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a b s t r a c t

Micromachined, kHz-frequency resonators are now routinely employed as testing structures to charac-
terize the fatigue degradation properties of thin film materials such as polycrystalline silicon (polysilicon).
In addition to stress-life (S–N) fatigue curves, important properties such as crack propagation rates may
be inferred from proper resonant frequency measurements throughout a fatigue test. Consequently, any
nonlinear dynamic behavior that would complicate the interpretation of resonant frequency changes
should be avoided. In this paper, nonlinear frequency–response curves of a polysilicon fatigue structure
are measured in a vacuum environment. Finite element models of the structure are used to identify the
source of geometric nonlinearity leading to a Duffing-type cubic stiffness. Given the origin of the behav-
ior, a parametric optimization strategy is performed to minimize the cubic stiffness. This study highlights
the importance of considering the dynamic behavior when designing resonating structures, especially
when they are used for mechanistic studies in various environments.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The characterization of mechanical properties with microma-
chined resonators is a conceptually simple strategy, as long as the
resonator’s response is strictly linear. Provided that the material
properties and geometry are well defined, analytical and finite ele-
ment models can be applied to establish the natural frequencies
of the structure. Then the changes in resonant frequency can be
associated with damage accumulation [1–10], strength can be eval-
uated from the amplitude of motion at failure [2,11–14], and the
differences in resonant frequency of arrays of devices with varying
geometries can be used to establish the elastic modulus of the mate-
rial [15]. However, nonlinear mechanical stiffness [16], nonlinear
forcing functions [17–21], and other phenomena such as cracking
[10] or residual stress in fixed–fixed beams [22] can induce non-
linear responses in the devices. For some applications, nonlinear
dynamics can be exploited to improve the performance of MEMS
sensors [19,23]. In the context of resonator-based fatigue testing of
silicon thin films, however, linear behavior is preferred because it
simplifies the analysis of fatigue crack growth [10,24]. As such, it is
essential to have a clear understanding of why and when nonlin-
ear behavior manifests itself in resonant characterization systems
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so that it can be controlled and data are properly interpreted. The
purpose of the present work is therefore twofold: highlight the
risk of erroneous mechanistic interpretation when testing nonlin-
ear MEMS fatigue resonators, and emphasize the value of assessing
the occurrence of nonlinearities early in the design process using
analytical and numerical models.

In this paper, a series of in vacuo measurements of a poly-
crystalline silicon (polysilicon) fatigue structure are presented
(Section 2), where amplitude frequency–response curves exhibit
nonlinear behavior (jump phenomenon) for large amplitudes. Two
likely sources of nonlinearity are investigated using analytical and
finite element models: structural nonlinearity and actuator non-
linearity (Section 3). Structural nonlinearity may arise when large
displacements occur and is often described based on the Duffing-
type behavior. Actuator nonlinearity may arise if the amplitude
of the forcing function depends on the structure’s displacement
and can be modeled with the Mathieu equation. Material nonlin-
earity was not considered in this study, as micron-scale silicon
does not deform plastically at room temperature (i.e., the con-
stitutive behavior remains elastic) under bending load [25] and
the deformations are small.1 The corresponding simulations of the
frequency–response curves are compared to experimental curves

1 A maximum stress of 3.5 GPa corresponds to a strain of only about 2% in polysil-
icon with a Young’s modulus of E = 163 GPa [26].
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Fig. 1. Scanning electron micrographs of the polysilicon fatigue characterization structure employed in this study (detail of the notched cantilever beam on the right, along
with the symbols used for its dimensions).

(Section 4), and the implications of nonlinear behavior on the accu-
racy of the measured fatigue properties are presented (Section 5)
with recommendations for design improvement to minimize non-
linearities.

2. Experimental procedures

The fatigue characterization structures (see Fig. 1) employed
in this investigation were surface-micromachined with the
PolyMUMPsTM fabrication process (Run 18). The structure consists
of a mass-spring rotational oscillator in the form of a fan-shaped
mass connected to a notched, cantilever beam. At resonance, large
stresses (∼GPa range) can develop at the notch root of the beam.
The maximum principal stress, �1, is proportional2 to the ampli-
tude of rotation of the structure; the constant of proportionality
is calculated using finite element analysis, as described in Section
3.2. Twenty-two pairs of interdigitated fingers (comb drives) lay on
each side of the mass to provide electrostatic actuation and capac-
itive sensing of the resulting motion. The fan-shaped mass spans
60◦ and has inner and outer radii of ∼30 and 300 �m, respectively.
The two comb drive arrays each span 15◦, with a 5◦ overlap. The
fan-shaped mass and comb drive arrays are attached to a sub-
strate anchor via a notched cantilever beam (Fig. 1, inset). The
center of rotation of the resonator that also defined the geom-
etry of the comb fingers and fan-shaped mass is positioned at
the center of the remaining ligament of the notched, cantilever
beam. The critical dimensions that affect the structure’s natural
frequency and the maximum principal stress at the notch root
are defined in Fig. 1. Specifically, the stiffness of the notched can-
tilever beam is a function of its length, L, its width, W, and the
location and remaining ligament size (h and w, respectively) of
the 60◦ opening-angle notch. Table 1 lists the measured dimen-
sions based on high-magnification scanning electron micrographs.
All measurements were made after the devices were released from
the sacrificial oxide layer (2.5 min in 50% HF followed by 15 min in
deionized H2O, 5 min in isopropyl alcohol, and 1 min on a hot plate
at ∼110 ◦C) without further post-fabrication modifications such as
organic monolayer or conductive coatings.

2 The effect of cubic stiffness, though crucial for the dynamic response, can be
neglected in stress calculations.

After release, the micromachined resonator was placed in a
ceramic dual in-line package and a wire-bonder was used to make
the electrical contacts that were necessary to drive the device. The
packaged device was then transferred to a scanning electron micro-
scope (JEOL 6340F SEM) for testing in vacuo. The structure was
harmonically excited near resonance in the chamber at a pressure
ranging between 0.19 and 0.28 mPa. Sinusoidal waveforms with
four different amplitudes (2, 2.8, 4.8, and 5.6 Vzp) and no direct
current (DC) offset were applied to one comb drive. The corre-
sponding stress amplitudes ranged from ∼0.2 to 1.6 GPa. For each
amplitude, a series of high-magnification SEM images were taken
at a specified location at the edge of the mass at different driving
frequencies near resonance (∼43 kHz) at 0.3 Hz increments. These
frequency sweeps were performed in both directions (increasing
and decreasing frequency values). The SEM images were used to
measure the amplitude of motion (i.e., the angular rotation of the
structure) in order to create the experimental frequency–response
curves. The amplitudes of motion of the resonator at a given excita-
tion frequency and driving voltage were measured from the width
of the “blurred” edges of the fan-shaped mass and comb fingers
using the software Scion Image (Scion Corporation, Frederick, MD).
The pixel–distance correlation for each image was individually cal-
ibrated, and the averages of three measurements of the blurred
edges at known positions on the resonator were then reported (see
Fig. 2). This technique offers a lateral resolution of ∼200 nm, result-
ing in a resolution of ∼0.6 mrad in angular rotation (∼3–5% of the
measured value).

3. Modeling

This section details models of the dynamic behavior of the
fatigue resonator (see Fig. 1). The governing differential equations
and respective solutions are first presented for the cases of linear
and nonlinear behavior. While a variety of phenomena can cause

Table 1
Measured beam dimensions (see Fig. 1).

Beam width (W) 19.3 �m
Beam length (L) 39.3 �m
Ligament width (w) 6.7 �m
Notch opening (D) 13.3 �m
Notch root radius (r) 1.4 �m
Notch height (h) 9.3 �m
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Fig. 2. Scanning electron micrographs of the polysilicon fatigue characterization structure near resonance. Similar images were used to measure the amplitude of rotation
at a given frequency and driving voltage.

nonlinear behavior, this work considers cubic mechanical stiffness
and parametric excitation. Finally, the geometrical model is param-
eterized to study the influence of critical geometrical features on
the linearity of the response.

3.1. Governing equations

The fatigue oscillator can, to a first approximation, be modeled
as a one-degree-of-freedom, harmonic, rotational oscillator whose
governing second-order differential equation is:

J��̈ + b�̇ + k�� = M0 sin(2�ft) (1)

where J� is the mass moment of inertia, b the damping coefficient,
k� the linear torsional stiffness, M0 the amplitude of the applied
electrostatic moment, f is the frequency of the applied moment,
and �(t) is the angle of rotation of the structure about the midpoint
of the remaining ligament of the notched beam. The amplitude of
the applied moment is given by [10]:

M0 = 1
4

εh

44∑
j=1

1
ln(ro,j/ri,j)

V2
in (2)

where ε is the dielectric permittivity of vacuum, h the thickness of
the structure (2 �m), ro,j and ri,j are the outer and inner radii of the
jth capacitor formed by two adjacent fingers (22 pairs in this work),
and Vin is the amplitude (zero-to-peak value) of the applied volt-
age. The numerical factor of 1/4 results from the forcing moment
being a quadratic function of the applied sinusoidal waveform (the
constant part of the forcing function is negligible on the overall
response for lightly damped resonators, as is the case for the fatigue
structure). The general form of the solution to Eq. (1) is given by:

�(t) = M0

k�

f0/f

[(f0/f − f/f0)2 + 1/Q 2]
1/2

cos(2�ft − ı)

= � cos(2�ft − ı) (3)

where f0 is the undamped resonant frequency, ı is a phase shift due
to the damping force, � is the amplitude of rotation, and Q is the
quality factor defined by:

Q = f0
�f

≈ 2�f0
�

(4)

where �f represents the full width at half-power (the amplitude at
half-power points is approximately 70.7% of the peak amplitude)
[27], and � = b/J� is the damping ratio.

In the case of a nonlinear spring force with a cubic stiffness, Eq.
(1) becomes Duffing’s equation [28]:

J��̈ + b�̇ + k�� + k�3�3 = M0 sin(2�ft) (5)

where k�3 is the cubic stiffness coefficient. The correspond-
ing amplitude of rotation � is given by the following
frequency–response equation:

[(
k�

J�
− (2�f )2

)
� + 3

4
k�3

J�
�3

]2

+
(

b

J�
2�f�

)2

=
(

M0

J�

)2
(6)

Fig. 3 shows three representative curves for the linear case
(k�3 = 0) and two nonlinear cases: hardening (k�3 > 0) and soften-
ing (k�3 < 0) nonlinearity. The bending of the frequency–response
curves for the nonlinear cases leads to multivalued amplitudes and
hence to the jump phenomenon that is illustrated in Fig. 3 for
hardening nonlinearity. Let us consider an experiment where the
frequency is slowly increased from an initial value f < f2 (constant
excitation): as the frequency is increased above f2, the response fol-
lows the upper branch until the frequency f1 is reached. A further

Fig. 3. Representative curves for the frequency–response equation: the linear case
(k�3 = 0) and nonlinear hardening (k�3 > 0) and softening (k�3 < 0). Units are arbitrary.
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Fig. 4. Illustration of the influence of excitation (a) and damping (b) on Duffing’s frequency–response curves (arbitrary units).

increase in frequency causes the response to jump to the lower
branch. Conversely, if the frequency is slowly decreased from an ini-
tial value above f1, the response remains on the lower branch until
the frequency reaches f2. Lowering the frequency further causes
the response to jump to the upper branch. The apparent maxi-
mum response therefore depends on the direction in which the
frequency is swept, which has important consequences for the test-
ing of fatigue structures in vacuum (see Section 5).

Fig. 4(a) illustrates the influence of the applied moment on the
resulting frequency–response curve, while Fig. 4(b) illustrates the
influence of damping. In both cases, the frequency corresponding
to the maximum response is given by the following equation:

f = 1
2�

√
k� + (3/4)k�3�2

J�
≈ f0

(
1 + 3

8
k�3

k�
�2

)
(7)

Another common origin of nonlinear effects is a nonideal exci-
tation source. In the case of the fatigue structure shown in Fig. 1,
a nonideal excitation may exist if the electrostatic forces depend
on the angular rotation of the structure. Specifically, the electro-
static forces may increase for large angular rotation due to the
proximity of the moving fingers’ tips to the stator basis [29]. The
corresponding governing equation is in that case is:

J��̈ + b�̇ + k�� = M0(�) sin(2�ft) (8)

where M0(�) is the amplitude of the applied electrostatic moment
that depends on the angular rotation. This differential equation
cannot be analytically solved, and numerical strategies need to be
applied (see for example [21] for a treatment of parametric excita-
tion using the Mathieu equation).

3.2. Finite element modeling

A static analysis using the commercial finite element (FE)
software ANSYS v. 11.0 was employed to study the (geometric)
mechanical nonlinearity of the fatigue resonator due to large-
deflection effects. 2D models of the entire structure (notched beam
with the fan-shaped mass; see Fig. 1) were employed to calculate
its (nonlinear) stiffness. A pressure was applied along one edge of
the plate to simulate the moment applied via electrostatic forces
while the displacements at the bottom of the beam were set to
zero. The resulting motion of the structure was computed in a
small strain, finite rotation analysis. Specifically, the NLGEOM,ON
command [30] was issued to account for the geometric stiffness
as well as follower forces [31], while the Saint Venant-Kirchhoff
material with E = 163 GPa, � = 0.23 [26] was used as constitutive
relation. The geometry of the structure was fully parameterized
to evaluate the stiffness of the PolyMUMPsTM 18 structure as well

as modified geometries. The measured critical dimensions of the
PolyMUMPsTM 18 structure (see Table 1) were used, as opposed
to nominal, “as-drawn” values. The meshing was performed using
8-node quadrilateral elements (PLANE 82) with the mesh density
locally increased at the notch. The mesh was refined until conver-
gence of the results was achieved.

4. Results

Fig. 5 shows the measured frequency–response curves of the
fatigue structure (Fig. 1) in a vacuum environment (P ∼0.2 mPa),
for four different driving amplitudes. At low signal amplitude (2 V),
the curve is symmetric (quality factor Q equal to approximately
40,000). However, at higher amplitudes the measured behavior
corresponds to that of a nonlinear oscillator. At 2.8 V the response
curve is asymmetric, and a jump behavior develops at 4.8 and 5.6 V,
as illustrated in Fig. 5 for the largest signal amplitude.

Previous studies performed on comb drives [29,32,33] indicate
that the amplitude of applied moment (M0) is fairly constant for �
less than 0.04 rad, above which it increases due to the electrostatic
forces between the tip of the moving finger and the base of the
stator. Since the nonlinear behavior was observed experimentally
for maximum amplitude of rotation less than 0.02 rad (see Fig. 4),
the origin of the nonlinearities cannot be parametric excitation.

Fig. 5. Measured frequency–response curves for the fatigue structure (see Fig. 1)
tested in vacuo.
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Fig. 6. Applied moment vs. rotation for the fatigue structure shown in Fig. 1, calcu-
lated using large-rotation finite element analysis.

Structural finite element analysis (see Section 3.2) was then
used to calculate nonlinearity in the structure’s stiffness due to
large-rotation effects. The stiffness was found to increase slightly
with increasing amplitude of motion (see Fig. 6), with corre-
sponding linear and cubic stiffnesses of 8 × 10−7 N m rad−1 and
1.1 × 10−6 N m rad−3, respectively. A positive cubic stiffness is qual-
itatively consistent with the observed behavior (bending of the
frequency–response curve towards larger frequencies). These stiff-
ness values were used to plot the frequency–response curve
corresponding to Eq. (6). The moment of inertia was chosen to
match the resonant frequency of the 2 V curve (see Fig. 5), and
the damping coefficient was chosen to match the quality fac-
tor (Q ∼40,000) obtained from experiment. The amplitude of the
applied moment M0 was calculated using Eq. (2). Fig. 7 super-
imposes the measured frequency–response curves on the ones
calculated using Duffing’s equation and the FEM-based stiffness
parameters. A reasonable match is observed for the four different
amplitudes. Specifically, the model predicts the jump frequencies
f1 and f2 (see Fig. 3) to be ∼42,882.4 and 42,878.3 Hz, respectively,
at 5.6 V, while the experimental results yield f1 = 42,881.5 ± 0.5 Hz
and f2 = 42,880.5 ± 0.5 Hz. Similarly, the model predicts, at 4.8 V,
f1 = 42,879.5 Hz and f2 = 42,877.8 Hz, while the experiments give
f1 = 42,879.5 ± 0.5 Hz, and f2 = 42,879 ± 1 Hz. Given the experimen-
tal error bars associated with the limited number of data points,

the match appears reasonable. In addition, the model underesti-
mates the maximum amplitude of rotation by ∼25%. There are a
couple of reasons that can account for the aforementioned discrep-
ancies between the model and the experimental results. First, the
model assumes the same quality factor [i.e., same damping coef-
ficient, b; see Eq. (4)] between the different frequency–response
curves. Experimentally, the pressure may have changed between
the different runs (P ∼0.2 mPa), which can lead to some error in
the curves as highlighted in Fig. 4b. Second, there may be some
imprecision (estimated to be less than ∼5%) in the actual voltage
amplitude applied to the MEMS device. A custom-made amplifier
with a nominal gain of 20 was used. This incertitude in the applied
voltage (and therefore in applied moment M0; see Eq. (2)) may also
affect the shape of the frequency–response curves, as highlighted in
Fig. 4a. We therefore conclude that the observed nonlinear behavior
of the fatigue characterization structure in vacuum is most likely a
result of the geometric nonlinearity.

The influence of the beam’s geometry on the resulting nonlin-
earity was captured with further finite element modeling in order
to optimize the fatigue structure. The optimization of the device
geometry has the objectives of (i) a frequency–response curve that
is free from Duffing-type behavior, (ii) a maximum applied stress
that is in excess of the material’s ultimate strength for ampli-
tudes of rotation less than 0.04 rad (to avoid nonlinearities due
to parametric excitation in the current comb drive design), and
(iii) a resonant frequency on the order of tens of kHz so that
∼109 cycles can accumulate in less than a day of testing. Fig. 8
shows the calculated linear [Fig. 8(a)] and cubic [Fig. 8(b)] stiff-
nesses as a function of the ligament width (w) for three different
notch root radii (r). As expected, the linear stiffness decreases with
decreasing ligament width. The cubic stiffness decreases as well,
but at a faster rate than the linear stiffness. Therefore, decreasing
the ligament width should reduce the nonlinear behavior. Fig. 9
compares the frequency–response curves for a modified geome-
try (r = 1.1 �m, w = 4.8 �m) and the PolyMUMPsTM 18 geometry
(r = 1.4 �m, w = 6.8 �m). The amplitudes of the applied moments
were chosen to obtain the same maximum rotation for both geome-
tries and all other parameters from Eq. (6) were identical. The
Duffing-type behavior clearly disappears with the modified geom-
etry as a result of the relative decrease of the cubic stiffness with
respect to the linear stiffness, albeit with a slight decrease in
resonant frequency (∼30 kHz instead of ∼40 kHz). Although the
dynamic behavior is improved by altering the geometry, the local
maximum stress at the notch must be sufficiently large for testing to
be viable. The relationship between the maximum principal stress
at the notch root and the rotation of the structure was calculated for
both geometries. Sufficiently large maximum principal stresses, �1,

Fig. 7. Superposition of the measured and predicted (based on the Duffing’s equation and finite element modeling of the fatigue structure) frequency–response curves.
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Fig. 8. Linear and cubic stiffnesses of finite element models of the fatigue structure for different notch root radii and ligament widths.

Fig. 9. Frequency–response curves using Duffing’s equation for the fatigue structure geometry used in this study (right, w = 6.8 �m, r = 1.4 �m), and a proposed geometry
(left, w = 4.8 �m, r = 1.1 �m) for which the nonlinear behavior is significantly reduced.

up to 3–3.5 GPa (see Fig. 10) can be applied at the notch for the mod-
ified geometry without reaching another nonlinear regime related
to parametric excitation (which may happen for amplitudes larger
than 0.04 rad). This optimized geometry is preferred when studying
the fatigue degradation properties of polysilicon in vacuo because

Fig. 10. Maximum stress vs. angular rotation for two fatigue structure geometries
whose frequency–response curves are shown in Fig. 8.

the evolution of resonant frequency is not obscured by nonlinear
effects.

5. Implications for the mechanical testing of cantilever
beam resonators

The structures shown in Fig. 1 were designed for fatigue testing
of structural silicon thin films in air. These structures take advan-
tage of the phenomenon of resonance to apply large sinusoidal
stresses locally that cannot otherwise be applied via electrostatic
actuation. Unlike conventional fatigue testing of bulk materials,
the cracks developing and propagating at the notch of the struc-
ture cannot be directly measured due to their small physical size
(tens of nm). However, resonant frequency measurements can
be used to infer the crack propagation rates in these micron-
scale fatigue structures [4,7]. Accordingly, any nonlinearity in the
dynamic behavior will cause measurement artifacts and should
be eliminated by changes to the device’s geometry. In the case of
the fatigue structure that developed a Duffing-type behavior when
tested in vacuo (see Fig. 8), the following issues must be considered.
First, the structures must be tested with the proper feedback loop to
prevent unwanted unloading. Unloading may occur when testing
at constant frequency (corresponding to the maximum response’s
amplitude) due to fatigue-related stiffness degradation that causes
the peak of the device’s frequency–response curve to shift towards
lower values over time. This unloading phenomenon may result in
inaccurate fatigue life measurements because the stress amplitude
will not be constant [24]. Another issue is related to the measure-
ment of the resonant frequency. Typically the resonant frequency
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is experimentally obtained by electrically measuring the amplitude
of displacement (via induced current measurements) as a func-
tion of frequency near resonance. The frequency corresponding to
the maximum output (fmax) can be approximated as the resonant
frequency (f0) for linear resonators with large quality factors (Q).
However, in the case of a hardening nonlinearity, fmax is related to
f0 via Eq. (7). The relative change in fmax (experimental measure-
ment) does not correspond to the relative change in f0, as shown in
the following equation:

dfmax

fmax
= df0

f0
− 3

8
�2

max
k�

(
k�3

k�
dk� − dk�3

)

= 1
2

dk�

k�
− 3

8
�2

max
k�

(
k�3

k�
dk� − dk�3

)
(9)

The relative changes between the linear and cubic stiffnesses
(k� and k�3) must be known a priori to deduce a relative change in
the linear stiffness from the experimental measurements. An inter-
esting consequence arising from Eq. (9) is that a relative decrease
in linear stiffness (natural frequency) may occur while a relative
increase in fmax is measured, when the following relation holds:

dk�3

dk�
<

k�3

k�
− 4

3�2
(10)

In that case, an increase in fmax should not be mistakenly inter-
preted as a stiffening of the structure (i.e., increase in k�). Such
erroneous mechanistic interpretations that are based on resonant
frequency measurements can be avoided by employing fatigue
structures that display a linear dynamic behavior. The fatigue
structure shown in Fig. 1 was successfully used to investigate the
fatigue behavior at atmospheric pressures [1,4,5,7,9] but should
be replaced with the geometry proposed at the end of Section 4
for fatigue studies in vacuum. Naturally, other resonating testing
structures are vulnerable to similar effects.

6. Conclusions

This work demonstrated the need to study the dynamic behav-
ior of MEMS fatigue resonators early in the design process, in order
to prevent nonlinear structural behavior that may affect the mech-
anistic interpretation of the experimental results. Specifically, this
paper investigated the nonlinear behavior of a micromachined res-
onator that has been used to characterize the fatigue behavior
of polysilicon thin films. Frequency–response curves were exper-
imentally obtained in vacuo based on high-magnification SEM
images of the fatigue structure near resonance, and a jump phe-
nomenon was identified. Finite element modeling was used to
attribute the behavior to the nonlinear stiffness of the structure
and to provide parameters that allowed Duffing’s equation to be fit-
ted to the general features of the experimental frequency–response
curves. Further finite element modeling was employed to improve
the design of the fatigue structure by eliminating the nonlinearity.
The width of the notched beam at the notch was reduced, thereby
limiting the nonlinear behavior in vacuo. Future in vacuo studies
with resonators should use this or a similarly refined geometry.
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