UNIVERSITY OF CALIFORNIA AT BERKELEY

College of Engineering

Departments of Materials Science & Engineering and Mechanical Engineering

DEFORMATION AND FRACTURE OF ENGINEERING MATERIALS

MSE c212 – ME c225 (9:00 – 11:00) Prof. R. O. Ritchie

SCHEDULE OF CLASSES (updated 1/23/12)

COURSE OUTLINE

PART I: DEFORMATION

Jan.	T 17	Introduction. Continuum Mechanics: stress, strain	
	Th 19	_Linear Elasticity: beam theory, invariants, etc.	
	M 23	stress concentrations, buckling, energy methods	
	T 24	no lecture	
	Th 26	Plasticity: yield criteria, deformation and flow theories	
	T 31	no lecture	
Feb.	Th 2	no lecture	
	M 6	constitutive laws, Prandtl-Reuss equations	
	T 7	limit analysis (lower bounds)	
	<u>Th 9</u>	no lecture	
	M 13	limit analysis (upper bounds)	
	T 14	deformation processing	
	Th 16	Rate-Dependent Plasticity: creep deformation, creep rupture	
PART II: FRACTURE MECHANICS			
	M 20	Linear Elastic Fracture Mechanics: $K_{\rm I}$ singularity	
	T 21	plasticity considerations, $K_{\rm Ic}$, CTOD	
	Th 23	resistance curves, plane-stress analyses	
	T 28	Nonlinear Elastic Fracture Mechanics: HRR singularity	
Mar	Th 1	$J_{\rm Ic}$, $J_{\rm R}(\Delta a)$ resistance curves, $T_{\rm R}$, CTOA	
	T 6	Non-stationary crack-growth analysis	
		PART III: SUBCRITICAL CRACK GROWTH	
	Th 8	Environmentally-Assisted Fracture: stress corrosion	
	T 13	hydrogen embrittlement	
	Th 15	corrosion fatigue	
	T 20	Cyclic Fatigue Failure: mechanistic aspects	
	Th 22	crack propagation, damage-tolerant analysis	
Apr.	T 3	variable-amplitude loading, small cracks, crack closure	
	<u>Th 5</u>	stress-strain/life analysis	
	T 10	ceramics, intermetallics	
	Th 12	biological materials, e.g., bone	

PART IV: MODELING, STATISTICS, ETC

T 17	Physical Basis of Toughness: intrinsic toughening - metals
<u>Th 19</u>	extrinsic toughening – ceramics, composites
T 24	fracture statistics
<u>Th 26</u>	***** Presentation of project reports *****

NOTE: Dates in red represent cancelled or rescheduled classes. Three further dates in blue - Mar. 13,15 (TMS) & Apr. 10 (MRS) - will have guest lecturers or will be rescheduled.