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Plan of Attack. . .

In order to begin the Second Law analysis of a
complex system, one should first master the First
Law cumulative energy balance of that system

The linear First Law calculations are familiar to
every scientist, engineer, and economist
The Second Law calculations require switching to
the less-familiar cycles

We start from the First Law consequences of
producing ethanol from all U.S. corn. . .
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Primary Energy Use by U.S.

Biomass: 2

Oil: 41.8

Coal: 26.1

NG: 20.4

Hydro: 1
Nuclear: 7.8

U.S. used 100 EJ in 2003

1 EJ = 1 000 000 000 000 000 000 Joules is enough to feed the U.S. population for one year
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Maximum Ethanol from All Corn
In 2004, U.S. had the best corn crop
ever

Corn grain was harvested
from an area of 300 000 km2

(equal to Arizona state)

300 million tonnes of grain
were harvested (almost
6×wheat)

As maximum ethanol, this
crop would be 1/7 of the 19
EJ/year consumed as motor
gasoline

But at what cost in fossil fuels
and environmental damage?
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Corn Yield and N-Fertilizer
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Nitrogen fertilizer = methane (80% of cost in NG, 66% imported in 2003)

40% of all fertilizer in the
U.S. is used to grow corn

100 MJ of free energy are
consumed to produce 1 kg
of nitrogen in fertilizer

Huge problems with air and
water pollution

Sources: USDA NASS, NFI, PNAS 96, Feb. 1999
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Watering U.S. Corn

480 km3 of water in Lake Erie, 300 km3 to water U.S. corn crop each year

15-20% in irrigation water from, e.g., the High Plains aquifer
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U.S. Gasoline Consumption and Corn
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Corn ethanol = methane + gasoline + diesel fuel + LPG + coal + machines
+ insecticides + herbicides + soil nutrients + water + corn

15% of U.S. gasoline
consumption is replaceable
with maximum corn grain
ethanol

To produce this maximum
ethanol, we would use an
equivalent of 15.5% of U.S.
gasoline

Sources: DOE EIA, USDA NASS, U.S. Census Bureau 032805 LBL – p.6/36



Dried Distiller’s Grain & Solubles
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Cattle on 1.4 kg DDGS/day
All U.S. Cattle
All U.S. Cattle on Feed

0.3 kg DDGS per 1 kg of moist corn grain is a byproduct of EtOH production
Feed 180 million cows with 90 million tonnes of DDGS, or return it to the fields

Sources: USDA NASS, Kansas State University
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Overall Energy Balance. . .
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Berthiaume et al., 2001

 Wang et al., 1997

Shapouri et al., 2002

Patzek, 2004

Pimentel, 2003
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Conclusion: Drawbacks Exist!
By converting the U.S. corn grain to
ethanol, we have

Denied food to the entire
population of U.S. and India for
one year

Used up huge quantities of
natural gas, gasoline, diesel fuel,
liquified petroleum gas, coal, and
also water and soil

Energy content of these fossil
fuels exceeded the energy
content of corn ethanol by 5%,
water was polluted, and there
were large atmospheric emissions
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Available Free Energy. . .
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Available Free Energy. . .
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Subject of this talk
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Talk Outline. . .

Linear process vs cycle

Reversible and sustainable cycles

Corn-Ethanol cycle

Restoration work of nonrenewable resources

Tropical Plantations

Conclusions
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Industrial Agriculture. . .

Stock of

soil/water

fossil fuels 200 years?
Chemical

waste

Waste heat
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Definition of Irreversibility. . .

Max Karl Ernst Ludwig Planck, 1926: A process is
irreversible if it can in no way be reversed, all other
processes are reversible

It is impossible, even with the assistance of all agents
in nature, to restore everywhere the exact initial state
when the irreversible process has once taken place
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Corrolaries. . .

A linear process that converts low entropy of fossil
fuels into waste is irreversible and cannot be
sustainable

The linear fossil fuel process accumulates chemical
entropy in the earth and the atmosphere, and
irreversibly degrades our planet on a time scale of
our civilization, measured in hundreds of years

Modern agriculture, with its reliance on mining
fossil fuels, soil, water and air, is irreversible and
unsustainable
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Corrolaries. . .

Process
Inputs Outputs

Boundary

All human processes interact with the “environment”

A sustainable process cannot be linear, therefore it
must be a cycle
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Thermal Cycles. . .

Work

Heat source

Heat sink

Life

Sun

Universe
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Ecological Cycles. . .

Other
life

Death &
Decay

H2O, CO2

Nutrients

Plant
Matter

Waste heatWaste heat

Sun energy

“Forever”
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Sustainability. . .

A cyclic process is sustainable if and only if

It is capable of being sustained, i.e., maintained
without interruption, weakening or loss of quality
“forever,” and

The environment on which this process feeds and to
which it expels its waste is also sustained “forever”
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Corrolaries. . .

A sustainable cyclic process must not reject
chemicals into the environment, i.e., its net mass
consumption and production must be “close” to zero
“forever”

A sustainable cyclic process must not reject heat into
the environment at a rate that is too high for the earth
to export this heat to the universe; otherwise, the en-
vironment properties will change
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Available Energy or Exergy. . .

Our standard of life is maintained by the exploitation of
natural resources that have accumulated in the earth over
millions of years

A natural resource whose chemical composition differs
most from the dead states of the elements comprising it,
is most valuable
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Available Energy or Exergy. . .

Relative to a datum environment (T0 = 25
0 C, 1 atm), the

quality of heat rejected by a process depends on temper-
ature:

1J of heat at 5000C = 0.614 J of work

1J of heat at 500C = 0.077 J of work
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Exergy. . .

LUDWIG RIEKERT (1975): Exergy, B, is the shaft work
or electrical energy necessary to produce a material in its
specified state from materials common in the environment
in a reversible way, heat being exchanged with the envi-
ronment at constant temperature T0
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Ideal Corn-Ethanol Cycle. . .

Heat
Ethanol
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Heat
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Heat
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Real Corn-Ethanol Cycle. . .

Farming

Combustion
Non-renewable

Resources Fermentation

Distillation
Matter Heat

Matter Heat
Solar Radiation

Heat

Matter

Heat

Matter
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CExC. . .

All the steps of a production process leading from
natural resources taken from the environment to the
final product result in exergy losses

The cumulative exergy consumption (CExC) is the
sum of the exergy of all natural resources in all the
steps of a production process

The problem of cumulative energy consumption
(CEnC) is better known, but calculation of CExC is
more informative as it accounts for the exergy of
non-energetic raw materials (soil, water, air)
extracted from the environment
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Restoration work. . .

Degraded
Non-Ren. Res.

Real EtOH Cycle

Non-Ren. Res.
Restored

Chemical Waste

Wu

WR

Solar Radiation Heat

If Wu > WR, there is benefit from a biofuel cycle. But is it?
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Restoration Work. . .
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Overall Exergy Balance. . .
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Conclusions. . .

The minimum cumulative exergy consumption in
restoring the environment polluted and depleted by
the industrial corn-ethanol cycle is over 7 times
higher than the maximum shaft work of a car engine
burning the cycle’s ethanol

This unfavorable ratio decreases to 4, when an
efficient CARNOT engine is used to burn the ethanol,
and to over 2.4 when an imaginary hydrogen fuel cell
is used

The industrial corn cycle is not renewable, and is
unsustainable by a wide margin (400-700%)

No process changes can make this cycle more viable
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Exergy from U.S. Corn. . .
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1 m2 of oil field delivers for 20 years 2000× more car power than EtOH from 1 m2 of corn
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Wood Pellets from the Tropics. . .
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Exergy from Tropical Plantations. . .
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Exergy from Tropical Plantations. . .
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Conclusions. . .

Biofuel production is a human assault on the
geologic processes and geologic time scale

The limiting factors: fertilizer-rich humus and water
that carries the dissolved nutrients to plant roots are
augmented by chemicals obtained in linear fossil
processes

The natural processes of plant growth, soil and water
renewal are accelerated many-fold by industrial
mining of non-renewable resources

The sun-light is not a limiting factor, and could be
used to great benefit if we were in less of a hurry
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Paper Links. . .
Critical Reviews in Plant Sciences, 23(6):519-567, 2004

http://petroleum.berkeley.edu/papers/patzek/twppapers.htm
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Maximum Ethanol as Gasoline %
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