ has been extended (after some nontrivial modifications in its code) to
address mercury (CMAQ-Hg). Although there are many gaps in our scientific understanding of the
corresponding problem, CMAQ is an appropriate platform for such an extension. On the other hand, the
model would require major redevelopment to address potential regulations of ultrafine particles (diameter
less than 100 nanometers [nm]) due to numerical issues with its description of the particle-size
distribution. Thus, there are limitations to the degree that CMAQ can be adapted.

Another example isthe MOBILE model (Table 3-1), which has evolved from atool for
estimating regional motor-vehicle emissions inventories to amodel used for estimating emissions on
individual highway segments where instantaneous operating conditions of individual vehicles may be
critical but that are not represented in the model. As concluded by the NRC (2000), the farther
MOBILE's applications deviate from its original purpose of estimating aggregate regional emissions, the
more difficult it becomes to verify the accuracy of its predictions. Because of the difficulty in developing
a single motor-vehicle emissions model appropriate for all applications, the NRC (2000) recommended
that EPA develop atoolkit of models based on a consistent data set and model interface. Such atoolkit
would include an aggregated regional emissions component, a smaller scale model for ssimulating
emissions along major highway corridors, and a microscal e instantaneous emissions-modeling component
for more transient and localized traffic conditions. For atoolkit approach, the type of motor-vehicle
emissions model applied could better meet the characteristics of the problem while being consistent from
one problem scale to another.

Additional considerations probably will arise for pre- and post-regulatory models.

For pre-regulatory planning models:

e Provide methods to compare and contrast the implications of alternative plans, perhaps requiring
the capability for exploratory analysis by the users of model outputs

e Provide methods either to vary the constraints on plans-scenarios or to vary the metricsto
evauate each plan

e Provide automated optimization methods to specify the highest ranked plan from a given set
based on chosen criteria

For post-regulatory implementation and compliance models:

e Provide methods to maodify inputs to determine how readily a noncompliant case might become a
compliant one and vice versa.

o Provide methods to ascertain the impacts of additional data on model results and assist usersin
determining the most effective methods to obtain such data (for example, methods to choose optimal
locations for new data collection).

¢ Understand whether models used for implementing regulation would be used widely by state and
local governments and consulting firms that help those entities to develop implementation plans.
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Modular Approachesfor Environmental Model Development

The code of environmental models often can be written in amodular form. A moduleisan
independent piece of code that forms a part of one or more models. Often, each module describes one
process. For example, CMAQ includes modules for the description of horizontal and vertical advection,
horizontal and vertical dispersion, gas-phase chemistry, agueous-phase chemistry, aerosol
thermodynamics and dynamics, plume chemistry effects, dry and wet deposition, and process analysis.
This modular approach facilitates testing of the model (one can test the individual pieces separately) and
reuse of the relevant modulesin separate modeling projects. The parts of the model can be replaced with
others without changing the overall structure of the model. There are also choices of modules for the
same task. CMAQ alowsits user to choose among three gas-phase chemistry mechanisms, depending on
the specifics of the problem being modeled. The modular approach to CMAQ allows the level of
complexity in the application to be aligned with the needs of the regulatory decisions. For example, the
use of the mercury chemistry simulation capability of CMAQ is not necessary for ozone or particulate
matter applications.

A magjor advantage of the modular model devel opment approach is the ability to easily add or
remove parts of the model, thus creating models of different complexity. For example, the full range of
available modules (describing all potentially relevant processes) can be used, and then after quantifying
the importance of each one of them for the specific application, the model can be simplified and used by
removing the parts that have little or no effect on the results. For example, one can remove the cloud
chemistry module from an application focusing on ozone episodes. Therest of the analysis can be done
with the simplified model. Therefore, the modular approach and the resulting models of different degrees
of complexity allow the user to satisfy the scientific requirements about quantifying the influence of the
different processes and to avoid unnecessary complexity in the model used for the regulation. This
approach allows modelers to defend their choices of excluding parts of the system from the analysis by
allowing modelers to demonstrate the impacts of including or excluding various processes from the
model. This approach also allows models to be updated more easily.

RECOMMENDATIONS

The committee offers several recommendations based on the discussion in this chapter. They
deal with the interdependence of models and measurements, the model extrapolation, and the need for
model parsimony.

The Inter dependence of M odels and M easur ements

The interdependence of models and measurements is complex and iterative for several reasons.
M easurements help to provide the conceptual basis of amodel and inform model development, including
parameter estimation. Measurements are also a critical tool for corroborating model results. Once
developed, models can drive priorities for measurements that ultimately get used in modifying existing
models or in developing new ones.

Measurement and model activities are often conducted in isolation. For example, modelers often
add details to models without sufficient measurements to justify or confirm the importance of these
changes. Likewise, field and laboratory scientists might expand their compilation of samples without
understanding the utility of such information for modeling. Although environmental data systems serve a
range of purposes, including compliance assessment, monitoring of trendsin indicators, and basic
research performance, the importance of modelsin the regulatory process requires measurements and
models to be better integrated. Adaptive strategies that rely on iterations of measurements and modeling,
such as those discussed in the 2003 NRC report titled Adaptive Monitoring and Assessment for the
Comprehensive Everglades Restoration Plan, provide examples of how improved coordination might be
achieved.
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Recommendations

Using adaptive strategies to coordinate data collection and modeling should be a priority of
decision makers and those responsible for regulatory model development and application. The
interdependence of measurements and modeling needs to be fully considered as early as the conceptual
model development phase. Developing adaptive strategies will benefit from the contributions of
model ers, measurement experts, decision makers, and resource managers.

Model Parsimony

Models are aways incomplete, and efforts to make them more compl ete can be problematic. As
features and capabilities are added to a model, the cumulative effect on model performance needsto be
evaluated carefully. Increasing the complexity of models without adequate consideration can introduce
more model parameters with uncertain values, and decrease the potential for amodel to be transparent and
accessible to users and reviewers. It is often preferable to omit capabilities that do not improve model
performance substantially. Even more problematic are models that accrue substantial uncertainties
because they contain more parameters than can be estimated or calibrated with available observations.

Recommendations

Models used in the regulatory process should be no more complicated than is necessary to inform
regulatory decisions. In the process of evaluating whether amode is suitable for its given application,
there should be a critical evaluation of whether the model has been made unreasonably complicated. This
evaluation should include how model developers and those that select amodel for a particular application
have addressed the trade-offs between the need for a given model application to be an accurate
representation of the system of interest and the need for it to be reproducible, transparent, and useful for
the regulatory decision at hand.
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M odel Evaluation

INTRODUCTION

How does one judge whether amodel or a set of models and their results are adequate for
supporting regulatory decision making? The essence of the problem is whether the behavior of a model
matches the behavior of the (real) system sufficiently for the regulatory context. Thisissue has long been
amatter of great interest, marked by many papers over the past several decades, but especially and
distinctively by Caswell (1976) who observed that models are objects designed to fulfill clearly expressed
tasks, just as hammers, screwdrivers, and other tools have been designed to serve identified or stated
purposes. Although “model validation” became a common term for judging model performance, it has
been argued persuasively (e.g., Oreskes et al. 1994) that complex computational models can never be
truly validated, only “invalidated.” The contemporary phrase for what one seeks to achieve in resolving
model performance with observation is “evaluation” (Oreskes 1998). Although it might seem strange for
such alabel to be important, earlier terms used for describing the process of judging model performance
have provoked rather vigorous debate, during which the word “validation” was first to be replaced by
“history matching” (Konikow and Bredehoeft 1992) and later by the term “quality assurance” (Beck et al.
1997; Beck and Chen 2000). Some of these terms imply, innately or by their de facto use, aone-time
approval step. Evaluation emerged from this debate as the most appropriate descriptor and is
characteristic of alife-cycle process.

Two decades ago, model “validation” (asit was referred to then) was defined as the assessment of
amodel’ s predictive performance against a second set of (independent) field data given model parameter
(coefficient) valuesidentified or calibrated from afirst set of data. In thisrestricted sense, “validation” is
still apart of the common vocabulary of model builders.

The difficulty in finding alabel for the process of judging whether a model is adequate and
reliable for itstask is described as follows. The terms “validation” and “assurance” prejudice
expectations of the outcome of the procedure toward only the positive—the model isvalid or its quality is
assured—whereas evaluation is neutral in what might be expected of the outcome. Because awareness of
environmental regulatory models has become so widespread in a more scientifically aware audience of
stakeholders and the public, words used within the scientific enterprise can have meanings that are
misleading in contexts outside the confines of the laboratory world. The public knows well that
supposedly authoritative scientists can have diametrically opposed views on the benefits of proposed
measures to protect the environment.

When there is great uncertainty surrounding the science base of an issue, groups of stakeholders
within society can take thisissue as alicense to assert utter confidence in their respective versions of the
science, each of which contradicts those of the other groups. Great uncertainty can lead paradoxically to
asituation of “contradictory certainties’ (Thompson et al. 1986), or at least to a plurality of legitimate
perspectives on the given issue, with each such perspective buttressed by a model proclaimed to be valid.
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Those developing models have found this situation disquieting (Bredehoeft and Konikow 1993) because,
even though science thrives on the competition of ideas, when two different modelsyield clearly
contradictory results, as a matter of logic, they cannot both be true. It matters greatly how science and
society communicate with each other (Nowotny et al. 2001); hence, in part, scientists shunned the word
“validation” in judging model performance.

Today, evaluation comprises more than merely atest of whether history has been matched.
Evaluation should not be something of an afterthought but, indeed, a process encompassing the entire life
cycle of thetask. Furthermore, for models used in environmental regulatory activities, the model builder
is not the only archetypal interested party holding a stake in the process but is a'so one among several key
players, including the model user, the decision maker or regulator, the regulated parties, and the affected
members of the general public or the representative of the nongovernmental organization. Evaluation, in
short, is an altogether much broader, more comprehensive affair than validation and encompasses more
elements than simply the matching of observationsto results.

Thisis not merely a question of form, however. In this chapter, where the committee decribes the
process of model evaluation, it adopts the perspective, discussed in Chapter 1 of this report, that a model
isa“tool” designed to fulfill a task—providing scientific and technical support in the regulatory decision-
making process—not a “truth-generating machine” (Janssen and Rotmans 1995; Beck et al 1997).
Furthermore, in sympathy with the Zeitgeist of contemporary environmental policy making, where the
style of decision making has moved from that of a command-and-control technocracy to something of a
more participatory, more open democracy (Darier et al. 1999), we must address the changing perception
of what it takes to trust amodel. This not only involves the elements of model evaluation but also who
will have alegitimate right to say whether they can trust the model and the decisions emanating from its
application. Achieving trust in the model among those stakeholders in the regulatory processis an
objective to be pursued throughout the life of amodel, from concept to application.

The committee’ s goal in this chapter isto articulate the process of model evaluation used to
inform regulation and policy making. We cover three key issues: the essential objectives for model
evaluation; the elements of model evaluation, and the management and documentation of the evaluation
process. To discuss the elements of model evaluation in more detail, we characterize the life stages of a
model and the application of the elements of model evaluation at these different stages. We organized the
discussion around four stages in the life cycle of aregulatory model—problem identification, conceptual
model development, model construction, and model application (see Figure 4-1). The life-cycle concept
broadens the view of what modeling entails and may strengthen the confidence that users have in models.
Although this perspective is somewhat novel, the committee observed some existing and informative
examplesin which model evaluations effectively tracked the life cycle of amodel. These examples are
discussed later in this chapter. We recognize that reducing amodel’ slife cycle to four stagesis a
simplified view, especialy for models with long lives that go through important changes from version to
version. The MOBILE model for estimating atmospheric vehicle emissions, the UAM (urban airshed
model) air quality model, and the QUAL 2 water quality models are examples of models that have had
multiple versions and major scientific modifications and extensions in over two decades of their existence
(Scheffe and Morris 1993; Barnwell et al. 2004; EPA 2004b). The perspective of afour-stage life cycleis
also simplified from the stages of model development discussed in Chapter 3. However, simplifying a
model’ s life cycle makes discussion of model evaluation more tractable.

Historically, the management of model quality has been inconsistent, due in part to the failure to
recognize the impact of errors and omissionsin the early stages of the life cycle of the model. At EPA
(and other organizations), the model evaluation process traditionally has only begun at the model
construction and model application stages. Y et formulating the wrong model questions or even
confronting the right questions with the wrong conceptual model will result in serious quality problemsin
the use of amodel. Limited empirical evidence in the groundwater modeling field suggests that 20-30%
of model analyses confront new data that render the prevailing conceptual model invalid (Bredehoeft
2005). Such quality issues are difficult to discover and even more difficult to resolve (if discovered)
when model evaluation applies only at the late stages of the model life cycle.
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FIGURE 4-1 Stagesof amodel’slife cycle.
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ESSENTIAL OBJECTIVESFOR MODEL EVALUATION

Fundamental Questions To Be Addressed

In the transformation from simple “validation” to the more extensive process of model evaluation,
it isimportant to identify the questions that are confronted in model evaluation. When viewing model
evaluation as an ongoing process, several key questions emerge. Beck (2002b) suggests the following

formulation:
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e Isthe model based on generally accepted science and computational methods?
e Doesitwork, that is, doesit fulfill its designated task or serve its intended purpose?
o Doesitsbehavior approximate that observed in the system being modeled?

Responses to such questions will emerge and develop at various stages of model devel opment and

application, from the task description through the construction of the conceptual and computational
models and eventually to the applications. The committee believes that answering these questions
requires careful assessment of information obtained at each stage of amodel’slife cycle.

Striving for Parsimony and Transparency

In the development and use of models, parsimony refers to the preference for the least
complicated explanation for an observation. Transparency refersto the need for stakeholders and
members of the public to comprehend the essential workings of the model and its outputs. Parsimony
derives from Occam's (or Ockham's) razor attributed to the 14th century logician William of Occam,
stating that “ entities should not be multiplied unnecessarily.” Parsimony does not justify simplicity for its
own sake. It instead demands that a model capture all essential processes for the system under
consideration—but no more. It requires that models meet the difficult goal of being accurate
representations of the system of interest while being reproducible, transparent, and useful for the
regulatory decision at hand.

The need to move beyond simple validation exercises to a more extensive model evaluation leads
to the need for EPA to explicitly assess the trade-offs that affect parsimony, transparency, and other
considerations in the process of developing and applying models. These trade-offs are important to
modelers, regulators, and stakeholders. The committee has identified three fundamental goals to be
considered in making trade-offs, which are further discussed in Box 4-1:

e The need to get the correct answer — This goal refers to the need to make amodel capable of
generating accurate as well as consistent and reproducible projections of future behavior or consistent
assessments of current relationships.

e The need to get the correct answer for the correct reason — This goal refersto the reproduction of
the spatial and temporal detail of what scientists consider to be the essence of the system’s workings.
Simple process and empirical models can be “trained” to mimic a system of interest for an initial set of
observations, but if the model fails to capture all the important system processes, the model could fail to
behave correctly for an observation outside the limited range of “training” observations. Such failure
tends to drive models to be more detailed.

e Transparency — This goa refersto the comprehension of the essential workings of the model by
peer reviewers aswell asinformed but scientifically lay stakeholders and members of the public. This
need drives models to be less detailed. Transparency can also been enhanced by ensuring that reviewers,
stakeholders and the public comprehend the processes followed in developing, evaluating, and applying a
model, even if they do not fully understand the basic science behind the models.

These three goals can result in competing objectivesin model devel opment and application. For
example, if the primary task was to use amodel as arepository of knowledge, its design might place
priority on getting sufficient detail to ensure that the result is correct for the correct reasons. On the other
hand, to meet the task of the model as a communication device, the optimal model would minimize detail
to ensure transparency. It isalso of interest to consider when aregulatory task would be best served by
having amodel err on the side of getting accurate results but not including sufficient detail to match
scientific understanding. For example, when an exposure model can accurately define the relationship
between a chemical release to surface water based on a detailed mass balance, should the regulator
consider an empirical model that has the same level of accuracy? Here, parsimony might give preference
to the simpler empirical model, whereas transparency is best served by the mass-balance model that
allows the model user to see how the releaseis transformed into a concentration. Moreover, in the
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BOX 4-1 Attributes That Foster Accuracy, Precision, Parsimony, and Transparency in Models

Getsthe Correct Result
— Maodel behavior closely approximates behavior of real system
= High predictive power on a case-by-case basis
= High predictive power a statistical basis
— Model resultsinsensitive to factors that should not affect them

Getsthe Correct Result for the Right Reason
— Model accurately representsthe real system
= Comprehensive
e Variables
0 Inputs, outputs
0 Exogenous, endogenous
e Rdationships
o Functiond
0 Cause-effect
e Statistical Circumstances
0 Input changes
0 Assumption relaxation
¢ Resolutions
o Tempord
0 Spatia
— Model isbased on good science
= Accepted principles, theory, results
e From peer reviewed sources
e Prestige of developer or lab

= Up-to-date
e  Concepts and theory
e Algorithms, computational methods
e Empirical findings

— Appropriate data are available or feasible to acquire
= Estimatesfor model parameters
= Datafor model calibration

Transparency
—  Suits specific regulatory context or decisions
=  Address the specific concern
= Usableby
e Decision makers
e |Implementers
= Understandable by
e Decision makers
e  Stakeholders
e Implementers
— Model isseen to be appropriate for the specific system
= Application iswithin model limitations
e Resolution
e  Parameter values
e Special system characteristics (for example, special weather characteristics or soil
chemistry).
= |nputs available for the specific system
e  Parameter estimates
e Cadlibration data
— Results/outputs are helpful
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= Interpretable
= Relateto regulatory objectives
e Decision makers
e  Stakeholders
= Are“actionable,” i.e., they relate to decision variables or policy parameters understandable to
decision makers, stakeholders, and the informed public

regulatory context, the more-detailed model addresses the need to reveal to decision makers and
stakeholders how different environmental processes can affect the link from emissions to concentration.
Nevertheless, if the ssmpler empirical model provides both accurate and consistent results, it should have
arolein the decision process even if that role is to provide complementary support and evaluation for the
more-detailed model.

The committee finds that modelers may often err on the side of making models more detailed
than necessary. The reasons for the increasing complexity are varied, but one regulatory modeler
mentioned that it is not only modelers that strive to building a more complex model but also stakeholders
who wish to ensure that their issue or concerns are represented in the model, even if addressing such
concerns does not have an impact on model results (A. Gilliland, Model Evaluation and Applications
Branch, Office of Research and Development, EPA, personal commun., May 19, 2006). Increasing the
refinement of models introduces increasing model parameters with uncertain values while decreasing the
model transparency to users and reviewers. Here, the problem isamodel that accrues significant
uncertainties when it contains more parameters than can be calibrated with observations available to the
model evaluation process. In spite of the drive to make their models more detailed, modelers often prefer
to omit capabilities that do not substantially improve model performance—that is, its precision and
accuracy for addressing a specific regulatory question.

ELEMENTSOF MODEL EVALUATION

The evidence used to judge the adequacy of amodel for decision-making purposes comes from a
variety of sources. They include studies that compare model results with known test cases or
observations, comments from the peer review process, and the list of amodel’s major assumptions. Box
4-2 lists those and other elements of model evaluation. Many of the elements might be repeated,
eliminated, or added to the evaluation as amodel’ s life cycle moves from problem identification to model
application stages. For example, peer review at the model development stage might focus on the
tranglation of theory into mathematical algorithms and numerical solutions, whereas peer review at the
model application stage might focus on the adequacy of the input parameters, model execution, and
stakeholder involvement. Recognizing that model evaluation may occur separately during the early
stages of amodel’slife, aswell as again during subsequent applications, helps to address issues that
might arise when amodel is applied by different groups and for different conditions than those for which
the model was developed. The committee notes that, whereas the elements of model evaluation and the
guestions to be answered throughout the eval uation process may be generic in nature, what comprises a
high-quality evaluation of amodel will be both task- and case-specific. As described in Chapter 2, the
use of modelsin environmental regulatory activities varies widely both in the effort and the consequences
of the regulatory effortsit supports. Thus, the model evaluation process and the resources devoted to it
must be tailored to its specific context. Depending on the setting, model evaluation will not necessarily
address all the elements listed in Box 4-2. In its guidance document on the use of models at the agency,
EPA (2003c) recognized that a model evaluation should adopt a graded approach to model evaluation,
reflecting the need for it to be adequate and appropriate for the decision at hand. The EPA Science
Advisory Board (SAB) initsreview of EPA’s guidance document on the use of models recommended
that the graded concept be expanded to include model development and application (EPA 2006d). The
committee here recognizes that model evaluation must be tailored to the complexity and impacts at hand
aswell asthelife stage of the model and the model’ s evaluation history.
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BOX 4-2 Individua Elements of Model Evaluation
Scientific basis — The scientific theories that form the basis for models.

Computational infrastructure — The mathematical algorithms and approaches used in the execution of the model
computations.

Assumptions and limitations — The detailing of important assumptions used in the development or application of a
computational model aswell as the resulting limitations in the model that will affect the moddl’s applicability.

Peer review — The documented critical review of amodel or its application conducted by qualified individuals who
are independent of those who performed the work, but who are collectively at least equivalent in technical expertise
(i.e., peers) to those who performed the original work. Peer review attempts to ensure that the model is technically
adequate, competently performed, properly documented, and satisfies established quality requirements through the
review of assumptions, calculations, extrapolations, alternate interpretations, methodology, acceptance criteria,
and/or conclusions pertaining from amodel or its application (modified from EPA 2006a)

Quality assurance and quality control (QA/QC) — A system of management activities involving planning,
implementation, documentation, assessment, reporting, and improvement to ensure that a model and its component
parts are of the type needed and expected for its task and that they meet al required performance standards.

Data availability and quality — The availability and quality of monitoring and laboratory data that can be used for
both developing model input parameters and assessing model resuilts.

Test cases— Basic model runs where an analytical solution is available or an empirical solution is known with a
high degree of confidence to ensure that algorithms and computational processes are implemented correctly.

Corroboration of model results with observations — Comparison of model results with data collected in the field
or laboratory to assess the accuracy and improve the performance of the model.

Benchmarking against other models — Comparison of model results with other similar models.

Sensitivity and uncertainty analysis— Investigation of what parameters or processes are driving model results as
well as the effects of lack of knowledge and other potential sources of error in the model.

M odel resolution capabilities— The level of disaggregation of processes and results in the model compared to the
resolution needs from the problem statement or model application. The resolution includes the level of spatial,
temporal, demographic or other types of disaggregation.

Transparency — The need for individuals and groups outside modeling activities to comprehend either the
processes followed in evaluation or the essential workings of the model and its outputs.

MODEL EVALUATION AT THE PROBLEM IDENTIFICATION STAGE

There are many reasons why regulatory activities can be supported by environmental modeling.
At the problem identification stage, decision makers together with model developers and other analysts
must consider the regulatory decision at hand, the type of input the decision needs, and whether and how
modeling can contribute to the decision-making process. For example, if aregulatory problem involves
the assessment of the health risk of a chemical, considerations may include whether to focus narrowly on
cancer risk or to include a broader spectrum of health risks. Another consideration might be whether the
regulatory problem focuses on occupational exposures, acute exposures, chronic exposures, or exposures
that occur to a susceptible subpopulation. The final consideration is whether amodel might aid in the
regulatory activity.

If thereis sufficient need for computational modeling, there are three questions that must be
addressed at the problem identification stage: (1) What types of decisions will the model support? (2)
Who will useit? and (3) What data are available to support development, application, and evaluation of




Model Evaluation Prepublication Copy 71

amodel? Addressing these questionsis important both for setting the direction of the model and for
setting goals for the quality and quantity of information needed to construct and apply the model.

At this stage, data considerations should be a secondary issue, though not one to compl etely
ignore. Problem identification must not be anchored solely to the available data to avoid the situation
where data dictate the problem identification of the form, “We have these data available, so we can
answer thisquestion. . . .” However, there would have to be confidence that quantitative analysis could
inform the problem and that some data would be available.

The problem identification stage answers the question of whether modeling might help to inform
the particular issue at hand and sets the direction for development of conceptual and computation models.
Although the committee is not endorsing a complex model evaluation at the nascent stage of problem
identification, it is clear that setting off to develop or apply a model that will not address the problem at
hand or that will take too long to provide answers can have serious impacts on the effectiveness of
modeling. The key goa of the problem identification phaseis to identify the regulatory task at hand and
assess the role that modeling could play. At this stage, the description of the regulatory task and the way
modeling might address this regulatory task should be open to comment and criticism. Thus, when
formal model evaluation is performed in later stages of amodel’slife cycle, it must take into account the
problem identification and how it influenced the nature of the model.

EVALUATIONAT THE CONCEPTUAL MODEL STAGE

Some of the most important model choices are made at the conceptual stage, yet most model
evaluation activities tend to avoid acritical evaluation at this stage. Often apeer review panel will begin
its efforts with the implicit acceptance of all the key assumptions made to establish the conceptual model
and then devote all of its attention to the model building and model application stages. Alternatively, a
late-stage peer review of anearly complete model may find the underlying conceptual model to be
flawed. Finally, data must be assessed at this point to ensure the availability of data for model
development, input parameters, and evaluation. The result of this processis the selection of a
computational modeling approach that addresses problem identification, data availability, and
transparency requirements.

Evaluating the Conceptual M odel
Quiality of the Basic Science

It isimportant to evaluate the fundamental science that forms the basis of the conceptual model.
One approach isto consider the idea of a pedigree of adomain of science, aword expressing something
about the history—and the quality of the history—of the concepts and theories behind the model and,
possibly more appropriately, each of its constituent parts (Funtowicz and Ravetz 1990). Over the years,
the fundamental scientific understanding and other understandings that are used in constructing models
have been consolidated and refined to produce a mature product with a pedigree. For example, atask,
such as modeling of lake eutrophication, started as an embryonic field of study, passed through the
adolescence of competing schools of thought (Vollenweider, 1968) to the gathering of consensus around a
single scientific outlook (disputed only by the sub-discipline’ s “rebels’), and finally to the adulthood of
the fully consolidated outlook, contested, if at all, only by those considered “ cranks” by the
overwhelming majority—a history partially recounted in Schertzer and Lam (2002). The status of a
model’ s pedigree typically changes over time, with the strong implication of ever-improving quality.
Although some models may cease to improve over time, it is more common that they continue to be
refined over time, especially for long-lived regulatory models. The concept of a pedigree can be applied
to the model as awhole, to one of its major subblocks (such as atmospheric chemistry or human
toxicology), or to each constituent model parameter.
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Quiality of Available Data

For environmental models, one of the issues often ignored at the conceptual stageisthe
availability of data. It is one of the major issuesin the use of environmental models, and it has multiple

aspects:

o Dataused asinputs to the model, including data used to devel op the model.
o Dataused to estimate values of model parameters (internal variables).
o Dataused for model evaluation.

There is some overlap between the first and second types of data, depending on the model
application, but in general these data needs can be viewed as separate. One major problem is that
collecting new data at this early stage israrely considered. Model development and evaluation and data
collection should be iterative and proceed together, but in practice, these activities at agencies such as
EPA often are done by separate groups that may not meet each other until late in the process. The critical
issueisthat, at this stage in amodel’ s life cycle, there should be a requirement for an assessment of the
data needs and a corresponding data collection plan. Modelers should be building on-going
collaborations with experimentalists and those responsible for collection of additional datato determine
how such new data can guide model development and how the resulting models can guide the collection
of additional data.

EVALUATION AT THE COMPUTATIONAL MODEL STAGE

In moving from the identification of the problem, the assessment of required resolving power and
data needs, and the decision concerning the basic qualitative modeling approach to a constructed
computational model, a number of practical considerations arise. Aswe observe in Chapter 3, these
considerations include (1) choices of specific mathematical expressions to represent the interactions
among the model’ s state variables; (2) evaluation of a host of algorithmic and software issues relating to
numerical solution of the model’ s equations; (3) the assembly of datato develop inputs, to test, and to
compare with model results; and (4) the ability of the model to arrange the resulting numerical outputs for
comprehension by all the stakeholders concerned. A prime motivation at this stage of evaluation is, does
the behavior of the model approximate well what is observed? For modelers, nothing is more convincing
and reassuring than seeing the curve of the model’ s simulated responses passing through the dots of
observed past behavior. However, as discussed in Chapter 1, natural systems are never closed and model
results are never unique. Thus, any match between observations and model results might be due to
processes not represented in the model canceling each other out. In addition, simply reproducing results
that match observations for asingle scenario or several scenarios does not mean the model can represent
the full statistical characteristics of observations.

The evaluation needs fundamentally to address the questions laid out at the beginning of this
chapter: the degree to which the model is based on generally accepted science and computational
methods, whether the modéd fulfills its designed task, and how well its behavior approximates that
observed in the system being modeled. A majority of model evaluation activities traditionally occur at
the stages in which the computational model is developed and applied. These are the stages when quality
assurance and quality control (QA/QC) efforts are documented, testing and analysis reports generated,
model documentation produced, and peer review panels commissioned. However, these formal model
evaluation activities must be cognizant of and built on earlier evaluation activities during the problem
identification and model conceptualization stages.

Scientific Basis, Computational Infrastructure, and Assumptions

The scientific basis, the computational infrastructure, and the major assumptions used within a
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computational model are some of the first elements typically addressed during model evaluation. The
initial evaluation of the scientific theories, possible computational approaches, and inherent assumptions
should occur during the development of the conceptual model. Model builders must reassess these issues
during the construction of a computational model by obtaining awider array of peer reviewers' and
others' comments. Indeed, these issues are typically the first elements assessed by outside evaluators
when EPA models go before review panels, such asthe SAB, or the public.

Code Verification of Numerical Solutionsand
Other Quality Assurance Procedures

Verification of model code and assurance that the numerical algorithms are operating correctly
are the essence of QA/QC procedures. These activities evaluate to what extent the executable code and
other numerical software in the constructed model generate reliable and consistent solutions to the
mathematical equations of the model. The document prepared for a recent evaluation by SAB of the
very-high-order S3MRA modeling system (the multimedia model described in Babendreier and Castleton
[2005]) defines code verification as follows (EPA 2003d):

Verification refers to activities that are designed to confirm that the mathematical
framework embodied in the module is correct and that the computer code for amoduleis
operating according to its intended design so that the results obtained using the code
compare favorably with those obtained using known analytical solutions or numerical
solutions from simulators based on similar or identical mathematical frameworks.

Verification activities include taking steps to ensure that code is properly maintained, modified to
correct errors, and tested across all aspects of the modul€’ s functionality. Table 4-1 lists some of the
software checks listed by EPA to ensure that model computations proceed as anticipated. Other QA/QC
activitiesinclude (1) the use of the model in different operating systems with different compilers to make
sure that the results remain the same and (2) testing under simplified scenarios (for example, with zero
emissions, zero boundary conditions, and zero initial conditions) where an analytical solution is available
or an empirical solution is known with a high degree of confidence

Like so many things, concluding—provisionally—that the constructed model is working with a
reliable code comes down to the outcomes of the most rudimentary tests, such as those “comparing
module results with those generated independently from hand calculations or spreadsheet models’ (EPA
2003d). Thesetests are the equivalent of the tests made time and again to ensure a sensor or instrument is
working properly. They are tests that are maximally robust against ambiguous outcomes. As such, they
only ensure against gross deficiencies but cannot confirm that a model is sufficiently sound for regulatory
use. Constant vigilanceisrequired. “Even legacy codes that had more than a decade of wide use
experienced environmental conditions that caused unstable numerical solutions’ (EPA 2003d).

Where models are linked, as in linking emissions models to fate and transport models as
discussed in Chapter 2, additional checks and audits are required to ensure the streams of data passing
back and forth have strictly identical meanings and units in the partnered codes engaging in these
electronic transactions. Further, such linked models do not lend themselves to be compared with simple
test cases that have known solutions. This makes QA/QC activities related to linked models much more
difficult.

Comparing Model Output to Data (Real-World Measur ements)
Comparing model results with observationsis a central component of any effort to evaluate

models. However, such comparisons must be made in light of the model’ s purpose—atool for
assessment or prediction in support of making adecision or formulating policy. The inherent problems
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TABLE 4-1 QA/QC Checksfor Model Code

Softwar e code development inspections:  Software requirements, software design, or code are examined by an
independent person or groups other than the author(s) to detect faults, programming errors, violations of
development standards, or other problems. All errors found are recorded at the time of inspection, with later
verification that all errors found have been successfully corrected.

Software code performance testing: Software used to compute model predictions is tested to assess its
performance relative to specific response times, computer processing usage, run time, convergence to solutions,
stability of the solution algorithms, the absence of terminal failures, and other quantitative aspects of computer
operation.

Tests for individual model module: Checks ensure that the computer code for each module is computing module
outputs accurately and within any specific time constraints. (Modules are different segments or portions of the
model linked together to obtain the final model prediction.)

Model framework testing: The full model framework is tested as the ultimate level of integration testing to verify
that all project-specific requirements have been implemented as intended.

Integration tests: The computational and transfer interfaces between modules need to allow an accurate transfer
of information from one module to the next, and ensure that uncertainties in one module are not lost or changed
when that information is transferred to the next module. These tests detect unanticipated interactions between
modules and track down cause(s) of those interactions. (Integration tests should be designed and applied in a
hierarchical way by increasing, as testing proceeds, the number of modules tested and the subsystem complexity.)

Regression tests: All testing performed on the original version of the module or linked modules is repeated to
detect new “bugs’ introduced by changes made in the code to correct amodel.

Stress testing (of complex models):  Stress testing ensures that the maximum load (for example, real time data
acquisition and control systems) does not exceed limits. The stress test should attempt to simulate the maximum
input, output, and computational load expected during peak usage. The load can be defined quantitatively using
criteria such as the frequency of inputs and outputs or the number of computations or disk accesses per unit of
time.

Acceptance testing: Certain contractually required testing may be needed before the new model or model
application is accepted by the client. Specific procedures and the criteriafor passing the acceptance test are listed
before the testing is conducted. A stress test and a thorough evaluation of the user interface is arecommended
part of the acceptance test.

Beta testing of the pre-release hardware/software: Persons outside the project group use the software as they
would in normal operation and record any anomalies encountered or answer questions provided in a testing
protocol by the regulatory program. The users report these observations to the regulatory program or specified
developers, who address the problems before release of the final version.

Reasonableness checks: These checks involve items like order-of-magnitude, unit, and other checks to ensure
that the numbers are in the range of what is expected.

Source: EPA 2002e.

of providing an adequate set of observations and making credible comparisons give rise to some
important issues.

The Role of Statistics
Because (near) perfect agreement between model output and observations cannot be expected,

statistical concepts and methods play an inevitable and essential role in model evaluation. Indeed, itis
tempting to use formal statistical hypothesis testing as an evaluation tool, perhaps in part because such
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terms as “accepting” and “rejecting” hypotheses sound as though they might provide away to validate
models in the now-discredited meaning of the term. However, the committee has concerns that testing
(for example, that the mean of the observations equals the mean of the model output) will fail to provide
much insight into the appropriateness of using an environmental model in a specific application. As
discussed in Box 1-1 in Chapter 1, the evaluation of the ozone models in the 1980s and early 1990s
showed that estimates of ozone concentrations from air quality models were good when compared with
observations for any choice of statistical methods, but only because the errors in the models tended to
cancel out. Statistics has value for conceptualizing, visualizing, and quantifying variation and
dependence rather than for serving as a source of “rigorous’ or “objective’ standards for model
evauation. The committee cautions, however, that standard, elementary statistical methods will often be
inappropriate in environmental applications, for which problems of spatial and temporal dependence are
frequently acritical issue.

Although epidemiologists and air quality modelers use statistical tests to compare models with
data, it is difficult to find broad-based examples in regulatory modelsin which formal hypothesis testing
(e.g., testing that the means of two distributions are equal based on the p-value of some test statistic) has
played a substantial role in any model evaluation. What is needed is stati stically-sophisticated analysts
that can do non-standard statistical analyses appropriate for the individual circumstances. For example,
air quality modelers commonly present avariety of model performance statistics along with graphic
comparisons of model results with observations; these are sometimes compared with acceptability criteria
set by EPA for various applications.

Comparing Modelswith Data—M odel Calibration

Model calibration is the process of changing values of model input parameters within a physically
defensible range in an attempt to match the model to field observations within some acceptabl e criteria
Models often have a number of parameters whose values cannot be established in the model development
stage but must be “calibrated” during initial model testing. This need requires observations for conditions
that must broadly characterize the conditions for which the model will be used. Lack of characterization
of the conditions can result in amodel that is calibrated to a set of conditions that are not representative of
the range of conditions for which the model isintended. The calibration step can be linked with a
“validation” step where a portion of the observations are used to calibrate the model, and then the
calibrated model is run and results compared with the other portion of datato “validate” the model. The
typical criteria used for judging the quality of agreement is mean square error, or the average squared
difference between observed values and the values predicted by the model.

The issue of model calibration can be contentious. The calibration tradition isingrained in the
water resources field by groundwater, stream-flow, and water-quality modelers, whereas the practiceis
shunned by air-quality modelers. This practice is not merely a disagreement about terminology, but a
more fundamental difference of opinion about the relationship of models and measurement data, which is
explored in Box 4-3. However, it is clear that both fields, and modelersin general, accept a fundamental
role for measurement data to improve modeling. In this unifying view, model calibration is not just a
matter of fiddling about trying to find suitable best values of the coefficients (parameters) in the model.
Instead, calibration has to do with evaluating and quantifying the posterior uncertainty attached to the
model as afunction of the measured data, prior model uncertainty, and the uncertainty in the measured
data against which it has been reconciled (calibrated). Thisview isclearly Bayesian in spirit, using data
and prior knowledge to arrive at updated posterior expectations about a phenomenon, if not strictly soin
number-crunching, computational terms. It is the recognition of the fundamental codependence of
models and data from measurements that is common among all models.

One effect of the rejection of model calibration for regional air quality models is the idea that
model results are more appropriate for relative comparisons than for absolute estimates. EPA guidance
for the use of models for the attainment of ambient air quality standards (the attainment demonstration)
for 8-hour ozone and the fine-particle particul ate matter (PM) begins with the notion that model estimates
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will not predict perfectly the observed air quality at any given location at the present time and in the
future (EPA 2005). Thus, models for demonstrating whether emissions reduction strategies will result in
attainment demonstrations are recommended for usein arelative sense in concert with observed air
quality data. Such use essentially involves taking the ratio of future to present predicted air quality from
the models to develop aratio and then multiplying it by an “ambient” design value. The effect will be to
anchor future concentrations to “real” ambient values. If air quality models were calibrated to
observations, asis done with water quality models, there would be less need to use the model in arelative
sense.

EPA aso uses the concept that air quality models are imperfect predictors to argue for aweight-
of-evidence approach to attainment demonstrations. Under a weight-of-evidence approach, the results of
the air quality models are no longer the sole determining factor but rather one input that may include
trendsin ambient air quality and emissions observations and other information (EPA 2005).

BOX 4-3 To Cdlibrate or Not To Cdlibrate

In an ideal world, calibration of models would not be necessary, at least not if we view calibration merely
as the search for values of amodel’ s parameters that provide the best match of the model’ s behavior with that
observed of thereal system. It would not be necessary because the model would contain only parametersthat are
known to a high degree of accuracy. To be more pragmatic, but nonetheless somewhat philosophical, thereisa
debate about whether to calibrate amodel or not in the real world of environmental modeling. That debate centers
around two features: (1) the principle of engaging models with field datain alearning context during the
development of the model; and (2) the principle of using calibration for quantifying the levels of uncertainty
attached to the model’ s parameters, with aview to accounting for how that uncertainty propagates forwards with
predictions. The former lies within the conventional understanding and interpretation of what constitutes model
calibration. The latter requires a broader, but less familiar, interpretation of calibration. Taken together, calibration
can be seen to be something more than a“fiddler’s paradise,” in which the analyst seeks merely to fit the data, no
matter how absurd the resulting parameter estimates; and no matter the obvious risk of subsequently making
confident—but probably highly erroneous—predictions of future behavior, especially under conditions different
from those reflected in the data used for model calibration (Beck 1987).

The nub of the debate turns on the extent to which the analyst trusts the prior knowledge about the
individual components of the model, to which the parameters are attached, yet discounts the power of the calibration
data set—reflecting the collective effects of all the model’s parameters on observed behavior of the prototype, asa
whole—to overturn these presumptions. The debate also turns on the extent to which individual parameters can be
“measured” independently in the field or laboratory under tightly controlled conditions. The more thisisfeasible,
the less the need to calibrate the behavior of the model (asawhole). 1n thisargument, however, it must be
remembered that many parameters remain quantities that appear in presumed relationships, that is, mathematical
relationships or models between the observed quantities, so that the problem of calibrating the model asawholeis
transferred to calibrating the relationship between the observables to which each individual parameter is bound.
This may seem less of a problem when needing to substitute a value for soil porosity into a hydrological model. But
it issurely a problem when the need is to find a value for amaximal specific growth-rate constant for a bacterial
population, which is certainly not a quantity that can itself be directly measured.

Experience of model calibration and the stances taken on it differ from one discipline to another. In
hydrology and water quality modeling it is unsurprising how the wider interpretation and greater use of calibration
have become established practice. In spite of the relatively large volumes of hydrological field data customarily
available, experience over several decades has shown that hydrological and water quality models inevitably suffer
from alack of identifiability in that many combinations of parameter values will enable the model to match the data
reasonably well (Jakeman and Hornberger 1993; Beven 1996). Trying to find a best set of parameter values for the
model, even a best structure for the model, have come to be accepted as barely achievable goals at best. Ina
pragmatic, decision-support context, what matters—given uncertain models, uncertain data, and therefore uncertain
model forecasts—is whether any particular course of action (among the various options) manages to stand out
above the fog of uncertainty as clearly the preferred option. Under this view, the posterior parametric uncertainties
reflect the signature, or fingerprint, of al the distortions and uncertainties remaining in the model as aresult of
reconciling it with the field data. In a more theoretical context, interpretation of the patterns of such distortions and
uncertainties can serve the purpose of learning from having engaged the model systematically with the field data.

In other disciplines, such as modeling of air quality, calibration is viewed as a practice that should be
avoided at all costs. Inputs to these models include pollutant emissions (spatidly, temporally, and chemically
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resolved), three-dimensional meteorological fields (such as wind speed and direction, temperature, relative
humidity, sunlight intensity, clouds and rain, also temporally resolved). Air quality models also rely on awide
range of parameters used in the description of processes simulated by the models (such as turbulent dispersion
coefficients for atmospheric mixing, parameters for the dry and wet removal of pollutants, kinetic coefficients for
gas and aqueous-phase chemistry, mass transfer rate constants, and thermodynamic data for the partitioning of
pollutants among the different phases present in the atmosphere).

The need for the determination of al of these input values and parameters has resulted in a huge
investment in scientific research funded by EPA, state air pollution authorities (especially California), National
Science Foundation (NSF), and others to understand the corresponding processes and to develop model application-
independent approaches to estimate them. Further, complex regional meteorological models (such as MM5 and
RAMS), which are used for other applications, are used to simulate the meteorology of the atmosphere and provide
the corresponding input fields to the air quality models. Meteorological model s themselves take advantage of the
available measurements of wind speed, temperature, relative humidity, etc. in the domain that they simulate, to
improve their predictions. In atechnique called data assimilation the available measurements are used to “nudge’
the meteorological model predictions closer to the available measurements by adding forcing terms (proportional to
the difference between the model predictions and the observations) to the corresponding differential equations
solved by the model. This semi-empirical form of correction can maintain the meteorological model results close to
reality and improve the quality of the input provided to the air quality model. Thisform of calibration isinvolved
only in the preparation of the input to the air quality model and is independent of the air quality model, its
prediction, and the available air quality modeling.

The emission fields are prepared by corresponding emission models that incorporate the available
information about the activity levels (for example, traffic, fuel consumption by industries, population density, etc.)
and emission factors (emissions per unit of activity) for each source. Some of the best applications of air quality
models have been accompanied by field measurements of emissions during the model application period (for
example, transportation emissions in tunnelsin the area, characterization of major local sources, even use of
airplanes to characterize the plumes of major point sources, etc.). Boundary conditions are measured usually by
ground monitoring stations or airplanes in selected points close to the model boundary (for example, in San Nicolas
Island off the shore of Southern California). Laboratory (for example in smog chambers simulating the atmosphere)
and field experiments have been used to understand the corresponding processes and to provide the necessary
parameters.

One could argue that the historical lack of reliance on model calibration for the air quality area has resulted
in significant research to understand better the most important processes and in the development of approaches to
provide the necessary input. This has required a huge investment by US funding sources (the State of California,
EPA, NSF, etc.) but has also resulted in probably the most comprehensive modeling tools available for
environmental regulation. One could also argue that the atmosphere is a much easier medium to model (after all air
is the same everywhere) compared to soil, water, ecosystems, or the human body. However, the success of the
“let’stry to avoid calibration” philosophy may be a good example in the long term for other environmental
modeling areas.

In sum, there is nothing wrong with the healthy debate over calibration. Either way—whether calibration
is accepted practice or shunned—all agree that fitting amodel to past datais not an end in itself, but ameans: to the
end of learning something significant about the behavior of the real system; and to the end of faithfully reflecting
the ineluctable uncertainty in amodel.

Comparing M odelswith Data—Data Quality

Not all data are of equal quality. In addition to the usual issues of systematic and random
measurement errors, there is the issue that some “data” are the result of processing sensor information
through instrumentation a gorithms that are really modelsin their own right. Examplesinclude the post-
processing of raw information that is obtained from remote-sensing instruments (e.g. Henderson and
Lewis 1998) or from techniques used to separate total carbon in an airborne PM sample into inorganic
and organic carbon components (e.g., Chow et a. 2001). Thus, if the data and model output disagree, the
extent of disagreement that is due to the model used to convert raw measurements into the quantity of
interest must be considered. An additional and related difficulty with many data setsis that the standard
assumption of statistically independent measurement errors can be untrue, including for remotely sensed
data, greatly complicating model and measurement data comparisons.
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Comparing M odelswith Data—Temporal and Spatial | ssues

Even with data of impeccable quality, there are still many problemsin comparing them with
model output. One problem isthat data and model output are generally averages over different temporal
and spatial scales. For example, air pollution monitors produce an observation at a point, whereas output
from regional-scaled air quality models discussed earlier in the report produces at best averages over the
grid cellsused in the numerical solution of the governing partial differential equations. However, if for
no other reason than that the meteorological inputs into air pollution models will inevitably have errors at
small spatial scales, there is no expectation that the models would reproduce actual average pollution
levels over the grid cells, even if such an average could be observed. The models may do somewhat
better at reproducing averages over larger regions of space or over longer intervals of time than the
nominal observation frequency, and amodel that does well with such averages could reasonably be
judged as functioning well. Similar problems underlie many health assessments, such as when
pharmacokinetic models for one exposure scenario are compared with measurements from a different
exposure scenario or when data from laboratory rats exposed for 90 days are used to estimate human risks
from a continuous lifetime exposure. Even so, these dilemmas are the reason models are needed—it is
impossible to measure al events of interest.

There are two potential approaches that can address some of these spatial and temporal problems.
The collection of two or more measurements inside the same computational cell provides information on
the spatial variability of the pollutant of interest within agrid cell. However, monitoring is not always
available to obtain multiple samples within the same grid cell. For the temporal issue, the collection of
high temporal resolution measurements, including continuous measurements, can alow the comparison to
be performed at several different time-intervals. In this manner, amodel could be “stressed” to produce,
for example, diurnal profiles of the pollutant. Again, however, the availability of monitoring datais a
limiting factor.

Comparing M odelswith Data—Simulating Events Versus Long-Term Averages

An important issue is whether models are expected to reproduce observations on an event-by-
event basis. If the model is used for short-term assessment or forecasting, then such a capability would be
necessary. For example, when ng whether an urban storm-water control system would be
overwhelmed, resulting in the discharge of combined storm-water sewage into receiving waters, only a
single-event rainfall-runoff model might be required to treat each potential storm event individualy.
However, when the goal isto predict how the environment will change over the long term in response to
an EPA policy, such a capability is neither necessary nor sufficient. General circulation models used for
assessing climatic change may be an extreme example of models that cannot reproduce event-by-event
observations but are able to reproduce many of the statistical characteristics of climate over long-tern
scales.

Comparing Modelswith Data—Simulating Novel Conditions

The comparison of model and measured data under existing conditions, no matter how extensive,
provides only indirect evidence of how well amodel will do at predicting what will happen under novel
or post-regulatory conditions. Y et, this comparison is afundamental element of model evaluation and its
relevancy is perhaps the biggest challenge EPA faces in assessing the usefulness of its models. When
model results are to be extrapolated outside of conditions for which they have been evaluated, itis
important that they have the strongest possible theoretical basis, explicitly representing the processes that
will most affect outcomes in the new conditions to be modeled, and embodying the best possible
parameter estimates. For some models, such as for air dispersion models, it may be possible to compare
output with datain awide enough variety of circumstances to gain confidence that they will work well in
new settings. Satisfying all of these conditions, however, is not always possible, as the case of competing
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cancer potency dose-response models makes clear. Absent a solid understanding of underlying
mechanisms, the best model for doing such an extrapolation is a matter of debate.

There is the potential to test some types of modelsin cases where the system behaves differently,
such as when thereis a significant change in pollutant loads. Air pollution studies have indicated that air
quality models can be stressed by simulating special periods, such as the Christmas holidays, with itslow
traffic emissions and high wood burning; days with major power disruptions (for example, the blackouts
in the Northeast); or days when most people go on vacation (as in Europe). Pope (1989) provides an
example of the possible insights from developing a model under such novel conditions. This study used
epidemiological modeling to look at the reduction in hospital admissions for pneumonia, bronchitis, and
asthmathat occurred in the Utah Valley when amajor source of pollution, the local steel mill, was closed
for 13 months. The observation of a statistically significant reduction in hospita visits correlated to
reductionsin ambient PM concentrations helped to initiate a reassessment of ambient air quality standards
for this pollutant.

Comparing Modelswith Data—A Bayesian Approach

For models that are used frequently, a Bayesian approach might be considered to quantitatively
support model evaluation (Pascua 2004; Reckhow 2005). For example, prior uses of the model could
provide comparison of pre-implementation predictions of the success of an environmental management
strategy with post-implementation observations. Using Bayesian analysis, this“prior” could be combined
with a prediction-observation comparison for the site and topic of interest to evaluate the model as well as
improve the strategy.

Uncertainty Analysis

Formal uncertainty analysis provides model developers, decision makers, and others with an
assessment of the degree of confidence associated with model results as well as the aspects of the model
have the largest impacts on itsresults. As such, uncertainty analysis and related sensitivity analysisisa
critical aspect of model evaluation during model development and model application stages. The use of
formal qualitative and quantitative uncertainty analysisin environmental regulatory modeling is growing
in response to improvements in methods and computational abilities. It also isincreasing due to advice
from other National Research Council reports (e.g., NRC 2000, 2002), mandates from the Office of
Management and Budget (OMB 2003), and internal EPA guidance (e.g. EPA 1997b). Asshown in Box
4-4, there are a number of policy-related questions that can be informed through formal uncertainty
anaysis.

BOX 4-4 Questions of Interest to Decision Makers and Stakeholders That Can Be Informed by
Formal Uncertainty Analysis (Maodified from Frey 2004)

¢ How well do we know model results?
— What isthe precision of the estimates?
— Cantheinherent systematic error (bias) in the estimates be quantified using a bounding
analysis?
« How large or important are differences between two alternatives?
e How great are apparent trends over time?
* How effective are proposed control or management strategies?
*  What isthe key source of uncertainty in these numbers?
e How can uncertainty be reduced?
«  How might results change if one used a different model?
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However, aformal uncertainty analysis, in particular aformal quantitative uncertainty analysis, is
difficult to carry out for avariety of reasons. As noted by Mogan and Henrion (1990), “ The variety of
types and sources of uncertainty, along with the lack of agreed terminology, can generate considerable
confusion.” In the recent report Not a Sure Thing: Making Regulatory Choices Under Uncertainty,
Krupnick et a. (2006) noted the lack of a universal typology or taxonomy of uncertainty, making any
discussion of the topic of uncertainty analysis for regulatory models difficult. Thereisalso a concern that
uncertainty analysis can be difficult to incorporate into policy settings. Krupnick et al. (2006) concluded
that one unintended impact of an increased emphasis on uncertainty analysis may be a decreasein
decision makers confidencein the overall analysis. The SAB Regulatory Environmental Modeling
Guidance Review Panel (EPA 2006d) elaborates on the concern about using uncertainty analysisin the
policy process. Although the panel noted that evaluation of model uncertainty isimportant in both
understanding a system and in presenting results to decision makers, it raised the concern that the use of
increasingly complex quantitative uncertainty assessment techniques without an equally sophisticated
framework for decision making and communication may only increase management challenges. Further,
itisvery difficult to perform quantitative uncertainty analyses of complex models, such asregional air
quality models (N. Possiel, EPA Office of Air Quality Planning and Standards, personal commun., May
19, 2006). Asthese complex models are linked to other models, such as those in the state implementation
planning process discussed in Chapter 2, the difficultiesin performing quantitative uncertainty analysis
gresatly increases.

Defining Sour ces of Uncertainty

Although a single uniformly accepted method of categorizing uncertainties does not exist, several
general categorizations are clearly defined. Asnoted by Krupnick et a (2006), the literature distinguishes
variability from lack of knowledge and uncertainties in parameters from model uncertainties. Variability
represents the inherent heterogeneity that cannot be reduced through additional information, whereas
other aspects of parameter uncertainties might be reduced through more monitoring, observations, or
additional experiments. The distinction of model uncertainties from parameter uncertaintiesis also
critical. Model uncertainties represent situations in which it is unclear what all the relevant variables are
or what the functional relationships among them are. As noted by Morgan (2004), model uncertainty is
much more difficult to address than parameter uncertainty. Although identifying and accounting for the
consequences of model structural error and uncertainty has only recently become the subject of more
sustained and systematic research (Beck, 1987, 2005; Beven, 2005; Refsgaard et a. 2006), most analyses
that have considered the issue report that model uncertainty might have a much larger impact than
uncertainties associated with individual model parameters (Linkov and Burmistrov 2003; Koop and Tole,
2004; Bredehoeft 2005). Such structural errors amount to conceptual errorsin the model, so that if
identified at this stage of evaluating the constructed model, assessment should be cast back to
reevaluation of the conceptual model.

Krupnick et al. (2006) also identified two other sources of uncertainty important for regulatory
modeling: decision uncertainty and linguistic uncertainty. Asfirst observed by Finkel (1990), there are
uncertainties that arise whenever there is ambiguity or controversy about how to apply models or model
parameters to address questions that arise from social objectives that are not easy to quantify. |ssues that
fall into this category are the choice of discount rate and parameters that represent decisions about risk
tolerance and distributional effects. Uncertainties associated with language, although implicitly
qualitative, are important to consider due to the need to ultimately communicate results of a
computational model to decision makers, stakeholders, and the interested public. Asapplied to
computational models, sensitivity analysisis typically thought of as the quantification of changesin
model results as aresult of changes in individual model parameters. Itiscritical for determining what
parameters or processes have the greatest impacts on model results. Figure 4-2 displays the differing
interpretations associated with various descriptors that might be used to describe results from models.
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Sensitivity and Uncertainty Analysis

Sensitivity and uncertainty analyses are procedures that are frequently carried out during
development and application of models. Asapplied to computational models, sensitivity analysisis
typically thought of as the quantification of changesin model results as aresult of changes in individual
model parameters. The concept of sensitivity analysis has value in the model development phase to
establish model goals and examine the advantages and limitations of alternative algorithms. For example,
the definition of sensitivity analysis developed by EPA’s Council on Regulatory Environmental Models
(CREM) includes consideration of model formulation (EPA 2003c). The goal of a sensitivity analysisis
to judge input parameters, model agorithms, or model assumptions in terms of their effects on model
output. Sensitivity analyses can belocal or global. A local sensitivity analysisis used to examine the
effects of small changes in parameter values at some defined point in the range of these values. A global
sengitivity analysis quantifies the effects of variation in parameters over their entire space of these values.
When addressing global sensitivity, the effect of varying more than one parameter on the response must
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be considered. A common approach for ng sensitivity and uncertainty isto run the model multiple
times while slightly changing the inputs.

Quantitative uncertainty analysisis the determination of the variation or imprecision in the output
function based on the collective variation of the model inputs using a variety of methods, including
Monte Carlo analysis (EPA 1997b). In abroader perspective, uncertainty analysis examines awide range
of quantitative and qualitative factors that might cause a model’ s output valuesto vary. All models have
inherent capabilities and limitations. The limitations arise because models are simplifications of the real
system that they describe, and all assessments using the models are based on imperfect knowledge of
input parameters. Confronting the uncertainties in the constructed model requires a model performance
evaluation that (1) estimates the degree of uncertainty in the assessment based on the limitations of the
model and itsinputs, and (2) illustrates the relative value of increasing model complexity, of providing a
more explicit representation of uncertainties, or of assembling more data through field studies and
experimental analysis.

Model Uncertainty ver sus Parameter Uncertainty

Although a distinction between model uncertainty and parameter uncertainty istypically made,
there is an argument over whether there is indeed any fundamental distinction. In the sense that both
kinds of uncertainty can be handled through probabilistic or scenario analyses, the committee agrees, but
notes that this applies only to the uncertainty about the output of models. For assessing uncertainty in
model outputs, uncertainty about which model to use can be converted to uncertainty about a parameter
value by constructing a new model that is aweighted average of the competing models (e.g., Hammitt
1990). But theissue of selecting a set of models that captures the full space of outcomes and the choice
of weighting factorsis problematic. Therefore, the committee considers that there is aworthwhile
practical distinction between model and parameter uncertainty, if for no other reason than to emphasize
that model uncertainty might dwarf parameter uncertainty but can easily be overlooked. Thisis
particularly important in situations where models with alternative conceptual frameworks to the standard
model are too expensiveto run or do not even exist.

EVALUATION AT THE MODEL APPLICATION STAGE

A new set of practical considerations apply in moving from the development of a computational
model to the application of the model to aregulatory problem, including the need for specifying boundary
and initial conditions, developing input data for the specific setting, and generally getting the model
running correctly. These issues do not detract from the fundamental questions and trade-offsinvolved in
model evaluation. The evaluation will need to consider the degree to which the model is based on
generally accepted science and computational methods; whether the model fulfillsits designed task; and
how well its behavior approximates that observed in the system being modeled. For models that are
applied to a specific setting for which the model was devel oped, these questions should have been
addressed at the model development stage, particularly if the devel opers are the same group applying the
model. However, frequently models are applied by users who are not the developers or even in the same
institution as the developers. In many cases, model users might have a choice in the model to use and in
alternative modeling approaches. In these cases, model evaluation must address the same fundamental
considerations about the appropriateness of the model for the application and explicitly address the trade-
offs between the need for the model to get the right answer for the right reason and the need for the
modeling process to be transparent to stakeholders and the interested public. The discussion here focuses
on the evaluation of model applications using uncertainty analysis. Later in this chapter, we discuss other
elements of model evaluation relevant to this stage, including peer review and documentation of the
model history. Chapter 5 discusses issues related to model selection.
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Uncertainty Analysis at the Model Application Stage

At the model application stage, an uncertainty analysis examines awide range of quantitative and
qualitative factors that might cause a model’ s output values to vary. Effective strategies for representing
and communicating uncertainties are important at this stage. For many regulatory models, credibility is
enhanced by acknowledging and characterizing important sources of uncertainty. For many, it is possible
to quantify the effects of variability and uncertainty in input parameters on model predictions by using
error propagation methods discussed below. They should not be confused with or used in place of amore
comprehensive evaluation of uncertainties, including the consideration of model uncertainties and how
decision makers might be informed by uncertainty analysis and use the results.

The Role of Probability in Communicating Uncertainty

Realistic assessment of uncertainty in model outputsis central to the proper use of modelsin
decision making. Probability provides a useful framework for summarizing uncertainties and should be
used as a matter of course to quantify the uncertainty in model outputs used to support regulatory
decisions. A probabilistic uncertainty analysis may entail the basic task of propagating uncertaintiesin
inputs to uncertainties in outputs (which would commonly, although perhaps ambiguously, be called a
Monte Carlo analysis). Bayesian analysis, in which one or more sources of information are explicitly
used to update prior uncertainties through the use of Bayes' theorem, is another approach for uncertainty
analysis and is better, in principle, because it attempts to make use of all available informationin a
coherent fashion when computing the uncertainties of any model output. However, the committee
considers the use of probability to quantify all uncertainties to be problematic. The committee disagrees
with the notion that might be inferred from such statements as Gayer and Hahn's (2005): “We think
policy-makers should design regulations for controlling mercury emissions so that expected benefits
exceed expected costsif that statement is interpreted to mean that large-scale analyses of complex
environmental and human health effects should be reduced not only to a single probability distribution
but also to a single number, the mean of the distribution.” Although it is hard to argue with the principle
that regulations should do more good than harm, there are substantial problems in reducing the results of
alarge-scale study with many sources of uncertainty to a single number or even a single probability
distribution. We contend that such an approach draws the line between the role of analysts and the role of
policy makersin decision making at the wrong place. In particular, it may not be appropriate for analysts
to attach probability distributionsto critical quantities that are highly uncertain, especialy if the
uncertainty isitself difficult to assess. Further, the notion that reducing the results of alarge-scale
modeling analysisto a single number or distribution is at odds with one of the main themes that began
this chapter, that models are tools for helping make decisions and are not meant as vehicles for producing
decisions. In sounding a cautionary note about the difficulties of both carrying out and communicating
the results of probabilistic uncertainty analyses, we are trying to avoid the outcome of having models (and
a probabilistic uncertainty analysisis the output of a model) make decisions.

To see the difficulties that can result from this purely probabilistic approach to uncertainty
analysis, consider the following EPA study that, in response to an OMB requirement, treated uncertainties
probabilistically. In astudy on emissions from nonroad diesel engines, one of the key parameters
affecting the monetary value of possible regulations was the value assigned to a human life (EPA 2004b).
A probability distribution for this parameter was obtained using the following approach. The 5"
percentile of the value of a human life was set at $1 million, based on a study that had used this value as
the 25" percentile. The 95" percentile was set at $10 million, based on another study that had used this
value as the 75" percentile. Then, using “best professional judgment” (see Table 9B-1 in EPA 2004b), a
normal distribution was fit using the 5™ and 95™ percentile points, resulting in the mean value of a human
life being $5.5 million. The numbers $1 and $10 million are rough approximations at least in part due to
the decimal number system. Nevertheless, despite the arbitrary choice of highly rounded figures for the
5™ and 95™ percentiles, there is nothing preposterous about $5.5 million as an estimate of the value of a
human life (although there is something disconcerting about the fact that this distribution assigns a
probability of 0.0083 to the value of a human life being negative). However, the real problem hereis not



84 Prepublication Copy Modelsin Environmental Regulatory Decision Making

in the details of how this distribution was obtained, but that it was done with the goal of providing policy
makers with a single distribution for the net benefit of a new regulation. Though the committee does not
imply that such analysis arbitrary assigns values, monetizing such things as a human life or visibility in
the Grand Canyon clearly requires assessing what value some relevant population assigns to them. Thus,
it isimportant to draw the distinction between uncertainties in such valuations and, say, uncertainty in
how much lowering NO, emissions from automobiles will affect ozone levels at some location.

Another approach to uncertainty assessment is to calculate outcomes under afixed number of
plausible scenarios. If nothing in each scenario is treated as uncertain, then the outcomes will be fixed
numbers. For example, one might consider scenarios with such names as highly optimistic, optimistic,
neutral, pessimistic, or highly pessimistic. This approach makes no formal use of probability theory and
can be simpler to present to stakeholders who are not fully versed in probability theory and practice. One
advantage of the scenario approach isthat many of those involved in modeling activities, including
members of stakeholder groups and the public, may attached their own risk preference (such asrisk
seeking, risk adverse, or risk neutral) to such scenario descriptions. However, even using multiple
scenarios ranging from highly optimistic to highly pessimistic will not necessarily ensure that such
scenarios will bracket the true value.

In thinking about the use of probability in uncertainty analysis, it is not necessary or even
desirable to consider only the extremes of representing all uncertainties by using probability or by not
using probability at all. The assessment can have a hybrid approach using conditional distributionsin
which asmall number of key parameters having large, poorly characterized uncertainty are fixed at
various plausible levels and then probabilities are used to describe al other sources of uncertainty.

Toillustrate how conditional probability distributions can be used to describe the uncertainty in a
cost-benefit analysis, consider the following highly idealized problem. Suppose the economic costs of a
new regulation are known to be $5 billion with very little uncertainty. Furthermore, suppose that nearly
all of the benefit of the regulation will be through lives saved. Thus, to assess the monetized benefits of
the regulation, we need to know how many lives will be saved and what value to assign to each life.
Suppose that, based on athorough analysis of the available evidence, the uncertainty about the number of
lives saved by the regulation has a median of 1,000 and follows the distribution shown in Figure 4-3(a).
Furthermore, asin EPA (2004a), assume that the value of a human life follows a distribution with $1
million asits 5" percentile and $10 million asits 95™ percentile, but unlike the EPA study, we assume
that this distribution follows what is known as alognormal distribution (rather than a normal distribution),
which has the merit of assigning no probability to a human life having a negative value.

Thislognormal distribution is shown in Figure 4-3(b). If we further make the natural assumption
(see footnote) that the number of lives saved and the value of a human life can be treated as statistically
independent quantities, then it follows that the distribution of the net benefits of the regulation is given by
the distribution in Figure 4-4, which shows that the probability that the net benefit will be positiveis
slightly under one-fourth, and the expected net cost is approximately $630 million.

! Cost-benefit analyses are commonly full of (often unexamined) assumptions of statistical independence of various
guantities. In the present circumstance, one might try to argue that there is no plausible relationship between the
value judgment in monetizing a human life and the uncertainty in the number of lives saved by aregulation, and
therefore an assumption of statistical independence isjustified. However, depending on the nature of the
uncertainty oneis attempting to represent through probability, it is possible to envision substantial dependence
between the two quantities. In particular, suppose part of the evidence for the number of lives saved is based on
laboratory animal studies at high exposure levels and that the number of lives saved thus depends on how one
extrapolates from high to low doses and from animals to humans. If the probability distribution of net benefitsis
supposed to represent the diversity of personal judgments of a set of experts and if experts who tend to make
conservative assumptions about how to extrapolate results from animal studies also tend to assign ahigh valueto a
human life, the assumption of independence would be violated ,and that could have a significant impact on the cost-
benefit analysis.
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This conclusion is highly sensitive to the assumed difficulty of quantifying the value of a human
life. Instead of averaging over the distribution in Figure 4-3(b) for this value, cost-benefit analyses could
give the conditional distribution on different values. For example, Figure 4-5 gives the conditional
distribution of net benefits whether the value of a human lifeis set at $1 million or $10 million (it also
gives the unconditional distribution from Figure 4-4). It isnow seen that if the value of a human lifeis
set at $1 million, the probability that the regulation has a positive net benefit is essentially zero, whereas
if the value of ahuman lifeis set at $10 million, the probability of a positive net benefit is large (about
0.96), the expected net benefit being over $5.8 billion.

We contend that Figure 4-5 is a clear and important improvement of Figure 4-4. Free software
providing more sophisticated tools for visualizing conditional distributionsis available, for example, in
the lattice library for R (Murrell, 2006), or if interactive graphics are desirable, the program X Gobi
(Swayne et a. 2002) isavailable. Interactive graphics would allow the policy maker to choose values of
one or more key parameters and then view the conditional distribution of the net benefit given these
parameters. However, interactive computer programs are no substitute for human interaction, and the
committee strongly encourages extensive interaction between scientists and policy makers when policy
makers can ask various “what if" questions to help in their decision making.

To use this hybrid approach to uncertainty analysis, the user will have to decide which
uncertainties to average over (treat probabilistically) and which to condition on (consider some set of
fixed values). Although there cannot and should not be hard and fast rules on this matter, the committee
can offer some guidance. As already noted, quantities with large and poorly characterized uncertainties
are prime candidates for conditioning. Vaue judgments, such as the worth of a human life or of high
visibility at the Grand Canyon, may often fall into this category. Uncertainties about model choice are
another example of an uncertainty that should not be addressed using an expected value. For example, in

—  $1 million
--- $10 million
Averaged over distribution

Net benefit (billions of dollars)
For various levels of value of human life

FIGURE 4-5 Conditional distributions of net benefit assuming different amounts for the value of a
statistical life.
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extrapolating animal studies of toxicity at relatively high doses to much lower doses in humans,
conclusions may differ by large factors, depending on the assumptions made. Rather than attempt, viaa
Bayesian calculation, to average over a host of modelsthat all fit the data about equally well but result in
different conclusions about low-dose human toxicity, it may be better to give several possible conclusions
under varying assumptions on how to extrapol ate across species and doses.

In providing this guidance, it is not the committee’s intent to dismiss the considerable amount of
work done on monetization of value judgments, nor the work on Bayesian model averaging (Hoeting et
a. 1999). The committee is asserting, however, that policy makers should be informed of the impacts of
changing assumptions about highly uncertain parameters on an analysis, and the impacts should not be
buried in atechnical analysis.

In addition to the plots of conditional distributions, other summaries of the uncertainty analysis
should be given to decision makers. For example, distributions of quantities other than net benefit, such
asthose given in Figure 4-3, should be routinely included in the analysis.

Because most probabilistic uncertainty analyses, whether or not explicitly Bayesian, now would
calculate distributions of outcomes of interest by using simulations, another approach to conveying the
results of an uncertainty analysis would be to provide “typical” sample points from the simulation. For
example, terms such as “ optimistic” and “neutral” could be defined in terms of percentiles of the outcome
distribution. To be specific, suppose “highly pessimistic’ means the 5" percentile of the distribution of
net benefits, “pessimistic” the 25™ percentile, “neutral” the median, “optimistic” the 75™ percentile ,and
“highly optimistic” the 95" percentile. The user could then present atable of key inputs (or intermediate
outputs) for the sample points at those percentiles in the simulated distribution of net benefits.
Alternatively, summaries of the distributions of key inputs for various ranges of the net-benefit
distribution could be used. In effect, the distributions would be conditional of the inputs given the net
benefits rather than of the net benefits given certain inputs, as suggested above.

It might be argued that providing multiple summaries that include a combination of conditional
distributions, typical sample points, and distributions of intermediate outputs will be too much
information for policy makers. However, interviews conducted with former EPA decision makers on the
use of uncertainty analysisin regulatory decision making do not support this pessimistic assessment of the
guantitative literacy of environmental policy makers (Krupnick et al 2006). If the uncertainty assessment
is clearly presented, with succinct summaries of the major sources of uncertainty and their impacts on the
conclusions (including alist of any potential nontrivial sources of uncertainty that were not taken into
account), the committee considers that such an uncertainty analysis will help empower decision makers
and improve the decision-making process, especially if decision makers are included interactively in the
process of putting together the summaries of uncertainty.

Evaluation of Statistical M odels

As discussed in various places throughout this report, statistical models often might involve the
use of flexible regression models, for instance, using polynomials or splines to characterize the
relationship between an exposure and aresponse of interest. Statistical models are widely used to analyze
epidemiological data. Important considerations are adjusting for confounders, handling missing data,
accounting for study design, and so forth; therefore, assessing the adequacy of statistical models may
involve a complex set of considerations quite distinct from many of the other modeling settings discussed
elsewherein this chapter. Whereas assessing the adequacy of a process-based model, such as a mass-
balance model for indoor air pollution, relies on general theory, epidemiological modelstend to be
speciaized and tailored to the specific context at hand and cannot be assessed in the abstract. I1n contrast
to many process-based models, technical aspects of epidemiological models may be ssmple—for example,
relying on simple linear or logistic regression models. For such models, the model development and
model application stages are the same.

The challenge, however, isin making sure that al the appropriate information has been
incorporated in an adequate manner. For example, has the study design been appropriately reflected in
the analysis? If the study population represents a probability-based sample, then it may be important to
include sampling weightsin the analysis before generalizing results to the full population. Data quality is
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another important consideration. For instance, if exposure assessment is subject to measurement error, it
may be important to adjust for that to avoid bias associated with the error. A critical issue concerns
whether the appropriate covariates have been identified so that potential confounding can be tested for
and adjusted for. Missing data are an inevitable challenge in even the most well-run epidemiological
study, so it isimportant to assess the impact of missing data, from the loss through the follow-up, to
ensure that the analysis is not subject to bias. From amore technical perspective, it isimportant to ask
whether the modeling assumptions are appropriate and whether the chosen model fits the observed data
reasonably well. This question might involve assessment of the appropriateness of any linearity
assumptions (testing for outliers, for example) and might be assessed by looking at residuals and applying
goodness-of-fit tests. Were the appropriate steps taken to identify all the appropriate confounders? Was
the method of covariate selection documented? Were covariates incorporated into the model in an
appropriate way? If covariates are measured on a continuum, were nonlinearities tested for? Equally
important is the question of how the primary exposure of interest was included in the dose-response
model. Good model assessment and exploration include considerations of alternatives to the shape of the
dose-response curve, exploration of possible lag effects, and so forth. Sensitivity analysisin general isa
powerful and highly recommended strategy for ensuring that results are not driven by one or two key
assumptions. Findly, it isimportant to be sure that the statistical software being used is numerically
stable and reliable.

There is amuch literature on residuals analysis and goodness-of fit-analysis for statistical models,
and there are anumber of popular approaches. One technical concern to be aware of isthat caution is
needed when assessing model adequacy and goodness of fit using the same data as those used as the basis
for fitting the model. There are a number of ways to address this concern. The Akaike information
criterion (AIC) and the Bayesian information criterion (BIC) correspond to the estimated log-likelihood
plus an additional penalty term that reflects the number of parametersin the model. Both AIC and BIC
approaches are popular for assessing goodness of fit and represent the differences between frequentist and
Bayesian statistical methods. Formal Bayesian approaches are also possible, of course, in which case
examination of posterior and predictive distributions play an important role in model assessment. Ideally,
models would be checked against new, independent data. However, thisis not always possible.

MANAGEMENT OF THE EVALUATION PROCESS

This section addresses practices for managing the evaluation process. The life cycle of amodel
can be complex for any single model and immensely difficult when the full range of EPA regulatory
models are considered. Thus, the committee offers overarching principles for management of the
evaluation process. At its core, the committee sees the need for a strategy for model evaluation (a model
evaluation plan) and a description of the model’ s historical development, use, and evaluation to follow a
model throughout its life stages. This recommendation is not intended to be a bureaucratic exercise that
relies on extensive documentation. Some model evaluation plans and histories for simple models may be
limited. The goal to achieve is a substantive commitment from the agency to ensure that model
evaluation continues throughout a model’slife. Thisgoal raises the organizational question of
accountability and responsibility for such efforts. The committee does not presume to make
organizational recommendations, nor does it recommend the level of effort that should be expended on
any particular type of evaluation. Because of the great diversity of models, no single approach is likely to
be viable. However, EPA needs some mechanism that audits the process to make sure that (1) thereisa
life-cycle model evaluation plan, (2) there are resources to carry out the evaluation and pay the true costs,
(3) the EPA modelers respond to peer reviews, and (3) they follow through in both completing the actions
reguested in the peer review and in continuing the peer review process. The crucial element isthat the
process should be a means to an end, namely, amodel fit for its purpose and not an end in itself.

The Use of Model Evaluation to Establish Model Acceptability Criteria

The committee discussed the merits of providing a uniform set of scientific and technical
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acceptability criteriaapplicable to all regulatory models. It became clear that the range of model types
and model applications at a regulatory agency such as EPA will not work under an over-arching set of
acceptability criteriaexcept for the requirement that each model be based on methods, science, and
assumptions that the agency accepts as appropriate. The committee found that no one had yet established
such criteria, although work on this topic by the Netherlands National Institute for Public Health and the
Environment (RIVM) has been done and is described at the end of this section. Even if such criteriawere
available, they might well not be applicable to the many and varied settings of EPA’s use of models. In
addition, there is an intangible policy context to any choice about the acceptability of amodel for a given
regulatory setting. Resources, public and stakeholder buy-ins, and other factors can play arole.
Regulations are never tied to model capabilities, so there is often an imperfect correlation between model
capabilities and regulatory needs.

Acknowledging that this areais a matter for further substantial research, the committee
considered what combination of scientific and technical factors and process steps should be considered in
developing model acceptability and application criteria. The factors are the following:

Scientific pedigree

Model structure and components
Model capabilities and limitations
Inputs and outputs

Applicable space and time scales
Applicable substances

Key sengitivities and uncertainties
Model performance evaluation
Parsimony

Peer review

The committee notes that information on these factors should arise from the model evaluation
process, it forming the basis for setting acceptability and applicability criteria for specific models and
specific model applications. How the above factors are addressed in the model evaluation plan will vary
among different model types. The committee envisions that the acceptability and applicability criteriabe
presented either within the model evaluation plan or in a separate document on the basis of information
provided about the factors. We consider below explicit examples of what several of these factors mean
and how they relate to acceptability and applicability.

Scientific Pedigree. “Scientific pedigree” is a shorthand term for considering the fundamental
science that forms the basis of the conceptual model. The scientific pedigree considers the origin and the
quality of the concepts and theories behind the model and each of its constituent parts (Funtowicz and
Ravetz 1990). Over the years, the fundamental scientific and other understandings that are used in
constructing models have been consolidated and refined to produce—at maturity—a product with a
pedigree. The merit in the scientific pedigree concept isthat it is applicable, in principle, at various
levels, from assessments of an integrated suite of models to its major subblocks (such as atmospheric
chemistry and human toxicology) and down to the details of the parameters characterizing the
mathematical expression of individual processes.

Model Structure and Components. Those who evaluate the acceptability of a model for agiven
purpose should see adiagram and brief description of the major components of the model. At one
extreme, amodel may have multiple models (such as source, transport, exposure, dose, risk, and
uncertainty models) linked by managing software. Here, adiagram and a summary of structure and
components are essential for judging acceptability and applicability. For example, if an atmospheric
transport model is linked to a soil model and a surface-water model, it isimportant to know how the
intermedia transfers from air to soil and air to water are managed, that is, in one or two directions. This
information could determine acceptability for specific classes of pollutants. Another example is a one-
box pond model that is applicable and acceptable for representing a small surface-water body but might
not be applicable and acceptable for representing one of the Great L akes, where there are potentially
distinct subregions within the water body. A third exampleis regiona mass-balance models designed to
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capture the chemical mass balance for aggregated sources over alarge space and time scales but are not
designed to capture detailed source-receptor relationships.

Model Capabilities and Limitations. The model evaluation plan should clearly distinguish the
capabilities and limitations of amodel. For example it will usually be important to identify whether a
transport model can handle organic chemicals, inorganic chemicals, or micro-organisms; whether an
economic impact model is macro or micro initslevel of resolution; or whether an exposure model works
for the short term (minutes to hours) or the long term (days to years). Another example iswhen an air
dispersion model is used to assess how pollutant emissions trandate to concentrations downwind from a
source. Thistype of model is acceptable for modeling the transport of stack emissions but may not be
acceptable for modeling such conditions as pesticide drift from field applications or for estimating
exposure when the receptor population isindoors or moving in ways that are not captured in the model.
Among the issues that should be covered in a statement of capabilities and limitations are the inputs
reguired to run the model, the outputs provided by the model, the space and time scales for which the
model applies, the types of substances that the model can address, and a discussion of key sensitivities
and uncertainties.

Model Performance Evaluation. It isdifficult to imagine that a model is acceptable for a
regulatory application without some level of performance evaluation showing that the model matches
field observations or at least that its results match the results of another well-established model.
Acceptability will to some extent be proportional to the level of performance evaluation. Ideally but
rarely, amodel will be corroborated using one or more independent sets of field data similarly matched to
the model's operating domain. Model-to-model comparisons are useful adjunctsto corroboration and in
some cases may be sufficient to establish acceptability in the absence of any relevant field data for model
comparison.

Parsimony. In light of its recommendation on parsimony, the committee notes that acceptability
and applicability decisions need information about parsimony. For those who must select an appropriate
model, it isimportant to know if and how the model developers addressed the issue of parsimony. In
particular, did they start with ahigh level of detail and reduce detail so long asit had no impact on the
model or start with asimple model and add detail to meet performance criteriafor “validation” and
calibration? What type of sensitivity analysis was used to make this determination? Thereis also
substantial literature in related fields that bears on the issue of how much precision or accuracy is needed
to inform regulatory decisions. Inlaw, thisliterature isreferred to as the “optimal precision” literature
(e.g., Diver 1983). In economics and risk assessment, the issueis referred to as the “value of
information” or VOI approach (Finkel and Evans 1987). Interms of VOI, the choice to make models
more detailed depends on the degree to which the more elaborate models are judged likely to improve
policy outcomes and on the costs of developing and transitioning to more detailed models. In the
committee's view, this choice should al so include the impact of any loss of transparency.

Peer Review. In most cases, peer review is essential for acceptability, but the level of peer review
depends on the nature of the model and its application. Peer review isalso useful for providing details on
model applicability. The peer review process can aso be used to gather information on other factors
discussed here to make a determination of model acceptability and applicability.

Asafina point, the model evaluation plan created when the model was devel oped or the peer
review process should provide some statement about when an accepted model is no longer acceptable or
in need of updates. Some examples of events that make models no longer acceptable are (1) the model
has been shown to produce erroneous results (fal se positives or false negatives) in important regulatory
applications; (2) alternative approaches with higher reliability are available and can be devel oped without
unreasonable costs, including transition costs; and (3) key inputs required by the model are found to be
incorrect or out of date—for example, demographic data that are 30 years old and no longer updated.

An example of a systematic approach to scientific and technical acceptability criteriafor scientific
assessments, including those based on environmental modeling, is shown in the activities of the RIVM
Environmental Assessment Agency (RIVM/MNP) in its* Guidance for Uncertainty Assessment and
Communication” (www.nusap.net). RIVM/MNP' s guidance extends beyond the quantitative assessment
of uncertaintiesin model results to focus on the entire process of environmental assessment. The
guidance is composed of a series of interrelated tools, including a mini-checklist and a Quickscan
guestionnaire that asks analystsin a concise set of questionsto reflect explicitly on how the assessment
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deals with issues related to problem framing, stakeholder participation, selection of indicators, appraisal

of the knowledge base, mapping and assessment of relevant uncertainties, and reporting of the uncertainty
information (Janssen et al. 2005). Other tools available include a detailed guidance document and a tool
catalogue for uncertainty assessment (Sluijs et al. 2003, 2004). Underlying the checklist is the philosophy
that thereis no single metric for ng model performance, thereis no typically “correct” model, and
models need to be assessed in relation to particular functions. This philosophy echoes thisreport’s
discussion of models astools. The checklist offers modelers a systematic self-evaluation that should
provide some guidance on how the modelers are devel oping the model. It should also help to determine
where and why problems may occur (Risbey et a. 2005).

Developing a M odel Evaluation Plan

Asdiscussed earlier in this chapter, model evaluation is a multifaceted activity involving peer
review, corroboration of results with data and other information, QA/QC checks, uncertainty and
sengitivity analyses, and other activities. Viewed in thisway, model evaluation is not a one-time event.
Even when amodel has been thoroughly evaluated and peer reviewed, new scientific findings may raise
new questions about model quality, or new applications may not have been anticipated when the model
was originally developed. Further, no two model evaluation plan will be alike. A plan should focus on
the bigger picture—that model evaluation is intended to address the appropriateness of a given model for
agiven application and aid in amodel’ simprovement. This plan and the resources devoted to model
evaluation should be commensurate with the scope, detail, and regulatory impacts of the model (for
example, the scientific complexity, a new application of an existing model, and the likelihood of an
application’sinfluence). This plan might evolve with time and experience, especially for long-lived
models.

Such a plan could help address a critical shortcoming with regulatory model evaluation. A
random sampling of the modelslisted in the CREM model database shows that most EPA models provide
only limited information on model evaluation, and almost none of the models provide amodel evaluation
plan. Thus, thereistypically no consideration of how long-term model evaluation will occur throughout
amodel life stages. Under the heading “Model Evaluation” in the CREM database, most model s present
individual statements, such as

e “Currently undergoing beta-testing and model evaluation ....”

o “Code verification, sensitivity analysis, and qualitative and quantitative uncertainty analysis have
been performed. The model has been internally and externally peer reviewed.”

e “The program and user’s manual were internally peer reviewed ...."

e “Themodel and user's manual were externally peer reviewed by outside peer reviewers and beta
testers. The comments from these testers were reviewed by EPA's Office of Research and
Development ....”

Some models have been subjected to more extensive model evaluation exercises, and at least one
has followed through on amodel evaluation plan. To gain someinsight on how to develop and carry out
amodel evaluation plan, we consider two examples of models with implicit and explicit model evaluation
plans—CMAQ and TRIM.FaTE. CMAQ, the community multiscale air quality modeling system, which
is discussed in previous chapters, has been designed to approach air quality in an integrated fashion by
including state-of-the-science capabilities for modeling multiple air quality issues, including tropospheric
ozone, fine particles, toxics, acid deposition, and visibility degradation. TRIM.FaTE isaspatially
explicit, compartmental mass-balance model that describes the movement and transformation of
pollutants over time through a user-defined, bounded system that includes biotic and abiotic
compartments (EPA 2003e). The extensive documentation on CMAQ includes discussions on the need
for and approaches to model evaluation. For example, at one CMAQ workshop, Gilliland (2003) outlined
the elements of the CMAQ model evaluation plan. However, the CMAQ web siteand CMAQ
documentation does not demonstrate an overall evaluation plan. Although it is clear that a number of
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model evaluations are performed with CMAQ), they typically seem to be directed toward a single aspect
or application of the model. It isdifficult to see how the plan’s activities were conceived, conducted, and
fit into an overall scheme. In contrast to CMAQ (and most other EPA models), the TRIM.FaTE model
project includes an explicit model evaluation planinitsinitial documentation and in follow-up reports on
its website (EPA 2006k). The plan identifies the goals and elements of the model evaluation, including
conceptual model evaluation, mechanistic model evaluation, data quality evaluation, structural evaluation,
and overall performance evaluation. For each of those elements, the model developers provide details on
planned activities and the results of activities that have been carried out. The developers follow up with
subsequent model evaluation reports that provide results from each of the elements. For the committee,
the TRIM.FaTE model evaluation plan and its execution provides a useful example for how to prepare,
conduct, and communicate a model evaluation plan for amodel of this complexity and scope. It
represents a base-case approach to the type of evaluation plan contemplated in thisreport. Box 4-5
discusses an additional example of life-cycle evaluation for model s assessing the persistence and long-
range transport of organic chemicals.

The committee recognizes the burden that could be placed on model devel opers to conceive and
audit amodel evaluation plan. However, the evaluation plan does not have to be alengthy report. For
simple models, it can be a page or two. The following are key elements of the model evaluation plan:

o Anevauation plan for the life cycle of the model that is commensurate with the nature of the
model (for example, scientific complexity, new model or application of an existing model, the likelihood
of an application’s being influential).

e Describe the model (in general) and explain its intended uses.

e Useathematic structure or diagram to summarize al the elements of the evaluation plan—in
particular, the elements that will be used in different stages of model development and application
(elements such as the conceptual model, data, model testing, and model application).

o Discussthe events that could trigger a need for major model revisions or that make the model
obsolete. This discussion should be specific to the model in question and could be fairly broad and
gualitative, such as discussing new science that makes a current model outdated, new regulations, and
substantial errors uncovered. The plan should provide criteria to differentiate the need to make arevision
of substance rather than to expend resources unnecessarily on continual minor changes. The list of events
triggering the need for a major model revision or that might render a model obsolete should itself be
periodically updated.

o Specifically identify responsibilities, accountabilities, and resources (for example, staff time,
consultant time, and funding) needed to accomplish elements of the plan.

Mode History

Models can be developed and applied over many years. During thistime, alarge number of
people could be involved in various aspects of a model’ s development, evaluation, and application. Many
of these people may contribute to or have a specific interest in relatively few elements of this process.
Thislife history of the model can be lost if experiences with amodel are not documented and archived.
Without an adequate record, a model may be applied incorrectly, or activities may be undertaken that are
repetitive or ignorant of earlier efforts. For example, an expert peer reviewer of amodel application
needs to understand the full history of the model’s evaluation. Has another reviewer evaluated the
mathematical algorithmsin the original development phase? Has another expert determined that the
databases used to develop the model are appropriate? What is the range of environmental parameters for
which the model is reasonably accurate and does the new application fall within those parameters? Thus,
keeping such amodel’s history is essential for effective model use. Maintaining a history of significant
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BOX 4-5 Life-Cycle Evaluation of Models for Assessing Persistence and
Long-Range Transport Potential

As discussed in the text, the EPA model TRIM.FaTE and the model CMAQ are examples of models that
have been subjected to more extensive model evaluation exercises that were initiated early in the model
development and continue through to the model dissemination stage. Another example that showsthe valuein
evaluating a model from conceptua through use stages is the work of the Organization for Economic Cooperation
and Development (OECD) to develop a screening model for assessing the persistence and long-range transport
potential of chemicals. The goal of this effort was a consensus model that was evaluated against a broad set of
available models and data. The evaluation process began at a workshop in 2001 where the model performance and
evaluation goals were set before model selection and devel opment began (OECD 2002). To act upon the
recommendations, an OECD expert group was established in 2002. This group published a guidance document on
the use of multimedia models for estimating environmental persistence and long-range transport. From 2003 to
2004, the expert group performed an extensive comparison of nine available multimedia fate and transport models
to compare and assess their performance (Fenner et a. 2005; Klansmeier et al. 2006). Following this effort, the
expert group developed a parsimonious consensus model representing the minimum set of key model components
identified in the model comparison. The expert group then convened three international workshops to disseminate
this consensus model and provide an on-going model evaluation forum (Scheringer et a. 2006). In this example,
significant effort was invested (more than half of the total effort in the OECD case) in the conceptual and model
formulation stages. Moreover, much of this effort focused on performance evaluation. The committee recognizes
that each model’s life cycle is different but notes that attention should be given to devel oping consensus-based
approachesin the model concept and formulation stages. Conducting concurrent evaluations at these stagesin this
setting resulted in a high degree of buy-in from the various modeling groups.

events regarding the model and a documentation of the model history would support transparency
objectives and help modelers use and improve a model long after the original devel opers are gone and the
verbal history islost. Such ahistory could include the purpose of the model, major assumptions and
modifications, and the history of its use and evaluation.

Peer Review

Peer review is the time-honored way to improve the quality of a scientific product. Expertsin the
field are the only ones with the capabilities of evaluating highly technical material. Even then, experts
may require additional analyses or material to perform arigorous review. Also, apeer review isonly
useful if the reviewers comments are considered and used appropriately to revise the model. The
regulatory environment model setting also makes peer review fundamentally different from the review of
other scientific products that do not have regulatory applications (Jasanoff 1990; 2004). These
complexities are key reasons why amodel evaluation plan and why arecord of the model’slife history
are needed.

The tradition of one-time peer review for modelsis essential but not sufficient. Having
knowledgeabl e peers review the conceptual model could help to identify important issues related to
transparency, such as how to explain the model and how to present the results, and whether the scope and
impacts considered within the conceptual model are consistent with the regulatory problem at hand. It
also could be helpful for models with large regulatory impacts or complex scientific issuesto have a
periodic peer review or peer advisory process in which the peers interact with the model devel opers and
users throughout the model’ slife. Asnoted in EPA’s most recent version of its peer review guidance, the
agency is beginning to appreciate that obtaining peer review earlier in the development of scientific
products might be desirable (EPA 2006a). The agency is also recognizing that multiple peer review
events also might be useful, particularly when the work product involves complex tasks, has decision
branching points, or is expected to produce controversia findings (EPA 2006a).

Although OMB encourages agencies to have peer reviewers run the models and examine the
computer code (Schwab 2004), resources provided to reviewers are usually limited, and individual
reviewers typically cannot do extensive testing or code verification. However, adequate peer review of a
model may involve reviewers running the model results against known test cases, reviewing the model
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code, and running the model for an array of problems. It also may demand particular attention to the
intended applications of amodel, because a model that is well-suited for one purpose at one time may not
be appropriate for another purpose at that time or the same purpose at a different time.

A peer review is so basic to model quality and its acceptance that it must be excellent in
substance, as well as appearance. Therefore, careful attention must be given to the three foundations of
selecting peer reviewers: scientific qualifications, conflicts of interest, and balance of bias. These issues
are explained in some detail by EPA (EPA 2006a). All reviewers must be, without exception, scientific
peers. They should be free of conflicts of interest (for example, the result of the review should not have a
direct and predictable impact on the finances of the reviewer), and if that is not possible on rare occasions,
they should be publicly justified and explicitly permitted by appropriate agency authorities. After the first
two requirements for selecting peer reviewers are met, the peer review committee biases must be
balanced. Biases cannot be eliminated because they are based on the experts' perspectives, but a peer
review committee should not be biased in any given direction. Finally, ahigh-quality peer review isthe
result of EPA’s commitment to the overall model evaluation process. More attention should be paid to
providing sufficient time and material to the peer reviewers to enable them to fulfill a well-developed
charge.

Adequate peer review of amodel, especialy avery complex model or amodel that has a
substantial impact on environmental regulations, may involve reviewers running the model results against
known test cases, reviewing the model code, and running the model for an array of problems. Itis
unreasonable to expect such peer reviews to be done without compensation. To obtain such an in-depth
peer review, the committee sees the need for support in the form of compensation and perhaps in running
the model for conditions that the reviewers specify. The committee considers such peer review to be part
of the cost of building and using models, especially models with alarge impact on regulatory activities.

Stakeholder Review

Seeking involvement of stakeholders is sometimes seen as merely alegal requirement, which it
often is, but a more flexible attitude may take greater advantage of this required process. Fundamentally,
stakeholder review helps addresses the social, legal, financial, and political contexts of the designated
task. Stakeholders may have information or perspectives that can help guide the process. All of those
legitimately holding a stake in the outcome of the process of evaluation will not share the same
formulation of the policy problem; nor, given widely differing attitudes toward risk, will they all cometo
the same conclusion or judgment, even under an identical formulation. The groups involved in the
environmental regulatory process can be risk takers, risk averse, and risk managing, to name but three
classes of perspective (Thompson, 1989). They can be knowledgeable in a classic scientific sense, such
as when an affected party has or hires experts, or in arealistic sense, such as when members of the public
identify an exposure pathway that was not identified by the experts. These various groups can participate
in the model evaluation process through various activities, including producing their own supporting or
conflicting model results and challenging the legitimacy or accuracy of a model in public comments or
judicial actions. However, to engage stakeholders fully in model evaluation, decision makers must
understand the financial, legal, and political risks attached to the outcomes of the regulatory activities (for
which the model has been designed); the cultural attitudes of the various stakeholders toward those risks;
the ways that stakeholders might use to manipulate the task context; and the extent to which various
stakeholders trust the process of model evaluation. Although the committee recognizes that encouraging
stakeholder participation adds to the complexity of model evaluation, their involvement may result in a
more transparent or more robust model.

Vigorously involving the general public is possible, as demonstrated in agency modeling
activities that are site-specific. In designing cleanup plans for Superfund sites, for example, EPA not only
must solicit the community’ s input but also must often convene multiple interviews and educational
meetings to provide the community with a sufficient opportunity to respond to agency risk assessments
and cleanup proposals (for example, see National Contingency Plan, 40 CFR § 300.430[c])? Given the

2 This document describes community relations requirements for remedial actions.
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local impacts of these model-based regulatory decisions, the general public can invest considerable
resources in overseeing the quality of EPA’s cleanup models and can even obtain grantsto hire technical
expertsto review EPA’ s technical assessments (40 CFR, Part 35, Subpart M [Technical Assistance
Grants]). Even though the mandatory public participation requirements are relatively similar for diffuse,
national issues, the level of involvement by the general public can increase dramatically asthe agency’s
decisions become localized and specific to a particular community.

The special needs of stakeholders should to be considered. Time for review can be abarrier. As
mentioned above, stakeholders can have perspectives useful to those involved in the model evaluation
process, but they must have time to develop such comments and transmit them to the peer reviewers to be
effective. Special attention must be paid to involve stakeholders because most are not technically expert.
Some groups may have the scientific staff or the budget to hire consultants to perform model review and
often do so from their own perspectives. In contrast, other smaller organizations (for example, small
businesses and small environmental advocacy groups) and the general public do not have the resources to
comment on regulatory actions that may have a substantial impact on them. Such organizations and
individuals must rely on the process to inform them and make recommendations that will protect their
interests. However, these processes are typically not at all clear to these individuals and groups.

Thus, buy-in by some stakeholders and the general public may be based on trust of the model
evaluation process rather than on the results of the process. Making progress in achieving meaningful
peer review of science and models pertaining to regulation may depend more on having stakeholders
agree in advance on appropriate methods and eval uation protocol s than on subsequent (conventional)
scientific peer review. Establishing and demonstrating the reliability and credibility of the peer review
processitself is every bit as crucial as the conventional challenge of establishing the reliability and
credibility of the information. Dealing effectively with stakeholders and the general public can have
collateral benefits. Process transparency may enhance buy-in by stakeholders and the general public,
especialy if the regulation affects their behaviors, and later by the courts, if challenges are brought
against aregulation.

Learning from Prior Experiences—Retr ospective Analyses of M odels

Thefinal issue in managing the model evaluation process is management of the learning that is
developed through the examination of prior modeling experiences. Retrospective analysis of modelsis
important for developing improvements to individual models and regulatory policies aswell as
systematically enhancing the overall modeling field. There have been many examples of retrospective
analysis of particular environmental modeling activities. Box 4-6 describes three such examples.
However, even with the widespread use of models at EPA, there has been little attempt to generalize prior
experiences with models and classes of models into systematic improvements for the future. One reason
may be the reluctance by the agency to disclose errors, criticisms, and shortcomings in the adversarial and
legally constrained setting that environmental regulatory modeling activities often occur. The discussion
of groundwater model retrospective analysis of Bredehoeft (2003, 2005) demonstrates that generalizing
prior experiences with models does not necessarily imply the commitment of agreat deal of modeling
resources but possibly does imply the use of the experiences of veteran modelers to provide insights.

The committee has considered the value of retrospective studies as acritical part of model
evaluation from two primary perspectives. The first perspective is broad. It concerns the retrospective
evaluation of classes of models—for example, models of groundwater flow, surface water, air pollution,
and health risks assessment. The goal of such an approach would be to investigate whether there are
systematic weaknesses that are characteristic of various types of models. For example, based on
modeling experiencesin his past work and work described by other hydrogeol ogists, Bredehoeft (2003,
2005) estimated that in 20-30% of groundwater modeling efforts, surprising occurrences indicated that
the conceptual models underlying the computer models were invalid.
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BOX 4-6 Retrospective Analysis of Model Predictions

Retrospective analysis of environmental regulatory models often occurs when particular model predictions
are later compared to measurements or results from other models. Examples include comparisons of estimates of
regional light-duty-vehicle emissions and the effectiveness of emission-control policies with those predicted by the
MOBILE model, an assessment of an air quality model's ability to simulate the change in pollutant concentrations
associated with a known change in emissions, and comparisons of groundwater conditions and containment
transport with those predicted by groundwater models.

Light-duty-vehicle emissions inventories are important for awide range of air quality management
activities, including serving asinputsto air quality models as well as direct indicators of the performance of
emissions control policies. For regulatory activities outside of California, the MOBILE model is used for regulatory
purposes. Methods that have been used for retrospective assessments of MOBILE' s vehicle emission estimates
include remote sensing of vehicle exhaust emissions, direct emissions measurement at vehicle emissions inspection
and maintenance (/M) stations and other facilities; the use of fuel salesto model emissions; and measured
concentrations of air pollutions, both in ambient air or in tunnels, to infer emissions (e.g., Stedman 1989; Fugita et
al. 1992; Gertler et a. 1997; Singer and Harley 2000; Watson et a. 2001; NARSTO 2004). A recent NARSTO
report on emissions inventories found significant improvements over the past decade in the correspondence of
model predictions and observations of on-road emissions inventories, but with significant shortcomings remaining
(NARSTO 2005). One particular issue related to MOBILE' s estimates of control program effectiveness that has
gathered much interest is the comparison of modeled estimates of the benefits of I/M programs in reducing
emissions to those estimated through remote sensing and other techniques (Lawson 1993; Stedman et al. 1997; Air
Improvement Resources 1999; CARB 2000a; Wenzel 2001). An NRC study of I/M programs concluded that an
earlier version of the MOBILE model overestimated emissions benefits (MOBILE5), though the most recent version
of the model (MOBILES) has reduced estimated I/M benefits (NRC 2001a; Holmes and Cicerone 2002).

EPA’s Model Evaluation and Applications Research Branch is currently performing a retrospective
analysis of the CMAQ model’ s ability to simulate the change in a pollutant associated with a known change in
emissions (A. Gilliland, EPA, personal commun., May 19, 2006 and March 5, 2007). This study, which EPA terms
a“dynamic evaluation” study, focuses on aruleissues by EPA in 1998 that required 22 states and the District of
Columbiato submit State |mplementation Plans providing NO, emission reductions to mitigate ozone transport in
the eastern United States. Thisrule, know as the NO, SIP Call, requires emission reductions from the utility sector
and large industrial boilersin the eastern and midwestern United States by 2004. Since theses sources are equipped
with continuous emission monitor systems, the NO, SIP call represents a special opportunity to directly measure the
emission changes and incorporate them into model simulations with reasonable confidence. Air quality model
simulations were developed for summers 2002 and 2004 using the CMAQ model, and the resulting ozone
predictions were compared to observed ozone concentrations. Two series of CMAQ simulations have been
developed to test two different chemical mechanismsin CMAQ to consider model uncertainty that is associated
with the representation of chemistry in the model. Given that regulatory applications use the model's prediction of
the relative change in pollutant concentrations, dynamic evaluations such as these are particularly relevant to the
way the model is used.

Groundwater models are critical for regulatory applications, such as ng containment transport from
hazardous waste sites and assessing the long-term performance assessments of high level nuclear waste disposal
sites. Bredehoeft (2003; 2005) summarizes a series of post-hoc studies where later observations were used to
evaluate how well earlier groundwater modeling did in predicting future conditions. Besides errorsin conceptual
models of the system, which are discussed in the body of this report, Bredehoeft identified insufficient observations
for specifying input parameters and boundary conditions as another critical reason why model predictions did not
match observations. An additional issue cited was that, in some instances, the assumed environmental management
actions that were modeled ended up to be very different from the actual actions taken. It isimportant to note that,
while the number of studies discussed in Bredehoeft (2003; 2005) was extensive, the modeling resources involved
was not. Instead, the insights were developed by having an experienced modeler look across a number of
applications for overarching conclusions. This observation isimportant when considering the resource needs and
scope of retrospective analysis.

The second perspective is somewhat narrower. |f a specific model is being used for several years
for high impact issues, its performance for its intended use should be questioned. For such cases, data are
probably available for retrospective analyses that were not available at the time of model construction. In
addition to data that have been collected over time, other data that are critical to model evaluation may be
identified and collected specifically to address the question, “how well does the model work?”
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With respect to the question of how well different classes of models work, it would be useful to
know whether different classes of models have common weaknesses. As noted, Bredehoeft’ s work
suggests that groundwater models are subject to surprises that show their underlying conceptual models to
beinvalid. Bredehoeft reported that one suggestion arising from that observation isto carry aternative
conceptual modelsinto an analysis. In his experience, Bredehoeft noted that alternatives are not carried
into analysis. However, such an approach has been applied in the health risk assessment area. Distinctly
different conceptual models for health risks from sulfur oxidesin air were discussed in several papers by
Morgan and colleagues (Morgan et al. 1978, 1984). These papers described aternative
conceptualizations of the health risks that are incompatible with each other but that, at the time of the
analyses, were supported by some data.

In his 2003 paper, Bredehoeft described the following difficulties with conceptual models:

Modelers tend to regard their conceptual models asimmutable.
Time and again errorsin prediction revolve around a poor choice of the conceptual model.
More often than not, data will fit more than one conceptual model equally well.
Good calibration of amodel does not ensure a correct conceptual model.

e Probabilistic sampling of the parameter sets does not compensate for uncertainties in the
appropriate conceptual models or for wrong or incomplete models.

The point of thislist isthat models with conceptual problems cannot be improved by enhanced
efforts at calibration or management of uncertainties. The best chance for identifying and correcting
conceptual errorsisthrough an ongoing evaluation of the model against data, especially data taken under
novel conditions.

The question that should be explored is whether other classes of models share a common
weakness. For example, as a class, what weaknesses would be identified by an evaluation of air
dispersion, transport and atmospheric chemistry models, or structure-activity relationships? Identifying
systemic weaknesses would focus the attention on the most productive priorities for improvement. With a
long-term perspective, there will be casesin which it is possible to compare model results with data that
were not available when the models were built.

A key benefit of retrospective evaluations of models of individual models and of model classesis
the identification of priorities for improving models. Effortsto add processes and features of diminishing
importance to current models may be of much lower benefit than revisions based on priorities derived
from retrospective analyses. The committee did not identify a solid technical basis for deciding whether
specific models should be revised other than to address the perception that a specific model was
incomplete.

RECOMMENDATIONS

The committee offers several recommendations based on the discussion in this chapter. They
deal with life-cycle model evaluation, peer review, uncertainty analysis, retrospective analysis, and
managing the model evaluation process.

Life-Cycle Model Evaluation

Models begin their life cycle with the identification of a need and the development of a
conceptual approach, and proceed through building of a computational model and subsequent
applications. Models also can evolve through multiple versions that reflect new scientific findings,
acquisition of data, and improved algorithms. Model evaluation is the process of deciding whether and
when amodel is suitable for itsintended purpose. This processis not a strict verification procedure but is
one that builds confidence in model applications and increases the understanding of model strengths and
limitations. Model evaluation is a multifaceted activity involving peer review, corroboration of results
with data and other information, quality assurance and quality control checks, uncertainty and sensitivity
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analyses, and other activities. Even when amodel has been thoroughly evaluated, new scientific findings
may raise unanticipated questions, or new applications may not be scientifically consistent with the
model’ s intended purpose.

Recommendations

Evaluation of aregulatory model should continue throughout the life of amodel. In particular,
model evaluation should not stop with the evaluation activities that often occur before the public release
of amodel but should continue throughout regulatory applications and revisions to the model. For all
models used in the regulatory process, the agency should begin by developing alife-cycle model
evaluation plan commensurate with the regulatory application of the model (for example, the scientific
complexity, the precedent-setting potential of the modeling approach or application, the extent to which
previous evaluations are still applicable, and the projected impacts of the associated regulatory decision).
Some plans may be brief, whereas other plans would be extensive. At a minimum each plan should

e Describe the model and itsintended uses.

o Describe the relationship of the model to data, including the data for both inputs and
corroboration.

o Describe how such data and other sources of information will be used to assess the ability of the
model to meet itsintended task.

e Describe all the elements of the evaluation plan by using an outline or diagram showing how the
elements relate to the model'slife cycle.

e Describe the factors or events that might trigger the need for major model revisions or the
circumstances that might prompt users to seek an alternative model. These could be fairly broad and
qualitative.

e |dentify responsibilities, accountabilities, and resources needed to ensure implementation of the
evaluation plan.

It isessential that the agency is committed to the concept that model evaluation continues
throughout a model’ slife. Model evaluation should not be an end unto itself but a means to an end,
namely, amodel fitted to its purpose. EPA should develop a mechanism that audits the evaluation
process to ensure that an evaluation plan is developed, resources are committed to carry it out, and
modelers respond to what islearned. Although the committee does not make organizational
recommendations or recommendations on the level of effort that should be expended on any particular
type of evaluation, it recognizes that the resource implications for implementing life-cycle model
evaluation are potentially substantial. However, given the importance of modeling activitiesin the
regulatory process, such investments are critical to enable environmental regulatory modeling to meet
challenges now and in the future.

Peer Review

Peer review is an important tool for improving the quality of scientific products and is basic to all
stages of model evaluation. One-time reviews, of the kind used for research articles published in the
literature, are insufficient for many of the models used in the environmental regulatory process. More
time, effort, and variety of expertise are required to conduct and respond to peer review at different stages
of the life cycle, especially for complex models.

Recommendations

Peer review should be considered, but not necessarily performed, at each stagein amodd’slife
cycle. Some simple, uncontroversial models might not require any peer review, whereas others might
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merit peer review at several stages. Appropriate peer review requires an effort commensurate with the
complexity and significance of the model application. When amodel peer review is undertaken, EPA
should allow sufficient time, resources, and structure to assure an adequate review. Reviewers should
receive not only copies of the model and its documentation but also documentation of its origin and
history. Peer review for some regulatory models should involve comparing the model results with known
test cases, reviewing the model code and documentation, and running the model for severa types of
problems for which the model might be used. Reviewing model documentation and resultsis not
sufficient peer review for many regulatory models.

Because many stakeholders and others interested in the regulatory process do not have the
capability or resources for a scientific peer review, they need to be able to have confidence in the
evaluation process. This need requires a transparent peer review process and continued adherence to
criteriaprovided in EPA’s guidance on peer review. Documentation of all peer reviews, as well as
evidence of the agency’ s consideration of comments in developing revisions, should be part of the model
origin and history.

Quantifying and Communicating Uncertainty

There are two critical but distinct issuesin uncertainty analysis for regulatory environmental
modeling: what kinds of analyses should be done to quantify uncertainty, and how these uncertainties
should be communicated to policy makers.

Quantifying Uncertainty

A wide range of possihilitiesis available for performing model uncertainty analysis. At one
extreme, all model uncertainties could be represented probabilistically, and the probability distribution of
any model outcome of interest could be calculated. However, in assessing environmental regulatory
issues, these analyses generally would be quite complicated to carry out convincingly, especialy when
some of the uncertainties in critical parameters have broad ranges or when the parameter uncertainties are
difficult to quantify. Thus, although probabilistic uncertainty analysisis an important tool, requiring EPA
to do complete probabilistic regulatory analyses on a routine basis would probably result in superficia
treatments of many sources of uncertainty. The practical problems of performing a complete probabilistic
analysis stem from models that have large numbers of parameters whose uncertainties must be estimated
in acursory fashion. Such problems are compounded when models are linked into a highly complex
system, for example, when emissions and meteorological model results are used as inputs into an air
quality model.

At the other extreme, scenario assessment and/or sensitivity analysis could be used. Neither one
in its ssimplest form makes explicit use of probability. For example, a scenario assessment might consider
model results for arelatively small number of plausible cases (for example, “pessimistic,” “neutral,” and
“optimistic” scenarios). Such a deterministic approach is easy to implement and understand. However,
scenario assessment does not typically include information corresponding to conditions not included in
the assessment and whatever is known about each scenario’ s likelihood.

It is not necessary to choose between purely probabilistic approaches and deterministic
approaches. Hybrid analyses combining aspects of probabilistic and deterministic approaches might
provide the best solution for quantifying uncertainties, given the finite resources available for any
analysis. For example, asensitivity analysis might be used to determine which model parameters are
most likely to have the largest impacts on the conclusions, and then a probabilistic analysis could be used
to quantify bounds on the conclusions due to uncertainties in those parameters. In another example,
probabilistic methods might be chosen to quantify uncertainties in environmental characteristics and
expected human health impacts, and several plausible scenarios might be used to describe the
monetization of the health benefits. Questions about which of several plausible models to use can
sometimes be the dominant source of uncertainty and, in principle, can be handled probabilistically.
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However, a scenario assessment approach is particularly appropriate for showing how different models
yield differing results.

Communicating Uncertainties

Effective decision making will require providing policy makers with more than asingle
probability distribution for amodel result (and certainly more than just a single number, such as the
expected net benefit, with no indication of uncertainty). Such summaries obscure the sensitivities of the
outcome to individual sources of uncertainty, thus undermining the ability of policy makers to make
informed decisions and constraining the efforts of stakeholders to understand the basis for the decisions.

Recommendations
Quantifying Uncertainty

In some cases, presenting results from a small number of model scenarioswill provide an
adequate uncertainty analysis (for example, cases in which the stakes are low, modeling resources are
limited, or insufficient information is available). In many instances, however, probabilistic methods will
be necessary to characterize properly at least some uncertainties and to communicate clearly the overall
uncertainties. Although afull Bayesian analysis that incorporates all sources of information is desirable
in principle, in practice, it will be necessary to make strategic choices about which sources of uncertainty
justify such treatment and which sources are better handled through less formal means, such as
consideration of how model outputs change as an input varies through arange of plausible values. In
some applications, the main sources of uncertainty will be among models rather than within models, and
it will often be critical to address these sources of uncertainty.

Communicating Uncertainty

Probabilistic uncertainty analysis should not be viewed as a means to turn uncertain model
outputs into policy recommendations that can be made with certitude. Whether or not a complete
probabilistic uncertainty analysis has been done, the committee recommends that various approaches be
used to communicate the results of the analysis. These include hybrid approaches in which some
unknown quantities are treated probabilistically and others are explored in scenario-assessment mode by
decision makers through arange of plausible values. Effective uncertainty communication requires a
high level of interaction with the relevant decision makers to ensure that they have the necessary
information about the nature and sources of uncertainty and their consequences. Thus, performing
uncertainty analysis for environmental regulatory activities requires extensive discussion between
analysts and decision makers.

Retrospective Analysis of Models
EPA has been involved in the development and application of computational models for
environmental regulatory purposes for as long as the agency has been in existence. Itsreliance on models
has only increased over time. However, attempts to learn from prior experiences with models and to
apply these lessons have been insufficient.

Recommendations

The committee recommends that EPA conduct and document the results of retrospective reviews
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of regulatory models not only on single models but also at the scale of model classes, such as models of
groundwater flow and models of health risks. The goal of such retrospective evaluations should be the
identification of priorities for improving regulatory models. One objective of this analysis would be to
investigate systematic strengths and weaknesses that are characteristic of various types of models. A
second important objective would be to study the processes (for example, approaches to model
development and evaluation) that led to successful models and model applications.

In carrying out a retrospective analysis, it might be helpful to use models or categories of models
that are old by current modeling standards, because the older models could present the best opportunities
to assess actual model performance quantitatively by using subsequent advances in modeling and in new
observations.

M odels and Rule-makings

The sometimes contentious setting in which regulatory models are used may impede EPA’s
ability to implement some of the recommendations in this report, including the life-cycle evaluation
process. Even high-quality models are filled with components that are incomplete and must be updated as
new knowledge arises. Y et, those attributes may provide stakeholders with opportunities to mount formal
challenges against models that produce outputs that they find undesirable. Requirements such asthose in
the Information Quality Act may increase the susceptibility of models to challenges because outside
parties may file a correction request for information disseminated by agencies.

When amodel that informs a regulatory decision has undergone the multilayered review and
comment processes, the model tends to remain in place for sometime. Thisinertiais not awaysideal:
the cumbersome regulatory procedures and the finality of the rules that survive them may be at odds with
the dynamic nature of modeling and the goal of improving models in response to experience and scientific
advances.

In such an adversarial environment, EPA might perceive that arigorous life-cycle model
evaluation isill-advised from alegal standpoint. Engaging in thistype of rigorous review may expose the
model to a greater risk of challenges, at least insofar as the agency’ s review is made public, because the
agency is documenting features of its models that need to be improved. Moreover, revising amodel can
trigger lengthy administrative notice and comment processes. However, an improved model isless likely
to generate erroneous results that could lead to additional challenges, and it better serves the public
interest.

Recommendations

It isimportant that EPA institute best practice standards for the evaluation of regulatory models.
Best evaluation practices may be much easier for EPA to implement if its resulting rigorous life-cycle
evaluation process is perceived as satisfying regulatory requirements, such as those of the Information
Quality Act. However, for an evaluation process to meet the spirit and intent of the Information Quality
Act, EPA’ s evaluation process must include a mechanism for any person to submit information or
correctionsto amodel. Rather than requiring a response within 60 days, as the Information Quality Act
does, the evaluation process would involve consideration of that information and response at the
appropriate time in the model evaluation process.

To further encourage evaluation of models that support federal rule-makings, alternative means of
soliciting public comment on model revisions need to be devised over the life cycle of the model. For
example, EPA could promulgate a separate rule-making that establishes an agency-wide process for the
evauation and adjustment of models used in itsrules. Such a programmatic process would allow the
agency to provide adequate opportunities for meaningful public comment at important stages of the
evaluation and revision of an individual model, without triggering the need for a separate rule-making for
each revision. Finally, more rigorous and formalized evaluation processes for models may result in
greater deference to agency models by interested parties and by reviewing courts. Such aresponse could
decrease the extent of model challenges through adversarial processes.
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Model Origin and History

Models are devel oped and applied over many years by participants who enter and exit the process
over time. The model origin and history can be lost when individual experiences with amodel are not
documented and archived. Without an adequate record, a model might be incorrectly applied, or
developers might be unable to adapt the model for a new application. Poor historical documentation
could also frustrate stakeholders who are interested in understanding amodel. Finaly, without adequate
documentation, EPA might be limited in its ability to justify decisions that were critical to model design,
development, or model selection.

Recommendation

As part of the evaluation plan, a documented history of important events regarding the models
should be maintained, especially after public release. Each documentation should haveits origin with
such key elements as the identity of the model developer and institution, the decisions on critical model
design and development, and the records of software version releases. The model documentation also
should have elementsin “plain English” to communicate with nontechnical evaluators. An
understandabl e description of the model itself, justifications, limitations, and key peer reviews are
especially important for building trust.

The committee recognizes that information relevant to model origins and historiesis already
being collected by CREM and stored in its model database, which is available on the CREM web site.
CREM'’ s database includes over 100 models, although updating of this site has declined in recent years.
It provides information on obtaining and running the models and on the models’ conceptual bases,
scientific details, and results of evaluation studies. One possible way to implement the recommendation
for devel oping and maintaining the model history may be to expand CREM’s efforts in this direction.
The EPA Science Advisory Board review of CREM contains additional recommendations with regard to
specific improvementsin CREM’ s database.



5
Model Selection and Use

The last and perhaps most important stage of the life cycle of aregulatory model isits application
to an environmental regulatory issue. How amodel arrives at the point of application and how much of
its development is specific for a given application vary greatly. For example, modelers who develop a
model for a specific application may aso apply it, while others who develop a general model do not use it
for a particular application. Box 5-1 describes one such model.

The aobjective of this chapter isto describe issues that arisein selecting models for their
applicationsin regulatory activities. As done throughout this report, regulatory activities considered
include any case for which EPA uses a modd to aid in developing regulations, such as setting standards,
or for which EPA or others devel op plans to implement or enforce regulatory requirements. The ultimate
goal for al applicationsisto use all available and appropriate information when selecting amodel. In
some cases, amodel that gets updated on aregular (but not a frequent) schedule might be more
appropriate to use, if the updates incorporate information important to the outcome, than to change for the
sake of change. However, some degree of stability and predictability is of value to regulators and
affected parties. In all cases, evaluation of the model-sel ection decision assesses the appropriateness of a
model or group of models for a specific application. As described in the previous chapter, this assessment
involves addressing whether the model is based on generally accepted science and computational
methods, whether the model fulfillsits designed task, and how well the model approximates the behavior
observed in the system being modeled.

ISSUESIN MODEL SELECTION AND APPLICATION

Model developers and regulators must eval uate how appropriate an existing model isfor a
specific setting and whether the assumptions and input data are relevant under the conditions of the
application. Optimally, amodel is applied to a problem within the model-specific application domain
near the time of model development. However, frequently, thisis not feasible. Thus, models need to be
evaluated in context with each application, the degree of evaluation being commensurate with the case. A
number of issues arise when selecting and applying a model or a set of models for environmental
regulatory activities. These issues are discussed below and include the following: the selection of a
model from multiple possibilities, the level of expertise, the assumptions and range of applicability, the
cost and availability, the adaptability of the model; and the data availability.

M odel Selection

The committee recognizes the wide variability in the availability of alternative modeling
approaches for specific regulatory applications. Thus, guidance on model selection varies. For example,
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BOX 5-1 Example of a Generic Model for Application to Specific Settings

A description of one example of model application information isfound at EPA’s Support Center for
Regulatory Atmospheric Modeling web site (EPA 2006l). One modeling system described on the site, AERMOD,
was developed by the American Meteorological Society and the EPA Regulatory Model Improvement Committee.
The AERMOD system is a steady-state plume model that simulates dispersion of air pollutants from point or area
sources. It isagood example of an extensively documented model targeted at a broad range of users for regulatory
purposes. The AERMOD modeling system includes extensive documentation, including model code, a user’s guide,
supporting documents, and evaluating databases, all of which are available on the web site of the EPA Support
Center for Regulatory Atmospheric Modeling. The supporting documents include details of the model formulation
and evaluation, comparison of regulatory design concentrations, an implementation guide (information on
recommended use of the model for particular applications), evaluation of model bias, sensitivity anaysis, a
parameterizations document and peer review document. The evaluation databases include input and output data for
model evaluation. User’s manuals include instructions for novice and experienced users, decision makers, and
programmers. The model code and supporting documents are not static but evolve to accommodate the best
available science.

EPA recognizes a single model, the MOBILE model, for developing motor-vehicle emissions inventories
for state implementation plans and other air quality regulatory activities outside of California. Although
EPA provides guidance for implementing this model, including a user’ s guide (EPA 2003f) and policy
guidance (EPA 2004f), no guidance is needed to select the model. For air quality models, several models,
each with its own strengths and weaknesses, might be selected for regulatory activities (Russell and
Dennis 2000). The community of air quality modelersis highly specialized and relatively small, and the
selection of modelsis often based on familiarity. In contrast, there are many models from which to select
for air dispersion modeling. EPA has devel oped a guidance document, called Appendix W, on selection
of models and on models approved for use (EPA 2003c). The guidance is described in more detail in Box
5-2. The EPA Center for Subsurface Modeling Support supports the identification and selection of
appropriate subsurface models and supports the review of site-specific modeling efforts at Superfund sites
and other large hazardous waste contamination sites (Burden 2004). Aswith air dispersion modeling,
there are many models from which to select; the Center for Subsurface Modeling Support distributes
public domain software for over 25 models. Thereis aso awide range of models possible for performing
total maximum daily load (TMDL) analysis (Shoemaker 2004; Wool 2004). Furthermore, fundamentally
different modeling approaches are called for, depending on whether the TMDL focuses on the runoff of a
pollutant from the watershed, on where a nonpoint source nutrient loading model would be needed, or on
whether the TMDL focuses on the concentration of a pollutant in abody of water where awater quality
model would be needed.

For al cases that have multiple models available, users must consider many factors when
deciding on the most appropriate model to use. These factors include complexity of the problem setting,
types of pollutants, spatial and temporal scales, data availability, costs of controls, and an array of
practical considerations (for example, available expertise and familiarity) Although no single method for
developing a model selection tool would be applicable for the range of conditions faced by regulatory
modelers, the recently completed Science Advisory Board' s review of the EPA Council on Regulatory
Environmental Models (CREM) recommends that the CREM database present competing modelsin a
comparative matrix in the form of a side-by-side comparison table, such as seen in the vehicle sales
industry (EPA 2006d).

Model selection issues can be further illustrated by considering the use of statistical models for
assessing dose-response relationships. The case of EPA’ s selection of amodel for arsenic in drinking
water, which is discussed in Chapter 1, provides agood example. In that case, when empirical stetistical
models in a suite were applied to the data, they differed substantially in their fitted values, especially in
the critical low-dose area, which is so important for establishing the benchmark dose used to set a
reference dose (see Figure 1-3). This problem highlights the dilemma of model selection in the face of
different models with different results. One solution is the use of Bayesian model averaging (BMA) asa
tool that avoids having to pick one particular model by combining a class of suitable models. This option,
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discussed in Box 5-3, is preferable to forcing the choice of amodel that may have the best “fit” but that
may sacrifice parsimony or that may not account for uncertainty in this case. However, Finkel (2004)
described problems with model averaging, and the use of such an approach must be considered on a case-
specific basis.

Another approach is to use multiple models of varying complexities to simulate the same
phenomena. Using multiple models in such a manner might allow insights into how sensitive results are
to different modeling choices and how much trust to put in results from any one model. Box 5-4 shows
an example of this approach.

BOX 5-2 Appendix W: EPA’s Guidelines on Air Quality Models

The guidelines, first published in April 1978, was devel oped to ensure consistency and standardization of
model applicationsfor air quality regulations. The guidelines was written in an effort to balance consistency and
accuracy in selecting appropriate models. This document, available viathe web (70 Fed. Reg. 68218 [2005]), is
intended for use by all parties (for example, EPA, state, and local agencies and industry) for calculating the
concentration of criteriaair pollutants. The guidelines attempts to provide some guidance to model selection while
maintaining enough flexibility to account for the complexity and individuality of sources. Thisdocument is
continuously developed to include new models and updated information on existing or older models and to respond
to public comments.

Recommendations concern preferred models, databases, requirements for concentration estimates, use of
measured datainstead of model estimates, and model evaluation procedures. In some cases, specific models are
prescribed for a particular application; in other cases, atype of model is specified. Deviation from the guidelines
must be fully supported and documented.

BOX 5-3 Arsenicin Drinking Water: Model Selection

Morales et a. (2000) analyzed the Taiwanese data using a suite of relatively simple empirical models that
differed according to how age and exposure were incorporated. All the models assumed that the number of cancers
observed in a specific age group of aparticular village followed a Poisson model with parameters, depending on the
age and village exposure level. Linear, log, polynomial, and spline models for age and exposure were considered.
These various models differed substantially in their fitted values, especially in the critical low-dose area; which is so
important for establishing the benchmark dose (BMD) used to set areference dose (RfD). The fitted-dose response
model was also strongly affected by whether Taiwanese population data were included as a baseline comparison
group. The estimates of the BMD and associated lower limit (BMDL) varied by over an order of magnitude,
depending on the particular modeling assumptions used.

This highlights amajor challenge for regulatory purposes, namely, which model to base decisions on. One
strategy would be to pick the “best” model—for example, use one of the popular statistical goodness of fit, such as
the Akieke information criterion (AIC) or the Bayesian information criterion (BIC). These approaches correspond
to picking the model that maximizes log-likelihood, subject to a penalty function reflecting the number of model
parameters, thus effectively forcing a trade-off between improving model fit by adding addition model parameters
versus having a parsimonious description. In the case of the arsenic risk assessment, however, the noisiness of the
data meant that many of the models explored by Morales et a. (2000) were relatively similar in terms of statistical
goodness-of-fit criteria. In afollow-up paper, Moraes et a. (2006) argued that it was important to address and
account for the model uncertainty, because ignoring it will underestimate the true variability of the estimated model
fit and, in turn, overestimate confidence in the resulting BMD and lead to “risky decisions’ (Volinsky et al. 1997).
Morales et a. suggest the use of Bayesian model averaging (BMA) as atool that avoids the need to pick one
particular model by combining over aclass of suitable models. In practice, estimates based on aBMA approach
tend to approximate a weighted average of estimates based on individual models, the weights reflecting how well
each individual model fits the observed data. More precisely, these weights can be interpreted as the probability that
a particular model is the true model, given the observed data. The figures below show the results of applying a
BMA procedure to the arsenic data. Figure 5-1aplotsindividual fitted models, the width of each plotted line
reflecting the weights. Figure 5-1b shows the estimated overall dose-response curve (solid line) fitted viaBMA.
The shaded area shows the upper and lower limits (2.5% and 97.5% tiles) based on the BMA procedure. The dotted

(Continued)
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lines show upper and lower limits based on the best fitting models. Figure 5-1b (L30) effectively illustrates the
inadequacy of standard statistical confidence intervalsin characterizing uncertainty in settings where there is
substantial model uncertainty. The BMA limits coincide closely with the individual curves at the upper level of the
dose-response curve where all the individual models tend to give similar results.
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FIGURE 5-1 (8) Individual dose-response models, and (b) overall dose-response model fitted using the Bayesian model
averaging approach. Source: Morales et al. 2000.

BOX 5-4 Use of Multiple Models of Varying Complexity for Estimating Mercury in Fish

A potential benefit of the clean-air mercury rule, which requires reductions in mercury emissions from
coal-fired power plants, is the reduction of human exposure and related health impacts from methylmercury by
reducing concentrations of thistoxin in fish. There are many challenges and uncertainties in understanding the
impact of reductions in atmospheric mercury emissions on human health. In its assessment of the benefits and costs
of thisrule, EPA used multiple modelsto ook at one particular issue—how changes in atmospheric deposition
would affect mercury concentrationsin fish—and applied the models to assess some of the uncertaintiesin this
impact (EPA 2005).

EPA based its national-scal e benefits assessment on results from the mercury maps (MMaps) model. This
model assumes that there is alinear, steady-state relationship between atmospheric deposition of mercury and
mercury concentrations in fish and thus assumes that a 50% reduction in mercury deposition rates resultsin a 50%
decreasein fish mercury concentrations. In addition, MMaps assumes instantaneous adjustment of aquatic systems
and their ecosystems to changes in deposition. Thus, thereisno time lag in the conversion of mercury to
methylmercury and its bioaccumulation in fish. MMaps also does not deal with sources of mercury other than those
from atmospheric deposition. Despite those limitations, the agency concluded that no other available model was
capable of performing a national -scal e assessment.

To further investigate fish mercury concentrations and assess the effects of MM aps assumptions, EPA
applied more detailed models, including the spreadsheet-based ecological risk assessment for the fate of mercury
(SERAFM) moddl, to five well-characterized ecosystems. As opposed to the steady-state MMaps model, SERAFM
isadynamic model that cal culates the temporal response of mercury concentrations in fish tissues to changesin
mercury loading. It includes multiple land-use types for representing watershed loadings of mercury through soil
erosion and runoff. SERAFM partitions mercury among multiple compartments and phases, including aqueous
phase, abiotic participles (for example, silts), and biotic particles (for example, phytoplankton). Comparisons of
SERAFM’s predictions with observed fish mercury concentrations for a single fish speciesin four ecosystems
showed that the model underpredicted mean concentrations for one water body, overpredicted mean concentrations
for a second water body, and accurately predicted mean concentrations for the other two. The error bars for the
observed fish mercury concentrations in these four ecosystems were large, making it difficult to assess the accuracy
of the models. Modeling of the four ecosystems also showed how assumed physical and chemical characteristics of
the specific ecosystem affected absolute fish mercury concentrations and the length of time before fish mercury
concentrations reached steady state.

Although EPA concluded that the best available science supports the assumption of alinear relationship
between atmospheric deposition and fish mercury concentrations for broad-scale use, the more detailed ecosystem
modeling demonstrated that individual ecosystems were highly sensitive to uncertaintiesin model parameters. The
agency also noted that there were many model uncertainties that could not be quantified. Finaly, although the case
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studies cover the bulk of the key environmental characteristics, extrapolating the individual ecosystem case studies
to account for the variability in ecosystems across the country indicated that they might not represent extreme
conditions that could affect how atmospheric deposition of mercury would affect fish mercury concentrationsin a
water body.

This exampleillustrates the usefulness of investigating a variety of models at varying levels of complexity.
A hierarchical modeling approach, such asthat used in the mercury analysis, can provide justification for simplified
model assumptions or can potentially provide evidence for a consistent bias that would negate the assumption that a
simple model is appropriate for broad-scal e application.

Model Expertise

Problems can arise if amodel is applied incorrectly by an inexperienced user who does not
understand how the model operates or who uses the model outside its range of applicability. Such model
use would result in potentialy erroneous conclusions. Models for regulatory applications will inevitably
be used by individuals and groups who are not modelers and who might not be sufficiently trained to
catch subtle or even obvious errors. This observation emphasizes the need for training. Box 5-5
mentions two of many ways EPA attempts to improve modeling expertise inside and outside the agency.

Model Documentation and Transparency

For an appropriate model to be selected, both by those ng whether it would be appropriate
for agiven case and by those reviewing that decision, it must have adequate documentation for both
potential users and those that might scrutinized the model selection decision. Documentation needs,
including those related to accepted uses and model origin and history, have been discussed in Chapters 3
and 4. Documenting models for examination by stakeholders and the public provides transparency to
build confidence in modeling results (see Box 5-6).

Resour ce Requirements and Availability

Model selection must consider whether amodel is economically feasible or readily availableto
potential users. Very complex, detailed models may be expensive to develop and execute. A National
Research Council report (NRC 2001c) on the TMDL program urged modelers and decision makers to
recognize that simpler analysis can support informed decision making and that complex modeling studies
should be pursued only if necessary based on the complexity of the problem. This report recognized that
the cost of maintaining and updating a complex model should be considered in model selection, as these
costs become cumbersome over time. A possible solution noted by the NRC report isto develop smpler
models with existing data that can be iteratively expanded as more data become available.

Assumptions and Specified Range of Use

Understanding the major assumptions and the range of applicability of amodel is critical for
selection because the assumptions and applicability define an application niche for amodel. For example,
atmospheric dispersion models typically assume steady, horizontally homogeneous wind fields
instantaneously over a given spatial area and are usually limited to 50 km from the source. The use of
such amodel would not be appropriate for an application at hundreds of kilometers from the source. For
the nonsteady-state dispersion model CALPUFF, which allows the model documentation to include
information on modeling domains, meteorological data, terrain and land use data, sources, receptors, and
modeling options used to devel op the model (EPA 2006m). To further demonstrate its application niche
to potential users, this model documentation includes a comparison of the modeling results to
observations for long-range transport field experiments. All models come with such assumptions and
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BOX 5-5 Model Training and Support

EPA has created support networks for aiding in the application of some environmental regulatory models.
One of the networks is the Center for Subsurface Modeling Support located within EPA’s National Risk
Management Research Laboratory. This center provides public domain groundwater and vadose zone modeling
software and guidance documents to a variety of users, including universities, state and federal governments, and the
private sector (Burden 2004). It also provides training and education. For regional air quality modeling, EPA has
created the Community Modeling and Analysis System (CMAYS) Center at the University of North Carolina at
Chapel Hill. This center isintended to help to promote the use and understanding of the Models-3 air quality
modeling suite, including through training courses. The courses are open to everybody (including federal and state
employees and scientists from the private sector and academia), although they do assume some prior modeling and
computing proficiency. The CMAS center also offers online tutorials.

BOX 5-6 Confidence Building in Models Through Transparency

Placing data sources, software, and the exact list of commands used to produce the model output, along
with agood amount of documentation, on a public web site can help build confidence in the specific use of amodel.
iHAPSS, the internet-based Health and Air Pollution Surveillance System, developed at the Johns Hopkins
University, provides an example of thiskind of resource.

Even if stakeholders choose not to replicate analyses, which will generally be the case, the presence of such
documentation of model use will help to convince stakeholders that the analysts are not trying to hide anything. In
some circumstances, some input data may be proprietary or involve privacy concerns or the data set may be too
large, thus making this approach unworkable; otherwise, such a public web site should be the norm in high-stakes
settings.

A possible concern about making data and code so readily available is that it will make it easier for
stakeholders to slow up the decision-making process by raising narrow objections to the large number of choices
that are inevitably made in using complex models. Although the committee would still support ahigh level of
openness even if that concern were valid, it isnot clear that it isvalid. For example, making all data availablein
readily usable form makes it much easier for others to do their own analyses. As a consequence, criticisms of the
form Y ou should have tried this’ or “Y ou need to account for the effect of that” become less cogent because the
availability of the data allows the reply, “If you think that matters so much, why not do the analysis yourself?”’
Making the code available further lowers the barrier to others modifying an analysis. Thus, greater availability of
data and code may help discussions about the appropriateness of amodel application to focus on the issues that do
matter as opposed to laundry lists of issues that might be conceived to matter.

application limitations. Although modelers often have no choice but to use amodel for an application in
which a major assumption within the model is directly violated or is close to being violated, such an
application must be made clear to those who might use or review model results.

Another difficult issue is whether to use amodel developed for a different purpose with different
specifications. Asdiscussed in Chapter 3, it is often desirable from the standpoint of time and resource
investment to use or modify an existing model for a new setting than to develop a new model. However,
at what point do the differences make the model inadequate? Professional judgment isrequired in such
cases, and such judgments should differentiate clearly between scientific considerations and other
considerations. From an evaluation standpoint, it is critical to make such a decision transparent so it can
be commented on and potentially challenged.

Data Availability and I nterpretation

A final issue relevant for model selection isthe availability and interpretation of data. As
discussed in Chapter 3, the mismatch between data needs and availability can result in failure of the
model exercise even when the model itself may be agood fit for an individual application. Issues
concerning data that come up at model application that are not faced during model development include
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the need to set boundary and initial conditions, develop site-specific input data, and have access to local
monitoring data to test model estimates against observations. Data collection can also aid in reducing
uncertainty, improving existing models, and informing devel opers on when a monitoring program might
be useful in reducing uncertainty and simplifying the model. However, models typically can use more
data than are available for developing input or for corroborating results with observations. The lack of
data requires the use of parameter defaults that are not based on site-specific data.

One approach to lessen the concerns over relying on default parameters in regulatory modeling is
to use atiered approach in which conservative defaults areinitially used, possibly with conservative
screening models. If apotential problem is detected with conservative defaults, analysis with site-specific
data might then be used, possibly with amore refined model, for more refined analysis. Data collection
takes time, which may conflict with regulatory time lines, and resources, which may conflict with other
priorities. Such conflicts should be explicitly dealt with rather than used as a broad excuse not to collect
data. Asdiscussed in Chapter 3, adaptive approaches with iterations among model development and
applications and with data-collection efforts are key to improving overall model quality.

Model Extrapolation

Model usein the environmental regulatory process may involve applying a model to extrapolate
from conditions that have corroborating information to conditions that have little or no corroborating
information available. For example, it might be necessary to extrapolate laboratory animal data to
assessments of possible human effects or to extrapolate the recent history of global environmental
conditions to future conditions. In these circumstances, uncertainties about the form of amodel and of
the parameters in any specific model may yield large uncertainties in model outputs.

In some cases, it is clear when application of a model involves extrapolation beyond the data or
assumptions used to construct or fit the model. For example, one of the major sources of controversy in
the EPA’s arsenic risk assessment was the use of amodel based on Taiwanese data to estimate risk for the
U.S. population (see Box 2-1 in Chapter 2). In this case, model results from one population are
extrapolated to another population with differencesin genetics, diet, health status, and other factors that
could affect the risk relationship (NRC 1999). In such cases, it is helpful to be as transparent as possible
with respect to implicit assumptions that might have an impact on the appropriateness of the
extrapolation. In the case of arsenic, for example, extrapolating the Taiwanese results to the U.S. setting
involved decisions on whether to use a multiplicative or an additive risk model, as well as assumptions on
the typical amount of daily water consumption by individualsin the two countries. Making such
assumptions explicit opens the way to sensitivity and uncertainty analyses that can provide arealistic
assessment of the impact of applying models to settings outside the context within which they were
developed. Extrapolating far beyond available data used to devel op the model also puts a particular
premium on ensuring that the model’ s theoretical basis, the processes included in the model, and the
selected parameter values within the model are as sound as possible.

Another example in which the use of amodel involves extrapolation beyond data or assumptions
occurs when EPA forecasts the results of policy decisions into the future. Under such circumstances, EPA
often applies models to forecast the impact of regulations over time horizons of yearsto decades,
sometimes incorporating demographic forecasts and forecasts of economic activities (usually from other
agencies) as well as assuming that other conditions, such as regulatory and legislative mandates, do not
change in the future. Once again, careful sensitivity analyses are needed to assess the impact of various
implicit and explicit modeling assumptions to provide a realistic assessment of the uncertainty associated
with extrapolating results into the future. Thistype of approach has been quite effectively applied in the
climate change arena where graphs are shown that predict possible future scenarios under a variety of
different modeling assumptions. In this sense, the problem of extrapolation beyond the setting in which a
model has been devel oped can be mapped into the broader issue of ng model adequacy and
sensitivity.

If aquantitative structure activity relationship (QSAR) model, which is used to predict physical-
chemical properties and environmental fate and transport properties from the chemical structure of anew
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compound, is being used, the term inside or outside the “domain” is used to indicate whether amodel is
extrapolated beyond conditions for which the model was constructed or calibrated. The concept of a
domain of applicability was one of the six principles developed at a conference of modelersin Setubal,
Portugal for usein determining whether a QSAR model is acceptable for chemical management, such as
for priority setting, risk assessment, and classification and labeling (Jaworska et a. 2003).

In many applications, extrapolating “far” from known data and conditions is clearly being done.
For example, when models are used to predict along a continuum of time, space, or dose, it is clear when
the model has moved beyond a point where information is available. In other applications, the model
produces output that is not easily placed along a continuum, so it is not clear how much of an
extrapolation is being performed. For example, if the model output is the total cost of aregulation and the
data are numbers of deaths and pollution levelsin cities across the country as well as the per person value
of life, the model output can be thought to depend on many unverifiable assumptions. It isin some sense
an extrapolation, but it is hard to measure how “far” the output is from the data. Again, this problem puts
a premium on ensuring that the model and input parameters are developed on a sound theoretical basis
and that the impacts of important assumptions can be assessed through sensitivity and uncertainty
analysis.

Specifying Uncertainty

At the model application stage, it isimportant to have effective strategies for representing and
communicating uncertainties. For many regulatory models, credibility is enhanced by acknowledging and
characterizing important sources of uncertainty and by acknowledging how uncertainty limits the value of
amodel asa*“truth generator.” Modelers should take care to estimate, quantify, and communicate
uncertainties accurately to users and regulators. Any limitationsin temporal or spatial scales should be
stated clearly. The quality of the input data and the resulting limitations on the range of use for the model
should be explained in terms of the intended use of the model. Sensitivity to aternative inputs or
assumptions should be documented.

As discussed in Chapter 4, interactive graphics would allow the policy maker to choose values of
one or more key parameters and then view the conditional distribution of the net benefit, given these
parameters. However, interactive computer programs are no substitute for human interaction, and the
committee strongly encourages extensive interaction between scientists and policy makers when policy
makers can ask various “what-if”-type questions to help them think through their decisions. Policy
makers need to be informed explicitly of the impacts of changing assumptions about highly uncertain
parameters in atechnical analysis, these impacts should not be buried in the analysis.

Communication of Modelsto Decision Makers

As discussed earlier in this report, models can be best viewed as tools providing input into
decisions rather than as truth-generating machines that make decisions. The implications of thisfinding
are clear. Although policy makers may desire an answer from amodel, a bright line per se, models are
best considered to be one source of input into the regulatory process. The challenge thenisto
communicate model results and improve the education of policy makers about the capabilities and
limitations of the models.

The focus of this effort istypically the EPA policy makers, but it can also include stakeholders
who use a model to provide information to EPA, stakeholders who want independent evaluation of the
utility of aregulatory model, or even members of the public who must decide whether to change
behaviors or to take other actions based on model results. Most of these individuals have one thing in
common—they are not technically expert modelers. However, most expert modelers are not expert in
issues surrounding decision making. How then can this gap be bridged? One method isto continueto
improve model accessibility. Accessibility motivates the committee’ s recommendation regarding the
maintenance of amodel’s history, including a“plain English” guide to the model. It also motivates the
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committee’ s recommendation to continue to improve the transparency of modeling for regulatory decision
making, including through web-based tools.

Decision makers should be involved in each stage of model development and use. Their
involvement in all aspects of model use, from problem formulation and development of the model’s
conceptual basisto its application, is fundamental to the appropriate use of models. Such involvement
requires successful communication between modelers and decision makers, with emphasis on “ between”
rather than on “from” oneto the other. Both parties have responsibilities to teach and to learn. For major
decisions, these responsibilities often must be carried out under tight time constraints in a controversial
atmosphere. The modelers need to do more than describe the processes used (for example, peer and
stakeholder reviews). They need to describe the modeling elements in an understandable way to a
nonexpert. For such communications, it is more about the elements of the model than the precise
algorithm used. As described by Voltaggio (2004) when discussing the role of an EPA deputy regional
administrator in understanding modeling analysis, the typical questions asked by such decision-makers
are related to the assumptions in the model, the quality of the inputs, and the sensitivities of the model
results to uncertainties in inputs and other factors. In such cases, decision makers may be relatively
ignorant of the model’ s inner workings.

It also isimportant for modelers to involve decision makersin the development of uncertainty
analysis to ensure that decision makers incorporate their policy expertise and preferences into such
assessments.  Visualization techniques can be very useful to communicate with decision makers and
others, especially when probabilistic approaches are used. However, as noted by Morgenstern (2006), a
large body of research on decision makers shows that the manner in which uncertainty information is
presented can affect itsinterpretation. One conclusion that came from interviews with EPA decision
makers was the need for more contextual information to accompany any graphic or tabular
representations of model uncertainties (Krupnik et a. 2005).

Communication between modelers and a single decision maker can be valuable for al who
participate in the regulatory process. The trandation of amodel from highly technical to more common
usage language for an EPA official, for example, can be used by all interested parties. An accessible
model evaluation plan helps all.

PROPRIETARY MODELS

At the point of model selection, aregulatory agency may decide to use a proprietary model. A
model is proprietary if any component that is afundamental part of the model’s structure or functionality
isnot available for free to the general public. Components include source code, mathematical equations,
input data, user interfaces, or supplemental third-party software (excluding operating systems or
devel opment software). Components may also include assumptions or computational methods. A model
under copyright is not necessarily proprietary if the model isfreely available in its entirety.

The argument for using proprietary modelsis that, without meaningful intellectual property
protections, modelers in the private sector would not have incentives to develop sophisticated models.
The arguments against using proprietary models in the regulatory arena have been articulated by
environmental groups and industry groups (Sass 2004; Slaughter 2004). Proprietary models to these
stakeholders are directly at odds with the goals of open government and transparency.

Motivationsfor Keeping Information Proprietary

In some cases, proprietary models are used because one might happen to provide the most reliable
and dependable output for a specific application. Efforts should be taken to use an open-source model
when available; however, model developers might be motivated to maintain the proprietary nature of the
models that they develop. These mativations include profit from selling, updating and maintaining the
model, training users on the model, and protecting trade secrets.
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The best way for amodeler to protect hisintellectual investment in amodel isto claim trade-
secret protection. Protection isimmediate and is accomplished by insisting that the model and its
contents are secret. There are two main difficulties in evaluating the legitimacy of atrade-secret claim on
proprietary models in terms of whether it ultimately servesthe public interest. First, the owner of the
proprietary information has the best information concerning whether there is alegitimate competitive
advantage to keeping the information secret, thus, making it hard for outsiders to evaluate, especialy if
the owner has other, overlapping reasonsto insist on confidentiality (such asto avoid controversy over
assumptions and to retain control over the running of the model). Second, it is difficult to evaluate
empirically whether providing secrecy to model developers will spur innovation. In other words, would
modelers still develop models for the marketplace with private dollars, even without trade-secret
protections?

Proprietary Aspects of Environmental Models

The CREM guidance defines a proprietary model as one in which the source code is not
universally shared (EPA 2003c). However, amodel can also be classified as proprietary if any
component of the model is proprietary, including the source code, the input data, or third-party software.
These three components are explained in Box 5-7.

The committee heard presentations on three case histories of proprietary models. The Integrated
Planning Model (IPM) isalong-term capacity expansion and production costing model for analyzing the
electric power sector. It was developed by |CF International and is used by EPA and awide variety of
other groups to assess environmental regulatory activities that affect this sector (Napolitano and
Lieberman 2004). The model is used because of its detailed representation of the system, including rich
representations of dispatch decisions, capacity expansion, and emission-control options. A key element
of the proprietary nature of this model is the thorough representation of the electricity sector. The
DEEM-CALANDEX models are used widely to estimate multiple-pathway human exposure models for
pesticides. These models were developed by Exponent Inc. The key proprietary feature of these models
istheir user-friendly interface and ability to do multiple analyses quickly (Petersen 2004). The
TRANSIMS model predicts vehicle travel on highways and then that information is used as input into
mobile-source emissions models. Currently, TRANSIMS is aresearch model developed by Los Alamos
National Laboratory for the U.S. Department of Transportation. IBM has been hired to commercialize
this model by developing user interfaces that will alow users to develop model input, run the model, and
visualize the output (Ducca 2004).

Alternativesfor Using Proprietary Models

It might be risky to ignore the purported benefits of proprietary modelsif they appear to be
playing an important role in advancing the science of modeling. However, the committee notes that
distrust of proprietary models was shared by both a representative of an environmental organization (Sass
2004) and a representative of a pro-business group advocating for regulatory reform (Slaughter 2004).
Agencies such as EPA could use arange of alternatives to justify the use of proprietary models, to
provide some oversight of these models' reliability, and to limit the potential use of such models. The
objective of these alternativesisto have the rigor applied to EPA-developed models also be applied to
external models used by EPA in the regulatory process. Many of these issues were discussed by
Napolitano and Lieberman (2004) and Petersen (2004).

e Anagency could bargain for the added right to disclose publicly the contents of the model. In
this case, the agency would pay the model owner to give up hisright to keep the information secret. The
problem is that the model owner may charge avery large fee to transfer ownership of the model.
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BOX 5-7 Proprietary Components of Environmental Models

1. Thesourcecode: This code defines the fundamenta function of the model, for example, the
computational solution of the mathematical equations representing the underlying theory or code that
defines the auxiliary features of the model (for example, graphic user interface). Generally, an
executable file will be provided to the user when the source code is not available. Because most if not all
environmental models have an underlying theory that iswell known, the first type of code will probably
only occur if the model owner considers the computational solution (including any assumptions) to be of
value, for example, if it is complex or novel and would require considerable effort to duplicate. The
second type of code is amore common scenario with environmental models because “ usability” is an
important value-added feature when the theory and computational solutions are widely known (for
example, Gaussian plume models and Calendex).

2. Input information: Input information might be kept proprietary if it is confidential and/or if the
information management is believed to be value added. An example of the latter case would be when the
information is public but the volume of information islarge, is frequently updated, and/or requires
extensive processing or conversion prior to model use. Thisis one important proprietary aspect of the
Integrated Planning Model.

3. Third-party software: All models to some extent rely on third-party proprietary software because they
run on an operating system, and most require a specific language compiler and interpreter, both of which
typically require alicense. All of these are developed for diverse purposes and not specifically for
regulatory applications. In other words, there is usually proprietary software used in model development
(for example, historical languages, such as FORTRAN, but also contemporary applications with
“development environments,” such as Excel, ArcView, and Analytica). Somewhat in contrast are third-
party programs that are necessary for model use, for example, to facilitate model analysis or perform
common mathematical operations. Examples of third-party software for model use are

e Numerica solvers (for example, to solve systems of ordinary differential equations or linear
programming problems).

o  Statistical analysis packages (for example, Excel and SAS).

e Database software (for example, Access and Oracle).

e Visuadlization and analysis software (for example, ArcView).

Thelineis gray between third-party software for development versus use, since amodel can be
developed in a specific application with the end use of that application in mind (for example, a GIS model).

e Anagency could require the model owner to justify the claim that the model must be kept
proprietary. The model owner would be expected to explain the competitive losses from divulging the
model, and this justification would be publicly available.

o |f the model is ultimately kept confidential, the agency could require the owner to agreeto a
limited number of “confidentiality agreements’ with an objective peer review panel (to be named later)
that would evaluate the model and provide a public report on its findings without disclosing the trade-
secret-protected information. This process ensures rigorous peer review without releasing protected
information.

e Beforeusing aproprietary model, an agency should justify why it is superior to the alternatives.
Under such a policy, proprietary models would be disfavored and used only when the agency can provide
acompelling justification for doing so.

e Anagency could insist on an expiration date for the secrecy protections on the model.

e Anagency could insist that the modeler obtain a patent rather than protect its property interest
through trade-secret protections (a patent requires the public dissemination of the contents of the model).
The problem with obtaining a patent is that it can take yearsto obtain, and it is aso uncertain that some
models can be patented. Apparently, copyright protections will work as long as the model is embedded in
software, but they will not apply to the underlying ideas in amodel (like the algorithms), and thus
copyrighting is not a viable means of protecting intellectual property in models.
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RECOMMENDATIONS
Proprietary Models

A model is proprietary if any component that is afundamental part of the model’s structure or
functionality is not available for free to the general public. The use of proprietary modelsin the
regulatory process can produce distrust among regulated parties and other interested individuals and
groups because their use might prevent those affected by aregulatory decision from having accessto a
model that may have affected the decision. There are many ways in which amodel can be proprietary,
and some are more prone to engender distrust than others. For example, amodel that uses proprietary
agorithms may cause more concern than a model that uses publicly available algorithms but has a
proprietary user interface.

Recommendations

The committee recommends that EPA adopt a preference for nonproprietary software for
environmental modeling. When developing a model, EPA should establish and pursue a goal of not using
proprietary elements. It should only adopt proprietary models when a clear and well-documented case
has been made that the advantages of using such models outweigh the costs in lower credibility and
transparency that accompanies reliance on proprietary models. Furthermore, proprietary models should
be subject to rigorous quality requirements and to peer review that is equivalent to peer review for public
models. If necessary, nondisclosure agreements could be used for expertsto perform athorough review
of the proprietary portions of the model. The review process and results could then be made public
without compromising proprietary features. General-purpose proprietary software (for example, Excel,
SAS, and MATLAB) usually will not require such scrutiny, although EPA should be cognizant of the
costs that obtaining and using such software may impose on interested parties.

Extrapolation

Model usein the environmental regulatory process may involve using the model to extrapolate
beyond conditions for which the model was constructed or calibrated or conditions for which the model
outputs cannot be verified. For example, it might be necessary to extrapolate laboratory animal datato
assessments of possible human effects or to extrapolate the recent history of global environmental
conditions to future conditions. In these circumstances, uncertainties about the form of amodel and the
parameters in the model might yield large uncertaintiesin model outputs. This problem can be
compounded by making a model more complex if the additional processes in the more complex model are
unimportant; any extra parameters that need to be estimated could degrade the confidence in the estimates
of al parameters.

Recommendations

Extrapolating far beyond the available data for the model draws particular attention in the
evaluation process to the theoretical basis of the model, the processes represented in the model, and the
parameter values. When critical model parameters are estimated largely on the basis of matching model
output to historical data, care must be taken to provide uncertainty estimates for the extrapolations,
especially for models with many uncertain parameters.



6

Future Modeling I ssues

Modeling will continue to have a central role in future environmental regulatory activities. This
is because models are at the nexus of science and policy (Gilman 2005). Critical for this endeavor will be
how models incorporate the ever-increasing amounts of observations of natural and human processes and
environmental impacts. Vast new measurement programsin fields as diverse as genomics to earth
observation systems at scales from the nano to the global pose significant opportunities and challenges for
modeling. Although observations alone can influence policy, it is the analysis of thisinformation with
models that will alow the full realization of the importance of these measurement programs.

Environmental regulatory modeling also will be greatly influenced by new scientific
understandings and enhanced modeling technologies. The potential to incorporate greater understanding
of environmental processes, such as the creation of airborne particulate matter from gaseous precursors
and the physiological and pharmacokinetic absorption, disposition, metabolism, and excretion of a
chemical in the body, is already offering great improvements to modeling capabilities. However, the new
information and capabilities come at atime of increasing demand for greater scrutiny of regulatory
activities by stakeholders and the public. Thus, improving environmental regulatory modeling does not
necessarily imply using the most complex models. New modeling technol ogies, including devel oping
modular modeling codes or user-friendly programming languages, also can improve modeling
transparency and can better match complexity needs to computational tools.

EXPANSION OF MEASUREMENT SYSTEMS

The relationship of models to measurements has been a critical issue throughout the history of
modeling. The rapid increase of information about environmental processes, human-environment
interactions, and human and environmental impacts brings new challenges to this relationship in the
future. The spectrum of new information that will be available to the environmental regulatory processis
vast and beyond the scope of this report. Two examples are discussed to indicate the diverse sources of
information that have the potential to be available to modeling.

One end of the spectrum could be considered the genomics revol ution, which has enabled the
analysis of al the genesin acell at the DNA, mRNA, protein, or metabolite level (NRC 2006b). These
tools can be used to better understand the susceptibility of individuals or subpopulations to chemicals, as
well as their responses to chemicals (toxicogenomics). For example, genomics tools provide a means to
examine changes in gene expression and to examine how these indicators might be used to understand
human health impacts (EPA 2004g). Although the capability to understand the potential for toxicants to
impact human genes has been present for many years, the innovation of high throughput testing
technologies has profoundly expanded the capability to better measure genomic changes (NRC 2006b).
The dramatically increasing amounts of information from genomic technol ogies have spawned a new
science called infomatics to enable orderly analysis of vast data sets. Infomatics includes awide variety
of statistical and other computational models at the “research” level rather than at the “regulatory” level at
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thistime. However, substantially more sophisticated computational toxicology methods, including the
use of computational models of biological systems and phenomena, will be needed to link genomics data
to quantitative estimates of human health risks before the full potential for thisinformation will be
realized (NRC 2006b).

Another end of the spectrum of measurement systems that will influence regulatory modeling is
the rapid increase in data from environmental satellites and westher data (Foley 2005). The information
from these systems provides atruly global climate observation system as well as highly resolved spatial
and temporal observations of meteorological phenomenon (Bates 2004). Such measurements may help to
discern information on climatic variability, water resources, ecosystem changes, air pollution episodes,
and awide array of other possible applications. Although the sheer volume of data creates unprecedented
challenges for data-handling operations, a more fundamental challenge isthe scientific use of this
information (Kahn 1997).

IMPROVEMENTSIN MODEL METHODSAND TECHNOLOGIES

Aswith the wide range of new measurement systems that are potentially available, awide range
of modeling approaches and technologies are increasingly applied in the environmental regulatory setting.
Again, the spectrum of possible technologies and methods is vast and beyond the scope of this report.
The committee discusses two areas as examples: integrated environmental modeling approaches and user-
friendly modeling technologies.

One areaisthe increasing development of integrated modeling approaches. A major difference
between “today’ s’ approach and “tomorrow’s” approach may be that high-quality models can enable an
assessor to describe computationally with reasonable accuracy the relationships depicted in Figure 2-1 in
Chapter 2—from source emissions and human activities that give rise to these emissions to adverse
outcomes. The continuum from sources to human health responses in the human health risk assessment
paradigm is described in many sources (e.g., NRC 1983, 1994, Lioy 1990) and demonstrated in the
approach taken by the National Research Council committee in developing research priorities for airborne
particulate matter (NRC 1998, 1999b, 2001d, 2004c). Recent advances in modeling tools have greatly
enhanced the capabilities to perform computationally intensive multiscale source-to-dose and exposure
assessment for awide range of environmental contaminants (Foley et al. 2003). For example,
Georgopoulos et al. (2005a,b) described an integrated source-to-dose modeling framework for assessing
population exposures to fine particul ate matter, ozone, and air toxics that links emissions, meteorological,
air quality, exposure, and dosimetry models. The use of integrated modeling approaches for the
environment is not confined to the human health risk assessment field.

Other examples of such integrated environmental modeling approaches that are emerging can be
found in the following fields:

o Watershed modeling—The BASINS modeling framework includes watershed nutrient loading
and transport models and instream water quality models that operate with a geographical information
system (EPA 2001d);

o Risk assessment—The TRIM.FaTE model is a multimedia compartmental model to help assess
multimedia chemical fate, transport, and exposure and risk of pollutants in the ambient environment
(Efroymson and Murphy 2001; EPA 2003e) ;

o Hazardous waste risk assessment—The multimedia, multipathway, and multireceptor exposure
and risk assessment (3MRA) model can assess potential human and ecological health risks using
transport, fate, exposure, and toxicity (EPA 2003g);

e Globa change fields—These models link models of energy-economic processes to environmental
models (e.g., Rotmans 1990; Holmes and Ellis 1999) and models that link air quality, weather, and
climate (Jacobson 2001; Liao et a. 2003, 2004);

These integrated modeling frameworks are typically written in amodular form, as discussed in
Chapter 3, which allows usersto easily add or remove parts of the model to tailor individual applications
to the problem at hand. Software platforms, such as the framework for risk analysisin multimedia
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environmental systems (FRAMES), are often used to link models and databases under one integrated
system. Typicaly, auser interface facilitates such development.

However, the ever-larger and more-sophisticated models may not necessarily make better
regulatory tools. Clarke (2004) and Perciasepe (2005) raise the possibility that pursuing larger and more-
sophisticated models make them less and less able to be evaluated and more impenetrable to the public
and decision makers.

Other modeling technol ogies have attempted to improve transparency and build a stronger bridge
to the public and decision makers through the use of user-friendly graphic simulation software. One
approach is to utilize object-oriented programming languages that allow individual components of a
model to be visually and mathematically linked in auser environment that displays how different
elements of amodel interrelated and that allows users to easily modify the relationship among
components. One use of this approach has been in conflict resolution over water resources. Known as
share-vision modeling, it involves the common development of a single model or modeling framework by
adiverse group of stakeholdersinvolved in awater resources issue facilitated by object-oriented
programming software (Lund and Palmer 1997). This approach has been recommended by the Institute
for Water Resources as away to bridge the gap between the specialized water models and the human
decision process (Werick 1995).

CHANGESIN PERSPECTIVESON MODEL USE IN
REGULATORY DECISION MAKING

The use of modelsin the regulatory processin the future also may be affected by changing
perspectives of decision makers on the most effective way to use them. Two general approaches are
weight-of-evidence and adaptive management strategies. The weight-of-evidence approach has been used
long before the original National Research Council’s “Red Book” on risk assessment practices (NRC
1983), although definitions and methods for carrying out weight-of-evidence analyses vary (Weed 2005).
However, al definitions in the modeling setting recognize that models cannot be used to define a precise
“bright line,” for example, between attainment and nonattainment of ambient environmental standards.
Dolwick (2005) described how the regiona air quality modeling community evolved from using models
to define in an absolute sense whether alocation’s emissions reduction plans will result in attainment of
National Ambient Air Quality Standards (NAAQS) to using models in a weight-of-evidence approach as
the primary element in a suite of tools that includes emissions and air quality monitoring. EPA (2006n)
described the agency’ s guidance on implementing the weight-of-evidence approach for ozone, fine
particulate matter, and regional haze standards. The Air Quality Management (AQM) Work Group,
which is composed of stakeholders from state and local governments and some industry and nonprofit
organizations, endorsed the weight-of-evidence approach as a way to reduce reliance on modeling data as
the centerpiece for air quality attainment demonstrations and increase the use of monitoring data and
analyses of monitoring data (AQM Work Group 2005). Although the weight-of-evidence approach
appropriately recognizes that models are not “truth generators,” it must be used in an unbiased manner so
that, for example, it isno more likely to be used to relax regulatory requirements than to strengthen them,
even when modeling uncertainties cut both ways (NRC 2004a).

Adaptive strategies recognize the importance of improving environmental management strategies
as new measurements and modeling analyses become available. Although providing a single definition
for such terms as “ adaptive management” and “ adaptive implementation” suffers from the same problem
as defining weight of evidence, some environmental regulatory activities clearly recognize an adaptive
approach in which management strategies are later modified based on new modeling, measurements, and
research. For example, the Clean Air Act calls for the NAAQS for each criteria pollutant to be reviewed
periodically to consider recent scientific findings. The objective of thisreview isto decide whether the
current NAAQS for that pollutant should be revised. Although the process of reviewing and
implementing changes in the standards is cumbersome and has not been kept up with the 5-year review
cycle mandated in the legidation, the history of the Clean Air Act has seen important revisionsto air
quality standards as aresult of these reviews. Another exampleisin the cleanup of large mining
megasites, where the amount and wide distribution of contaminated materials preclude complete
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remediation with traditional cleanup approaches envisioned under the Superfund Act. EPA recognizes
that many contaminated mining megasites will require operation and maintenance in perpetuity (EPA
2004h). Under conditions where remediation is along-term process involving many separate projects,
some of which cannot be specified at the outset, the agency is forced into an adaptive approach requiring
periodic progress reviews and adjustments to unsuccessful remedies. An NRC report focusing on mine-
related contamination in the Coeur D’ Alene River Basin mining megasite recommended that EPA
establish arigorous, adaptive management process for such mining megasites, a process having well-
defined performance milestones, monitoring strategies, and evaluation criteria (NRC 2005a, Gustavson et
al. 2007). A final example of an adaptive strategy in environmental regulatory activitiesis the California
Air Resources Board (CARB) process for periodic review and revision, if necessary, of California motor-
vehicle emissions standards (NRC 2005c¢). Because of the far-reaching and long-term nature of the
Cadlifornia standards, CARB committed to a biennia review of its motor-vehicle emissions standards
program to monitor manufacturer compliance plans, to identify any problems with the feasibility of its
demanding program, and to modify the standards if deemed necessary (e.g., CARB 1994, 2000b). This
process resulted in modifications to California s standards, most notably to its zero emissions vehicle
mandate (CARB 2004).

IN CLOSING

Models have a prominent future in the environmental decision-making process because their
value clearly outweighs their inherent imperfections. The use of environmental regulatory modelsin the
future will haveto deal effectively with the vastly increasing amounts of data, improvements in modeling
methods and technologies, and changing perspective on how best to use the results of modelsin the
regulatory process. The imperfect nature of modeling means that models will always have the potential
for improvement through the integration of new scientific understandings and data sources. However, no
advances in science, no matter how great, will ever make it possible to build a scientifically complete
model or prove that a given model is correct in all respects. In addition, a more complete model is not
necessarily abetter one for the purposes of policy making. A good model is one that achieves the right
bal ance between simplicity and complexity to address the question at hand.

The history of environmental analysis has focused on the primary need to understand the
impacts of humans on the environment and to assess potential strategies to mitigate adverse impacts. This
was the abjective of Man and Nature (Marsh 1864) over 150 years ago—to describe “the character and
approximately the extent of the changes produced by human actionsin the physical conditions of the
globe....” and to “suggest the possibility and the importance of the restoration of disturbed harmonies’.
Although the extent of the impacts and the models used to analyze impacts and devel op responses |ook
quite different today, these fundamental objectives remains the same. However, the successful use of new
discoveries concerning environmental and human interactions is dependent on a holistic approach to
generating data and interpreting the meaning of such data. Computational models will continue to
provide linkages for interpretation, but as science gets more complex, it can easily become more isolated
from nonscientists, whose distrust of science might increase. Ultimately, this can seriously damage the
scientific endeavor. Thus, it isincumbent on both scientists and nonscientists to develop a strong
communication bridge. Scientists need to find ways to express their findings to nonscientists.
Nonscientists also have an obligation to seek more in-depth understanding of science. Finally, both
scientists and nonscientists need to resist the temptation of wanting models to provide simple answersto
the complex questions of the interrelationships of humans and the environment.



Epilogue

“Any philosophy that in itsquest for certainty ignoresthereality of
the uncertain in the ongoing processes of nature deniesthe
conditions out of which it arises.”

John Dewey, The Quest for Certainty, 1929
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Glossary

Accuracy — Closeness of a measured or computed valueto its “true” value, where the “true” valueis
obtained with perfect information. Due to the natural heterogeneity and stochasticity of many
environmental systems, this“true” value exists as a distribution rather than a discrete value. In these
cases, the “true” value will be afunction of spatial and temporal aggregation.

Acid Deposition — A comprehensive term for the various ways acidic compounds precipitate from the
atmosphere and deposit onto surfaces. It can include (1) wet deposition by means of acid rain, fog, and
snow; and (2) dry deposition of acidic particles (aerosols).

Acute Exposure— One or a series of short-term exposures generally lasting less than 24 hours.

Acute Health Effect — A health effect that occurs over arelatively short period of time (e.g., minutes or
hours). The term is used to describe brief exposures and effects that appear promptly after exposure.

Algorithm — A set of mathematical steps or procedures used for solving a problem.

Air Toxics— Also known astoxic air pollutants or hazardous air pollutants are those pollutants known to
or suspected of causing cancer or other serious health problems. The Clean Air Act Amendments of 1990
listed 189 of these air toxics as hazardous air pollutants (HAPs) because of their potential to be
carcinogens, respiratory toxicants, neurotoxicants, or cause other harmful effects. They are differentiated
from criteriaair pollutants under the air quality management system laid out by the Clean Air Act.

Ambient Air — The air outside of structures. Often used interchangeably with “outdoor air.”

Analytical Models—Models that can be solved mathematically in closed form. For example, some model
algorithms that are based on relatively simple differential equations can be solved analytically to provide
asingle solution.

Application Niche — The set of conditions under which the use of amodel is scientifically defensible.

Bayesian analysis— An approach to statistical analysis that is based on Bayes's Theorem, which states
that the posterior probability of a parameter p is proportiona to the prior probability of parameter p
multiplied by the likelihood of p derived from the data collected. The Bayesian approach attempts to keep
track of how a-priori expectations about some phenomenon of interest can be refined, and how observed
data can be integrated with such a-priori beliefs, to arrive at updated posterior expectations about the
phenomenon. The Bayesian approach to decision-making incorporates new information or data into the
decision process. It allows the analyst to use both sample (data) and prior (expert-judgment) information
in alogically consistent manner in making inferences. As further information becomes available, the
original assumptions are refined and/or corrected.
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Bias — Systematic deviation between ameasured (i.e., observed) or computed value and its “true” value.
Biasis affected by faulty instrument calibration and other measurement errors, systematic errors during
data collection, and sampling errors such as incompl ete spatial randomization during the design of
sampling programs.

Biologically Based Dose-Response (BBDR) Model — A predictive model that describes biological
processes at the cellular and molecular level linking the target organ dose to the adverse effect. BBDR
models predict dose-response relationships on the basis of principles of biology, pharmacokinetics, and
toxicology.

Boundaries— The spatial and temporal conditions and practical constraints under which environmental
data are collected. Boundaries specify the area or volume (spatial boundary) and the time period
(temporal boundary) to which adecision will apply.

Boundary Conditions— The physical conditions at the boundaries of a system or at the edges of the
region being model ed.

Calibration — The process of adjusting model parameters within physically defensible ranges until the
resulting predictions give the best possible fit to the observed data.

Catalytic Converter — A mobile source emissions control device designed to reduce emissions of
nitrogen oxides, hydrocarbons, and carbon monoxide.

Chronic Exposur e — Long-term exposure, usually lasting one year to alifetime.

Chronic Health Effect — A health effect that occurs over arelatively long period of time (e.g., months or
years).

Clean Air Act (CAA) — Federal legidation administered by the EPA that serves as the primary means of
regulating ambient air quality in the United States. The original Clean Air Act inthe US was passed in
1963, but most of the national air pollution control program is based on the 1970 version of the law. The
1990 Clean Air Act Amendments (CAAA90) are the most recent revisions of the law.

Clean Water Act (CWA) — Federal legislation administered by the EPA that serves as the primary means
of regulating the surface water quality of the United States. The original legislation was passed in 1972 as
the Federal Water Pollution Control Act and became known as the Clean Water Act after Congress passed
amendmentsto it in 1977.

Community Multi-Scale Air Quality (CMAQ) Model — An air quality model designed to simulate and
model awide range of physical and chemical processesrelating to air quality at particular scalesin the
lower atmosphere over aregiona and sub-regional scale.

Code — Instructions, written in the syntax of a computer language, which provide the computer with a
logical process. Code may also be referred to as computer program. The term code describes the fact that
computer languages use a different vocabulary and syntax than algorithms that may be written in standard
language.

Code of Federal Regulations (CFR) — Document that codifies all rules of the executive departments and
agencies of the federal government. It is divided into fifty volumes, known astitles. Title 40 of the CFR
(referenced as 40 CFR) lists all environmental regulations.
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Computational Model — A model that is expressed in formal mathematics using equations, statistical
relationships, or acombination of the two. Though values, judgment, and tacit knowledge are inevitably
embedded in the structure, assumptions, and default parameters, computational models are inherently
guantitative, relating phenomena through mathematical relationships and producing numerical results.

Computational Toxicology — The application of mathematical and computer models to predict the effect
of an environmental agent and elucidate the cascade of events that result in an adverse response. It uses
technologies devel oped in computational chemistry (computer-assisted simulation of molecular systems),
molecular biology (characterization of genetics, protein synthesis, and molecular eventsinvolved in
biologic response to an agent), bioinformatics (computer-assisted collection, organization, and analysis of
large datasets of biologic information), and systems biology (mathematical modeling of biologic systems
and phenomena). The goals of using computational toxicology are to set priorities among chemicals on
the basis of screening and testing data and to develop predictive models for quantitative risk assessment.

Conceptual Model — An abstract representation that provides the general structure of a system and the
relationships within the system that are known or hypothesized to be important. Many conceptual models
have as a key component a graphical or pictorial representation of the system.

Contaminant — A substance that is either present in an environment where it does not belong or is
present at levels that might cause harmful (adverse) health effects.

Corraboration (M odel) — Quantitative and qualitative methods for evaluating the degree to which a
model corresponds to reality. In some disciplines, this process has been referred to as validation. In
general, the term “ corroboration” is preferred because it implies a claim of usefulness and not truth.

Criteria Air Pollutants— An air pollutant for which National Ambient Air Quality Standards have been
set. There are six common air pollutants (carbon monoxide, lead, nitrogen dioxide, ozone, particulate
matter, and sulfur dioxide) that have been designated as criteria pollutants. The Clean Air Act states that
the presence of criteria pollutantsin the ambient air results from numerous or diverse mobile or stationary
Sources.

Cumulative Risk — The combined risks from aggregate exposures to multiple agents or stressors.

Design Standard — A technol ogy-based standard that requires emitters to use a specific technology to
control emissions of a pollutant. These can also be called engineering standards.

Deter ministic Model — A mathematical model which contains no random (stochastic) components;
consequently, each component and input is determined exactly. Because this type of model does not
explicitly simulate the effects of data uncertainty or variability, changesin model outputs are solely due to
changes in model components.

Domain (Spatial and Temporal) — The limits of space and time that are specified within amodel’s
boundary conditions (see boundary conditions).

Domain Boundaries (Spatial and Temporal) — The spatial and temporal domain of amodel are the
limits of extent and resolution with respect to time and space for which the model has been devel oped and
over which it should be evaluated.

Dose — The amount of a contaminant that is absorbed or deposited in the body of an exposed person for
an interval of time—usually from a single medium. Total dose is the sum of doses received by
interactions with all environmental mediathat contain the contaminant. Units (mass) of dose and total
dose are often converted to units of mass or contaminant per volume of physiological fluid or mass of
tissue.
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Dose-Response Relationship — The relationship between a quantified exposure (or dose) and a quantified
effect

Emissions Budget — Allowable emissions levelsidentified as part of a state implementation plan for
pollutants emitted from mobile, industrial, stationary, and area sources. These emissions levels are used
for meeting emission reduction milestones, attainment, or maintenance demonstrations.

Emissions Factor — For mobile sources, the emission factor is the relationship between the amount of
pollution produced and the number of vehicle miles traveled. For stationary sources, the relationship
between the amount of pollution produced and the amount of raw material processed or burned. By using
the emission factor of a pollutant and specific data regarding activities (quantities of materials used by a
given source or number of miles traveled), it is possible to compute emissions for the source.

Emissions Inventory — An estimate of the amount of a pollutant emitted into the atmosphere from major
mobile, stationary, area-wide, and natural sources over a specific period of time such asaday or ayear.

Emission Rate — The weight of a pollutant emitted per unit of time (e.g., tonslyear).

Empirical Model — An empirical model is one where the structure is determined by the observed
relationship among experimental data. These models can be used to develop relationships that are useful
for forecasting and describing trends in behavior but may not necessarily be mechanistically relevant.

Environmental Regulatory Model — A computational model used to inform the environmental
regulatory process. Some models are independent of a specific regulation, such as water quality or air
quality models that are used in an array of application settings. Other models are created to provide a
regulation-specific set of analyses completed during the development and assessment of specific
regulatory proposals. The approaches can range from single parameter linear relationship models to
models with thousands of separate components and many billions of calculations.

Epidemiology — The study of the distribution and determinants of disease or health status in a population;
the study of the occurrence and causes of health effects in humans.

Evaluation (Model) — The process used to generate information to determine whether amodel and its
results are of aquality sufficient to serve asthe basis for aregulatory decision.

Evapor ative Emissions — Hydrocarbon emissions that do not come from the tailpipe of a car, but come
from evaporation, permeation, seepage, and leaks in a car’ s fueling system. The term is sometimes used
interchangeably with nontailpipe emissions.

Ex Ante— Analysis of the effects of a policy based only on information available before the policy is
undertaken. Also termed prospective analysis.

Ex Post — Analysis of the effects of a policy based on information available after the policy has been
implemented and its performance observed. Also termed retrospective analysis.

Exceedance — An air pollution event in which the ambient concentration of a pollutant exceeds a
National Ambient Air Quality Standard (NAAQS).

Expert Elicitation — A process for obtaining expert beliefs about subjective quantities and probabilities.
Typically, structured interviews and/or questionnaires are used to elicit the necessary knowledge. Expert
elicitations may also include “coaching” techniques to help the expert conceptualize, visualize, and
guantify the knowledge being sought.
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Exposur e — Contact between an agent and atarget. Contact takes place at an exposure surface over an
exposure period, which is the time of continuous contact between an agent and a target

Exposur e Assessment — The process of characterizing the magnitude, frequency and duration of
exposure to an agent, along with the number and characteristics of the population exposed. Idedlly, it
describes the sources, pathways, routes, and the uncertainties in the assessment.

Exposur e Pathway — The course a substance takes from its source (where it began) to its end point
(where it ends), and how people can come into contact with (or get exposed to) it. An exposure pathway
has five parts: a source of contamination (such as an abandoned business); an environmental media and
transport mechanism (such as movement through groundwater); a point of exposure (such as aprivate
well); aroute of exposure (eating, drinking, breathing, or touching), and a receptor population (people
potentially or actually exposed). When al five parts are present, the exposure pathway istermed a
compl eted exposure pathway.

Genomics— The study of genes and their function.

Greenhouse Gas — Atmospheric gases such as carbon dioxide, methane, chlorofluorocarbons, nitrous
oxide, ozone, and water vapor that slow the passage of re-radiated heat through the Earth’ s atmosphere.

Hazardous Air Pollutants (HAPs) — Air toxics listed under section 112(b) of the Clean Air Act
Amendments of 1990.

Hazard Assessment — The process of determining whether exposure to an agent can cause an increase in
the incidence or severity of aparticular health effect (e.g., cancer, birth defect).

I nfor matics (Bioinfor matics) — The science of managing and analyzing vast amounts of biological data
using advanced computing techniques. Especially important in analyzing genomic research data.

Marginal Benefit — The additional benefit gained from one more unit of output. In terms of reducing
emissions, it represents the benefits from reducing emissions by one more unit.

Marginal Cost — The additional cost associated with producing one more unit of output. In terms of
reducing emissions, it represents the cost of reducing emissions by one more unit.

Modd — A simplification of reality that is constructed to gain insights into select attributes of a particular
physical, biological, economic, or social system. Models can be of many different forms. They can be
computational. Computational models include those that express the rel ationships among components of
asystem using mathematical relationships. They can be physical, such as models built to analyze effects
of hydrodynamic or aeronautical conditions or to represent landscape topography. They can be empirical,
such as statistical models used to relate chemical properties to molecular structures or human dose to
health responses. Models also can be analogs, such as when nonhuman species are used to estimate
health effects on humans. And they can be conceptual, such as aflow diagram of a natural system
showing relationships and flows amongst individual components in the environment or a business model
that broadly shows the operations and organization of a business. The above definitions are not mutually
exclusive. For example, a computational model may be devel oped from conceptual and physical models
and an animal analog model can be the basis for an empirical model of human health impacts.

M odule — An independent or self contained component of a model which is used in combination with
other components and forms part of one or more larger programs.

National Ambient Air Quality Standards (NAAQS) — Standards set by EPA for the maximum level s of
criteriaair pollutants that can exist in the outdoor air without adverse effects on human health or the
public welfare. There are four elements of a NAAQS (1) the pollutant indicator (such as PM;5s), (2) the
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concentration of the indicator in the air, (3) the time over which measurements are made or averaged, and
(4) the statistical form of the standard used to determine the allowable number of exceedances (such as
the 4™ highest value over a 3-year period).

National Pollution Dischar ge Elimination System (NPDES) — Federal regulations that regulate
discharge of wastewater to surface waters such as streams, rivers, lakes, and estuaries. An NPDES permit
isrequired for any project involving the construction, alteration, and/or operation of any sewer system,
treatment works, or disposal system and for construction of certain stormwater runoff structures which
would result in a discharge into surface waters.

Nonattainment Area — A geographic area designated by the EPA to have concentrations of a criteria
pollutant in excess of a NAAQS. A single geographic area may have acceptable levels of some criteriaair
pollutants but unacceptable levels of others; thus, an area can be both an attainment area for one pollutant
and a nonattainment area for another.

Nonpoint Sour ce Pollution — Sources of water pollution not associated with a distinct discharge source;
includes rainwater, erosion, run-off from roads, farms, and parking lots, and seepage from soil-based
wastewater disposal systems.

Parameters— Termsin the model that are fixed during a model run or simulation but can be changed in
different runs as a method for conducting sensitivity analysis or to achieve calibration goals.

Photochemical Reaction — A term referring to a chemical reaction brought about by sunlight, such asthe
formation of ozone from the interaction of oxygen and nitrogen oxides and/or hydrocarbonsin the
presence of sunlight.

Physiologically Based Phar macokinetic (PBPK) Model — A model that estimates the dose to a target
tissue or organ by taking into account the rate of absorption into the body, distribution among target
organs and tissues, metabolism, and excretion.

Plume — A volume of a substance that moves from its source to places farther away from the source.
Plumes can be described by the volume of air or water they occupy and the direction they move. For
example, a plume can be a column of smoke from a chimney or a substance moving with groundwater.

Paint Sour ce Pollution — A specific discharge to awater body, ambient air, or land that is traceable to a
distinct source (pipe, smokestack, container, etc.) such as those from wastewater treatment plants, power
plants, or industrial facilities.

Precision — The quality of being reproducible in amount or performance. With models and other forms of
guantitative information, precision refers specifically to the number of decimal places to which a number
is computed as a measure of the “preciseness’ or “exactness’ with which a number is computed.

Proteomics— The study of the full set of proteins encoded by a genome.

Regulatory Impact Analysis (RIA) — An analysis document produced by EPA for each magjor
rulemaking listing the expected impacts of the rule including environmental impacts, health impacts,
cost—benefit analyses, economic impacts, small business impacts.

Reliability — The confidence that (potential) users have in amodel and in the information derived from
the model such that they are willing to use the model and the derived information. Specifically, reliability
isafunction of the performance record of a model and its conformance to best available, practicable
science.
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Robustness — The capacity of amodel to perform equally well across the full range of environmental
conditions for which it was designed.

Risk Assessment (in the context of human health) — The evaluation of scientific information on the
hazardous properties of environmental agents (hazard identification), the dose-response relationship
(dose-response assessment), and the extent of human exposure to those agents (exposure assessment). The
product of the risk assessment is a statement regarding describing the populations or individuals that are
likely to be harmed and to what degree (risk characterization).

Risk Characterization (in the context of human health) — The integration of information on hazard,
dose-response, and exposure, to provide an estimate of the likelihood that any of the identified adverse
effects will occur in exposed people.

Risk Management (in the context of human health) — A decision-making process that accounts for
political, social, economic, and engineering implications together with risk-related information to
develop, analyze, and compare management options and select the appropriate managerial response to a
potential adverse health risk.

Safe Drinking Water Act (SDWA) — Legislation to ensure safe drinking water. Passed by Congressin
1974 and amended in 1986, it directs EPA to establish and enforce water quality standards to protect
public health.

Screening Model — A type of model designed to provide a“ conservative’ or risk-averse answer.
Because screening models can be used with limited information and are conservative, they can be used to
determine whether going to more refined models would be useful or whether the screening model results
are sufficient to make decisions without proceeding to arefined model.

Sensitivity — The degree to which the model outputs are affected by changes in a selected input
parameters.

State | mplementation Plan (SIP) — A detailed description of the scientific methods and emissions
reduction programs a state will use to carry out its responsibilities under the Clean Air Act for complying
with the NAAQS. The Clean Air Act requires that EPA approve each SIP after the public has had an
opportunity to participate in its review and approval.

Stochastic Model — A model that includes variability (see definition) in model parameters. This
variability isafunction of (1) changing environmenta conditions, (2) spatial and temporal aggregation
within the model framework, (3) random variability. The solutions obtained by the model or output is
therefore a function of model components and random variability.

Susceptibility — Increased likelihood of an adverse effect, often discussed in terms of relationship to a
factor that can be used to describe a human subpopulation (e.g., life stage, demographic feature, and
genetic characteristic).

Susceptible Subgroups— May refer to life stages, for example, children or the elderly, or to other
segments of the population, for example, asthmatics or the immune-compromised, but are likely to be
somewhat chemical-specific and may not be consistently defined in all cases.

Technology-Based Standards— A type of standard that dictates polluters use specific techniques (e.g., a
particular type of pollution abatement equipment) or follow a specific set of operating procedures and
practices.

Technology Forcing — The establishment by aregulatory agency of arequirement to achieve an
emissions limit, within a specified time frame, that can be reached through use of unspecified technology
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or technologies that have not yet been developed for widespread commercial applications and have been
shown to be feasible on an experimental or pilot-demonstration basis.

Total Maximum Daily Load (TMDL) — The total waste (pollutant) loading from point and nonpoint
sources that awater body can assimilate while still maintaining its water quality classification and
standards.

Toxic Substances Control Act (TSCA) — Federal legidation administered by EPA that regulates the
manufacture, 1abeling, and distribution of chemicals outside of pesticides and drugs. It requires tests of
chemicals that may harm human health or the environment, reviews of new chemical substances, limits on
the availability of some existing chemicals, and import certification standards to ensure that imported
chemicals comply with domestic rules.

T oxicogenomics — The study of how genomes respond to environmental stressors or toxicants. Combines
genome-wide mRNA expression profiling with protein expression patterns using bioinformatics to
understand the role of gene-environment interactionsin disease and dysfunction.

Toxicology — The study of the harmful effects of substances on living organisms.

Transparency — The clarity and completeness with which data, assumptions and methods of analysis are
documented.

Variability — Variability refersto observed differences attributable to true heterogeneity or diversity.
Variability isthe result of natural random processes and is usually not reducible by further measurement
or study (although it can be better characterized).

Water Quality Criteria— Levels of water quality expected to render abody of water suitable for its
designated use. Criteria are based on specific levels of pollutants that would make the water harmful if
used for drinking, swimming, fish production, or industrial uses.

Water Quality Standards— Ambient standards for water bodies adopted by a state and approved by the
EPA that prescribe the use of the water body and establish the water quality criteria that must be met to
protect designated uses. Water quality standards may apply to dissolved oxygen, heavy metals, pH, and
other water constituents.
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techniques for hazardous waste handling, disposal, and treatment from both soil and agueous systems.

Dr. Clark is also associated with the Florida Center for Solid and Hazardous Waste M anagement through
his work on the modeling of the fate and transport of contaminants from pressure-treated wood. Dr. Clark
received his B.S. from Florida A&M University and his Ph.D. from the University of Florida.

Robert T. Clemen is an associate professor of decision sciences at the Fuqua School of Business, Duke
University. Before going to Duke, Dr. Clemen was associate professor at the University of Oregon and
senior researcher at Decision Research in Eugene, Oregon. His teaching and research interests focus on
decision analysis, especially the use of models and expert judgment for decision making. He received his
B.A. from Stanford University, M.B.A. from the University of Colorado, and Ph.D. from Indiana
University.

Judith A. Graham is the managing director of the American Chemistry Council’s (ACC) long-range
research initiative (LRI). The LRI sponsors research to advance the science of risk assessment for the
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health impacts of chemicals to support decision making by government, industry, and the public. Her
research interests include inhalation toxicology, exposure analysis, and health effects and health risks of
air pollutants. Before joining ACC, Dr. Graham was associate director for health at EPA’s National
Exposure Research Laboratory (NERL). She has served on several previous National Research Council
study committees. Dr. Graham received her Ph.D. in physiology and pharmacology from Duke
University.

Louis J. Grossisthe director of the Institute for Environmental Modeling, a professor of ecology and
evolutionary biology, and a professor of mathematics at the University of Tennessee in Knoxville. His
research interests include mathematical ecology, computational ecology, quantitative training for life
science students, photosynthetic dynamics, and parallel computation for ecological models. Heis
currently president of the Society for Mathematical Biology and recently chaired the NRC Committee on
Integrating Education and Biocomplexity Research. He received his B.S. degree from Drexel University
and his Ph.D. in Applied Mathematics from Cornell University.

Winston Harrington isasenior fellow at Resources for the Future (RFF). His research interests include
urban transportation, motor vehicles and air quality, and estimating the costs of environmental policies.
He has worked on the economics of enforcing environmental regulations, the health benefits of improved
air quality, and the costs of waterborne disease outbreaks. He received his A.B. in mathematics from the
University of North Carolinaat Chapel Hill, his M.A. in mathematics from Cornell University, and his
Ph.D. in city and regional planning from the University of North Carolina at Chapel Hill.

Philip Howard is asenior director at Syracuse Research Corporation. His expertise isin exposure and
risk assessment, environmental fate and transport modeling, and the evaluation of datarelated to the
physical and chemical properties of chemicals. He directed the design and maintenance of Syracuse
Research Corporation’s Environmental Fate Database. He also directed the information evaluation and
peer review of the Environmental Fate and Exposure section of the National Library of Medicine's
Hazardous Substance Data Bank. In addition, he isthe director of a project for EPA to review data
registration packages on the chemistry and fate of pesticidesin the environment to identify variances from
published guidelines, standard evaluation practices, and data review guidelines.

Kimberly L. Jonesis associate professor of civil engineering at Howard University. Her research
interests include physical-chemical treatment processes, membrane processes, adsorption, mass transport,
interfacial phenomenon, water and wastewater treatment plant design, and water quality. Dr. Jonesalso is
the deputy director of the Keck Center for the Design of Nanoscale Materials for Molecular Recognition.
Shereceived her B.S. in civil engineering from Howard University, her M.S. in civil engineering from the
University of Illinois, and her Ph.D. in environmental engineering from Johns Hopkins University.

Thomas E. McKoneisasenior scientist and deputy department head at the Ernest Orlando Lawrence
Berkeley Nationa Laboratory and is an adjunct professor in the School of Public Health at the University
of California, Berkeley. His research interests include the chemical transport and accumulation of toxic
chemicals in multiple environmental media (air, water, soil), devel oping multimedia compartment models
that can be used in quantitative risk assessments, and human exposure and health risk assessment. Dr.
McKone has served on previous NRCI study committees. He received his M.S. and Ph.D. in engineering
from the University of Californiaat Los Angeles.

Naomi Oreskesis an associate professor in the Department of History at the University of California,
San Diego, where she aso directs the Program in Science Studies. Her research focuses on the historical
development of scientific knowledge, methods, and practices in the earth and environmental sciences. Dr.
Oreskes has al so been avisiting associate professor in the Department of History of Science at Harvard
University. Before going to the University of California, she was an associate professor of history and
philosophy of science at New Y ork University. She was a member of the NRC Committee for the
International Union of Geological Sciences. She received her B.Sc. from University of London in
England and her Ph.D. from Stanford University.
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Spyros N. Pandis s professor of chemical engineering at the University of Patras, Greece, and Elias
Research Professor of chemical engineering and engineering and public policy at Carnegie Mellon
University. Hisresearch interests include atmospheric chemistry, atmospheric pollution modeling,
aerosol science, global change, and environmental policy analysis. Heis serving on the NRC Committee
on Air Quality Management in the United States and is a former member of the committee reviewing the
U.S. Department of Energy Office of Fossil Energy's research plan for fine particulates. Dr. Pandis
received his Ph.D. in chemical engineering from the California Institute of Technology.

Louise M. Ryan ischair of the Biostatistics Department at Harvard School of Public Health. Her
research is on statistical methods related to environmental health research and risk assessment. She has
served on advisory boards for several government agencies, including the National Toxicology Program
and EPA. Dr. Ryan has served on several previous NRC study committees. She received her Ph.D. from
Harvard University.

Michael L. Stein isa professor of statistics at the University of Chicago and director of the Center for
Integrating Statistical and Environmental Science. His research interests focus on statistical models and
methods for spatial and spatial-tempora processes. He isinterested in the nature of the spatial-temporal
interactions implied by these models and on developing statistical methods for ng these
interactions. Dr. Stein received his B.S. in mathematics from the Massachusetts Institute of Technology
and hisM.S. and Ph.D. in statistics from Stanford University.

Wendy E. Wagner is aprofessor of law at the University of Texas at Austin. Before entering teaching,
she practiced for 4 years, first as an honors attorney in the Enforcement Division of the U.S. Department
of Justice's Environment and Natural Resources Division and then as pollution control coordinator in the
U.S. Department of Agriculture Office of the General Counsel. Professor Wagner received her M.S. in
environmental studies and her law degree from Y ae University. She currently serves as an officer in the
Society for Risk Analysis and the American Bar Association's Administrative Law Section andisa
Member Scholar of the Center for Progressive Regulation.
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Public Workshop Presentationsto the
Committee on Modelsin the Regulatory Decision Process

March 18, 2004, National Academy of Sciences Main Building, Washington, DC

U.S. EPA’s Council for Regulatory Environmental Modeling
Gary Foley, Office of Research and Development, Council on Regulatory Environmental
Modeling, U.S. Environmental Protection Agency

Environmental Modeling—A Regiona Perspective
Tom Voltaggio, Deputy Administrator, Region 3, U.S. Environmental Protection Agency

Environmental Economic Models
Albert McGartland, National Center for Environmental Economics, U.S. Environmental
Protection Agency

Using Air Quality Models for Emissions Management Decisions—Making Decisions in the Face of
Uncertainty
ST. Rao, Atmospheric Sciences Modeling Division, U.S. Environmental Protection Agency

Moddl Usein the Office of Prevention, Pesticides and Toxic Substances
Joseph Merenda, Office of Prevention, Pesticides, and Toxic Substances, U.S. Environmental
Protection Agency

Modeling Leaking Underground Storage Tanks
Jim Weaver, National Exposure Research Laboratory, U.S. Environmental Protection Agency

Presentation to the Committee on Environmental Decision Making Principles and Criteriafor Models
David Burden, Groundwater Technical Support Center, U.S. Environmental Protection Agency

Overview of the TMDL Program & Modeling Approaches
TimWool, National Exposure Research Laboratory, Region 4, U.S. Environmental Protection
Agency

Modeling and Decision Making Overview
Ledlie Shoemaker, Tetra Tech, Inc.

Prepublication Copy 147



148 Prepublication Copy Modelsin Environmental Regulatory Decision Making

State Perspectives on Modeling in Support of TMDL Development
Jim George, Maryland Department of the Environment

Estimating Motor Vehicle Emissions. A Tale of 2 Models
Cecilia Ho, Federal Highway Administration

Corps of Engineers Planning Models Improvement Program
Harry Kitch, Planning & Policy Division, U.S. Environmental Protection Agency

Modelsin the Regulatory Decision Process
Timothy Miller, National Water Quality Assessment Program, U.S. Geological Survey

Comments on Behalf of the Natural Resources Defense Council
Jennifer Sass, Natural Resources Defense Council

Comments on Behalf of the Center for Regulatory Effectiveness
Scott Saughter, Center for Regulatory Effectiveness

Guidelinesfor Mode Choice in a Regulatory Environment: Sound Science Reflecting Sound Values
Adam Finkel, Senior Safety and Health Adviser, Office of the Assistant Secretary,
U.S Occupational Safety and Health Administration

Decision Making with Mobile Source Models
Gene Tierney, Director, Center for Air Quality and Modeling, U.S. Environmental Protection
Agency

December 2, 2004, Keck Center of the National Academies, Washington, DC

Methods and Applications of Uncertainty and Sensitivity Analysisfor Models Used in Regulatory
Processes
H. Christopher Frey, Professor, Department of Civil, Construction, and Environmental
Engineering, North Carolina State University

Office of Management and Budget Proposed Bulletin on Peer Review and Information Quality
Margo Schwab and John Graham, U.S. Office of Management and Budget

Building Model Confidence and Quality Considerations for Regulatory Decision Makers
Rob Howard, Bechtel-SAIC, LLC

Peer Review of Regulatory Models—The Hard Look and the Long View
Sheila Jasanoff, Centre for Population Health Risk Assessment, Harvard University

Uncertainties in Health Risk Projection Models: Implications for Risk Management
Danidl Krewski; Jan M. Zielinski; Tim Ramsay and Richard T. Burnett, McLaughlin Centre for
Population Health Risk Assessment

Interagency Steering Committee on Multimedia Environmental Modeling: Uncertainty Anaysis I ssues
George Leavesley, Chair, Interagency Seering Committee on Multimedia Environmental Models,
U.S Geological Survey

EPA Use of ICF s Integrated Planning Model
Sam Napolitano and Elliot Lieberman, Clean Air Markets Division, U.S. Environmental
Protection Agency
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Parameter and Model Uncertainty in Models for Regulatory Decision Making: Problems and
Opportunities
M. Granger Morgan, Department of Engineering and Public Palicy, Carnegie Mellon University

Wresting Regulatory Decisions from an Uncertain World
Pasky Pascual, Council for Regulatory Environmental Modeling, U.S. Environmental Protection
Agency

Why Use Proprietary Software for Risk Assessment?
Barbara Petersen, Principal Scientist Practice Director, Exponent, Inc., and Durango Software,
LLC

Expectations Regarding Peer Review of Especially Significant Regulatory Information
James D. Schaub, Office of Risk Assessment and Cost-Benefit Analysis, U.S. Department of
Agriculture

December 2, 2005, National Academy of Sciences Main Building

Dose-Response Modeling for Hazard Characterization of Environmental Contaminants
Woodrow Setzer, U.S. Environmental Protection Agency

The Use of Physiologically Based Pharmacokinetic Modeling to Improve Chemical Dosimetry in
Environmental Risk Assessments
Harvey Clewell, Centers for Health Research

Computational Systems Biology: The Integration of Data Across Multiple Levels of Biological
Organization to Understand How Perturbations of Normal Biology Become Adverse Health Effects
Rory Conolly, Center for Computational Toxicology, U.S. Environmental Protection Agency

Global Earth Observation System of Systems (GEOSS) and Environmental Regulatory Modeling
Gary Foley, U.S Environmental Protection Agency

Making Regulatory Choices: What Does Uncertainty Have to Do With It
Richard Morgenstern, Resources for the Future

Use of Modeling in Decision-Making at EPA
Robert Perciasepe, Audubon Society

Integrating Modeling and Monitoring in Adaptive Strategies to Attain Water Quality Standards
Kenneth Reckhow, Duke University

Computation in the Regulatory Environment: Solution or the Problem
Paul Gilman, Oak Ridge Center for Advanced Studies
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Categories of Environmental Regulatory M odels

As discussed in Chapter 2, models can be categorized according to their fit into a continuum of
processes that translate human activities and natural systems interactionsinto human health and
environmental impacts (see Figure 2-1). The categories of models that are integral to environmental
regulation include human activity models, natural systems models, emissions models, fate and transport
models, exposure models, human health and environmental response models, economic impact models,
and noneconomic impact models. Examples of modelsin each of these categories are discussed below.

HUMAN ACTIVITY MODELS

Anthropogenic emissions to the environment are inherently linked to human activities. Activity
models simulate the human activities and behaviors that result in pollutants. In the environmental
regulatory modeling arena, examples of modeled activities are the following:

e Demographic information, such as the magnitude, distribution, and dynamics of human
populations, ranging from national growth projectionsto local travel activity patterns on the order of
hours.

e Economic activity, such as the macroeconomic estimates of national economic production and
income, final demands for aggregate industrial sectors, prices, international trade, interest rates, and
financia flows.

e Human consumption of resources, such as gasoline or feed, may be trandated into pollutant
releases, such as nitrogen oxides or nutrients. Human food consumption is also used to estimate exposure
to pollutants such as pesticides. Resource consumption in dollar terms may be used to assess economic
impacts.

o Distribution and characteristics of land use are used to assess habitat, impacts on the hydro-
geologic cycle and runoff, and biogenic pollutant rel eases.
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Human Activity Models

Model Type Use Additional Information
TRANSCAD, Trave demand Develops estimations of motor vehicle miles http://www.caliper.com/
TRANPLAN,  forecasting traveled for use in estimating vehicle emissions.  tcovu.htm

MinUTP models Can be combined with geographic information

systems (GIS) for providing spatial and temporal
distribution of motor vehicle activity.

DRI Forecasts Model can forecast over 1,200 economic ElIA 1993
national concepts including aggregate supply, demand,
economic prices, incomes, international trade, interest rates,
indicators etc. The eight sectors of the model are:

domestic spending, domestic income, tax sector,
prices, financial, international trade,
expectations, and aggregate supply.

E-GAS National and Emissions growth factors for various sector for Young et a. 1994
regional estimating volatile organic compounds, nitrogen
economic activity oxides, and carbon monoxide emissions.
model

YIELD Crop-growth Predicts temporal and spatial crop yield. Hayes et al. 1982
yield model

NATURAL SYSTEMSPROCESSAND EMISSIONSMODELS

Natural systems process and emissions models simulate the dynamics of ecosystems that directly
or indirectly give rise to fluxes of nutrients and other environmental emissions.

Natural Systems Process and Emissions Models

Model Type Use Additional Information
Marine Plot-scale nutrient  Simulates plot-level photosynthesis and nitrogen  http://ecosystems.mbl.
Biological cycling of carbon  uptake by plants, allocation of carbon and edu/Research/Models/
Laboratory and nitrogen nitrogen to foliage, stems, and fine roots, gem/wel come.html
General respiration in these tissues, turnover of biomass
Ecosystem through litter fall, and decomposition of litter and
Model (MBL- soil organic matter.
GEM)
BEIS Natural emissions  Simulates nitric oxide emissionsfrom soilsand  http://www.epa.gov/

of volatile organic  volatile organic compound emissions from asmdnerl/biogen.html

compounds vegetation. Input to grid models for NAAQS

attainment (CAA) Vukovich and Pierce
2002

Natural Natural emissions  Models methane and nitrous oxide emissions http://web.mit.edu/
Emissions of methane and from the terrestrial biosphere to atmosphere. global change/www/tem.
Model nitrous oxide html#nem

EMISSIONSMODELS

These models estimate the rate or the amount of pollutant emissions to water bodies and the
atmosphere. The outputs of emission models are used to generate inventories of pollutant rel eases that
can then serve as an input to fate and transport models.
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Emissions Models

Model Type Use Additional Information
PLOAD Releases to water GIS bulk loading model providing annual http://www.epa.gov/ost/
bodies pollutant loads to waterbodies. Conducts basins
simplified analyses of sediment issues, including a
bank erosion hazard index. EPA 2001
SPARROW  Releasesto water Relates nutrient sources and watershed http://water.usgs.gov/
bodies characteristics to total nitrogen. Predicts nawaqa/sparrow/

contaminant flux, concentration, and yield in
streams. Provides empirical estimates (including Schwarz et al. 2006
uncertainties) of the fate of contaminantsin

streams.
MOBILE Releasesto air Factors and activities for anthropogenic http://ww.epa.gov/
MOVES emissions from mobile sources. Estimates current  otag/m6.htm
NONROAD and future emissions (hydrocarbons, carbon

monoxide, nitrogen oxides, particulate matter, http://ww.epa.gov/

hazardous air pollutants, and carbon dioxide) otag/nonrdmdl.htm

from highway motor vehicles. Model used to

evaluate mobile source control strategies, control  EPA 2004, EPA 20053,
strategies for state implementation plans, and for  Glover and

developing environmental impact statements, in ~ Cumberworth 2003
addition to other research.

FATE AND TRANSPORT MODELS

Fate and transport models cal culate the movement of pollutants in the environment. A large
number of EPA modelsfal into this category. They are further categorized into the transport media they
represent: subsurface, air, and surface water. In each medium, there are arange of models with respect to
their complexity, where the level of complexity is afunction of the following:

e The number of physical and chemical processes considered.
The mathematical representation of those processes and their numerical solution.
e The spatial and temporal scales over which the processes are modeled.

Even though some fate and transport models can be statistical models, the majority is mechanistic
(also referred to as process-based models). Such models simulate individual componentsin the system
and the mathematical relationships among the components. Fate and transport model output has
traditionally been deterministic, although recent focus on uncertainty and variability hasled to some
probabilistic models.

Subsurface M odels

Subsurface transport is governed by the heterogeneous nature of the ground, the degree of
saturation of the subsurface, as well as the chemical and physical properties of the pollutants of interest.
Such models are used to assess the extent of toxic substance spills. They can aso assess the fate of
contaminants in sediments. The array of subsurface modelsistailored to particular application objectives,
for example, ng the fate of contaminants leaking from underground gasoline storage tanks or
leaching from landfills. Models are used extensively for site-specific risk assessments; for example, to
determine pollutant concentrations in drinking-water sources. The majority of models simulate liquid
pollutants; however, some simulate gas transport in the subsurface.
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Subsurface Models
Model Type Use Additional Information
MODFLOW 3D finite Risk Assessments (RBCA) http://water.usgs.gov/
difference for Superfund Remediation (CERCLA). Modular nrp/gwsoftware/
ground water three-dimensional model that simulatesground ~ modflow2000/
transport water flow. Model can be used to support modflow2000.html
groundwater management activities.
Prudic et al. 2004,
Wilson and Naff 2004
PRZM Hydrogeological  Pesticide leaching into the soil and root zoneof  http://www.epa.gov/
plants (FIFRA). Estimates pesticide and nitrogen ceampubl/products.htm
fate in the crop zone root and can simulate soil
temperature, volatilization and vapor phase EPA 2005b
transport in soil, irrigation, and microbial
transformation.
BIOPLUME Two-dimensional  Simulates organic contaminantsin groundwater  http://www.epa.gov/ada/
finite difference  dueto natural processes of dispersion, advection, csmos/models.html
and Method of sorption, and biodegradation. Simulates aerobic
Characteristics and anaerobic biodegradation reactions. EPA 1998
(MOC) model

Surface Water Quality Models

Surface water quality models are often related to, or are variations of, hydrological models. The
latter are designed to predict flows in water bodies and runoff from precipitation, both of which govern
the transport of agueous contaminants. Of particular interest in some water quality models is the mixing
of contaminants as a function of time and space, for example, following a point-source discharge into a
river. Other features of these models are the biological, chemical, and physical remova mechanisms of
contaminants, such as degradation, oxidation, and deposition, as well as the distribution of the
contaminants between the aqueous phase and organisms.

Surface Water Quality Models

Model Type Use Additional Information
HSPF Combined Total maximum daily load determinations http://www.epa.gov/
watershed TMDL (CWA). Watershed model simulating ceampubl/swater/hspf/
hydrology and nonpoint pollutant load and runoff, fate and
water quality transport processes in streams. Donigan 2002
WASP Compartment Supports management decisions by predicting http://www.epa.gov/
modeling for water quality responses to pollutants in aquatic athens/wwaqtsc/htmi/
aquatic systems systems. Multicompartment model that wasp.html
examines both the water column and underlying
benthos. Brown 1986, Brown and
Barnwell 1987
QUALZE Steady-state and Stream water quality model used as a planning http://mwww3.bae.ncsu.

quasi-dynamic
water quality model

tool for developing TMDLs. The model can
simulate nutrient cycles, benthic and
carbonaceous demand, algal production, among
other parameters.

edu/ Regional-
BulletinsModeling-
Bulletin/qual 2e.html

Brown 1986, Brown and
Barnwell 1987
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Air Quality Models

The fate of gaseous and solid particle pollutants in the atmosphere is a function of meteorology,
temperature, relative humidity, other pollutants, and sunlight intensity, among other things. Models that
simulate concentrations in air have one of three general designs: plume models, grid models, and receptor
models. Plume models are used widely for permitting under requirements to assess the impacts of large
new or modified emissions sources on air quality or to assess air toxics (HAPS) concentrations close to
sources. Plume models focus on atmosphere dynamics. Grid models are used primarily to assess
concentrations of secondary criteria pollutants (e.g., 0zone) in regional airsheds to develop plans (SIPs)
and rules with the objective of attaining ambient air quality standards (NAAQS). Both atmospheric
dynamics and chemistry are important components of 3-D grid models. In contrast to mechanistic plume
and grid models, receptor models are statistical; they determine the statistical contribution of various
sources to pollutant concentrations at a given location based on the relative amounts of pollutants at
source and receptor. Most air quality models are deterministic.

Air Quality Models

Model Type Use Additional Information
CMAQ 3-D Grid SIP development, NAAQS setting (CAA). The  http://www.epa.gov/
model provides estimates of ozone, particulates, asmdnerl/CMAQ/
toxics, and acid deposition and simulates index.html
chemical and physical properties related to
atmospheric trace gas transformations and Byun and Ching 1999

distributions. Model has three components
including, meteorological system, an emissions
model for estimating anthropogenic and natural
emissions, and a chemistry-transport modeling

system.
UAM 3-D Grid Model calculates concentrations of inert and Systems Applications
chemically reactive pollutants and is used to International, Inc., 1999

evauate air quality, particularly related to
ambient ozone concentrations.

REMSAD 3-D Grid Using simulation of physical and chemical http://www.remsad.com
processes in the atmosphere that impact pollutant
concentrations, model calculates concentration of |CF Consulting 2005
inert and chemically reactive pollutants.

ICSC Plume PSD permitting; toxics exposure (CAA, TSCA).

CALPUFF Non-steady-state air quality dispersion model
that simulates long range transport of pollutants.

CMB Receptor Relative contributions of sources. Receptor http://www.epa.gov/scra
model used for air resource management mOOL/receptor_cmb.htm
purposes.

Coulter 2004

EXPOSURE MODELS

The primary objective of exposure modelsisto estimate the dose of pollutant which humans or
animals are exposed to viainhalation, ingestion and/or dermal uptake. These models bridge the gap
between concentrations of pollutants in the environment and the doses humans receive based on their
activity. Pharmacokinetic models take this one step further and estimate dose to tissues in the body.
Since exposure is inherently tied to behavior, exposure models may also simulate activity, for example a
model that estimates dietary consumption of pollutants. In addition to the Lifeline model described
below, other examples of models that estimate dietary exposure to pesticides include Calendex and
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CARES. These models can be either deterministic or probahilistic, but are well-suited for probabilistic
methods due to the variability of activity within a population.

Exposure Models
Model Type Use Additional Information
Lifeline Diet, water and  Aggregate dose of pesticide via multiple http://www.thelifeline
dermal of single pathways. group.org
chemical
Lifeline Group, Inc.
2006
IEUBK Multipathway,  Dose of lead to children’s blood via multiple http://ww.epa.gov/
single chemical  pathways. Estimates exposure fromlead in superfund/programs/
media (air, water, soil, dust, diet, and paint and lead/products.htm
other sources) using pharmacokinetic models to
predict blood lead levelsin children 6 monthsto  EPA 1994
7 yearsold. The model can be used as atool for
the determination of site-specific cleanup levels.
Air Pollutants Inhalation Simulates an individual’s exposure to an air http://www.epa.gov/ttn/
Exposure Model  exposure model  pollutant and their movement through spaceand  fera’human_apex.html
(APEX) timein indoor or outdoor environments.

Provides dose estimates and summary exposure  Richmond et al. 2001
information for each individual.

HUMAN HEALTH AND ENVIRONMENT RESPONSE MODELS
Human Health Effects M odels

Health effects models provide a statistical relationship between a dose of a chemical and an
adverse human health effect. Health effects models are statistical methods, hence models in this category
are almost exclusively empirical. They can be further classified as toxicological and epidemiological. The
former refer to models derived from observationsin controlled experiments, usually with nonhuman
subjects. The latter refer to models derived from observations over large populations. Health models use
statistical methods and assumptions that ultimately assume cause and effect. Included in this category are
models that extrapolate information from non-human subject experiments. Also, physiologically based
pharmacokinetic models can help predict human toxicity to contaminants through mathematical modeling
of absorption, distribution, storage, metabolism, and excretion of toxicants.

The output from health modelsis almost always a dose, such as a safe level (for example,
reference dose [RfD]), a cancer potency index (CPl), or an expected health end point (for example, letha
dose for 50% of the population (LDsp) or number of asthma cases). There also exist model applications
that facilitate the use of the statistical methods.

Human Health Effects Models

Model Type Use Additional Information
Benchmark  Softwaretool for To estimate risk of pollutant exposure. Models http://cfpub.epa.gov/
dosemodel  applying avariety of  fit to dose-response data to determine a ncea/cfm/recordisplay.
statistical modelsto benchmark dose that is associated with a cfm?deid=20167
analyze dose-response  particular benchmark response.
data EPA 2000
Linear Statistical analysis To estimate the risk posed by carcinogenic
Cancer method pollutants

model
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Ecological Effects Models

Ecological effects models, like human health effects models, define relationships between a level
of pollutant exposure and a particular ecological indicator. Many ecological effects models simulate
aquatic environments, and ecological indicators are related directly to environmental concentrations.
Examples of ecological effectsindicators that have been modeled are: agae blooms, BOD, fish
populations, crop yields, coast line erosion, lake acidity, and soil salinity.

Ecological Effects Models

Model Type Use Additional Information

AQUATOX Integrated Ecosystem model that predicts the environmental fate http://www.epa.gov/
fate and of chemicalsin aquatic ecosystems, aswell asdirect ~ waterscience/models/
effects of and indirect effects on the resident organisms. aquatox/
pollutantsin  Potentia applications to management decisions
aquatic include water quality criteriaand standards, TMDLs, Hawkins 2005,
environment  and ecological risk assessments of aguatic systems. Rashleigh 2007

BASS Simulates Models dynamic chemical bioconcentration of http://www.epa.gov/
fish organic pollutants and metalsin fish. Estimatesare  athens/research/

populations  being used for ecological risks to fish in addition to modeling/bass.html
exposed to realistic dietary exposures to humans and wildlife.

pollutants
(mechanistic)

SERAFM Steady-state  Predictstotal mercury concentrationsin fish and http://www.epa.gov/
modeling speciated mercury concentrations in water and ceampubl/swater/
systemused  sediments. serafm/index.htm
to predict
mercury Knightes 2005
concentration
inwildlife

PATCH Movement of Provides population estimates of territorial terrestrial  http://www.epa.gov/
invertebrates  vertebrate species over time, in addition to survival wed/pages/model s/
in their and fecundity rates, and orientation of breeding sites.  patch/patchmain.htm
habitat Determine ecological effects of regulation.

Lawler et al. 2006

ECONOMIC IMPACT MODELS

This category includes a broad group of models that are used in many different aspects of EPA’s
activities including: rulemaking (regulatory impact assessments), priority setting, enforcement, and
retrospective analyses. Models that produce a dollar value as output belong in this category. Models can
be divided into cost models, which may include or exclude behavior responses, and benefit models. The
former incorporate economic theory on how markets (supply, demand, and pricing) will respond as a
result of an action.

Economic models are traditionally deterministic, though there is atrend toward greater use of
uncertainty methods in cost-benefit analysis.
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Economic Impact Models

Model Type Use Additional Information
ABEL Micro Economic Assess asingle firm's ability to pay compliance  http://iaspub.epa.gov/
costs or fees. Estimates claims from defendants  edr/edr_proc_gry.
that they cannot afford to pay for compliance, navigate?P LIST
clean-up or civil penalties using information OPTION_CD=CSDIS&
from tax return data and cash-flow analysis. P REG AUTH_
Used for settlement negotiations. IDENTIFIER=1&P _
DATA_IDENTIFIER=
90389& P_VERSION=1
Nonroad Macro economic for  Multimarket model to analyze how producers http://www.epa.gov/ttn/
Diesel impact of the and consumers are expected to respond to atw/nsps/cinsps/
Economic  nonroad diesel compliance costs associated with the rule. ci_nsps eia reportfinal
Impact emissionsstandards  Estimates and stratifies emissions for nonroad forproposal .pdf
Model rule equipment. Model can be used to inform State
(NDEIM) Implementation Plans and regulatory analyses.
BenMAP Noneconomic and Model that estimates the health benefits http://www.epa.gov/ttne
economic benefits associated with air quality changes by estimating  casl/benmodel s.html

fromair quality

changes in incidences of awide range of health
outcomes and then placing an economic value on
these reduced incidences.

NONECONOMIC IMPACT MODELS

Noneconomic impact models evaluate the effects of contaminants on a variety of noneconomic
parameters, such as on crop yields and buildings. Note that other noneconomic impacts, such asimpacts
on human health or ecosystems, are derived from the human health and ecological effects models
discussed previously.

Noneconomic Impact Models

Model Type Use Additional Information
TDM (Travel Model used to Evaluates travel demand management strategies  http://www.fhwa.dot.go
Demand evauate travel to determine vehicle-trip reduction effects. v/environment/cmageat/
Management)  demand Model used to support transit policiesincluding  descriptions_tdm_evalua
management HOQV lanes, carpooling, telecommuting, and tion_model.htm
strategies pricing and travel subsidies.
CERES‘Wheat Crop-growth Simulates effects of planting density, weather, http://nowlin.css.msu.ed
yield model water, soil, and nitrogen on crop growth, u/wheat_book/
development, and yield. Predicts management
strategies that impact crop yield.
PHREEQE-A  Modelseffectsof Simulates the effects of acidic solutions on Parkhurst et al. 1990

acidification on
stone

carbonate stone.






