
DOI 10.1007/s10704-005-2266-y
International Journal of Fracture (2005) 132:197–203

© Springer 2005

Incomplete self-similarity and fatigue-crack growth
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Abstract. The Paris power law, which relates fatigue-crack growth rates to the applied stress-intensity
range, is an example of a scaling law with the inherent property of incomplete similarity. Previous
considerations of dimensions and self-similarity have suggested that the assumed ‘materials constants’
in this law are also a function of specimen size. In this note, the question of the size-dependence of
the Paris law is re-examined, and through comparison to a larger body of fatigue-crack growth data
in steels, physical explanations why such scaling effects may exist are deduced.
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1. Introduction

Throughout science, engineering and economics, scaling laws, which describe
power-law relationships between certain variables, reveal the important property of
self-similarity, where a phenomenon reproduces itself on different time and/or space
scales (Barenblatt, 1996, 2003). A notable example of such a scaling law is the well-
known Paris law describing the relationship between the fatigue-crack growth rate per
cycle, da/dN , and the stress-intensity range, �K:

da/dN =C(�K)m, (1)

where �K = Kmax − Kmin (Kmax and Kmin are, respectively, the maximum and
minimum stress intensities in the fatigue cycle), and C and m are experimentally
determined scaling-law constants (Paris et al., 1961; Paris and Erdogan, 1963). This
relationship has been verified over a wide range of growth rates in innumerable
studies for the past 40 years on metallic, polymeric, ceramic, geological and even
biological materials (e.g., Hertzberg and Manson, 1980; Ritchie, 1988; Suresh, 1998;
Bažant and Planas, 1988; Nalla et al., 2005)1, and provides the basis for the life
prediction of structures and components using the fracture mechanics (or damage-
tolerant) approach in terms of the applied stress (�σ), initial (ao) and final (ac)

1The actual relationship between da/dN and �K in most instances is sigmoidal in shape, with Equa-
tion (1) describing the “linear” behavior over the mid-range of growth rates, typically from 10−9 to
10−6 m/cycle in most ductile materials. Growth rates tend to be less than those predicted by the Paris
law at lower values of da/dN where a fatigue threshold is approached (below which cracking is con-
sidered to be dormant), and to be higher than the Paris law at higher da/dN values where instability
(e.g., KIc or the limit load) is approached (Ritchie, 1979).
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crack sizes, geometry, and properties of the material, e.g., the yield strength, σy , and
fracture toughness, KIc.

Of particular significance to its use in life prediction is the nature of the self-simi-
larity in the Paris law, the values of the constants C and m, and whether they depend
upon specimen size. The similarity analysis of (Barenblatt and Botvina 1981, 1983),
described in Section 2, suggests that the constant C should depend upon a charac-
teristic specimen length h, and that exponent m should depend upon

√
h; the latter

prediction was found to be consistent with the fatigue-crack growth data of Heiser
and Mortimer (1972) on AISI 4340 steel, where h was identified with the specimen
thickness. Since the use of da/dN vs. �K data from tests on small specimens to char-
acterize crack-growth behavior of larger structures is almost implicit in the practice
of fracture mechanics for engineering design and life prediction, such mathematical
predictions that the growth rates of fatigue cracks may vary with specimen size are
clearly of importance. It is therefore the objective of this note to re-examine such
notions of self and incomplete similarities implied by the Paris law, and through com-
parison to a larger spectrum of fatigue-crack propagation rate data, to provide some
physical interpretation as to why such scaling effects should exist.

2. Dimensional and similarity analysis

From a physical perspective, the Paris law in the form of Equation (1) provides
little indication of the many factors that affect fatigue-crack propagation behavior.
Clearly, the average growth rate depends upon a series of variables in addition to the
stress-intensity range; these include (i) the nature of the loading, i.e., the load ratio,
R = Kmin/Kmax, cyclic frequency ν and time t , (ii) materials properties, notably σy

and KIc, and (iii) specimen size. Following the mathematical similarity approach of
Barenblatt and Botvina (1972, 1981), where specimen size was defined in terms of a
characteristic specimen length scale h, consideration of these principals variables in
terms of dimensional analysis gives:

da

dN
=

(
�K

σy

)2

�

(
�K

KIc,
, R, Z, ν t

)
, (2)

where Z is the basic similarity parameter, given by:

Z = σy
√

h

KIc
. (3)

In the absence of significant environmental effects such that the effect of νt is min-
imized, two possible modes of similarity are possible by considering the asymp-
totic relationships in Equations (2 and 3) for the mid-range of growth rates where
�K/KIc �1:

• complete similarity (‘similarity of the first kind’ (Barenblatt, 2003)), when the limit
of the function � at �K/KIc →0 is finite and non-zero, and

• incomplete similarity (‘similarity of the second kind’ (Barenblatt, 2003)).
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Note that one distinction between similarity of the first and second kind is that for
complete similarity, all similarity parameters can be determined by dimensional anal-
ysis; this is not the case for incomplete similarity.

In the present example of the power-law relationship for fatigue-crack growth,
notions of complete similarity simply give the scaling law for �K/KIc �1 as:

da

dN
=

(
�K

σy

)2

�(R, Z) , (4)

i.e., the Paris law in Equation (1) with a constant exponent of m= 2. Although con-
sistent with most simple (perfectly plastic) models of cyclic crack advance in ductile
materials via the formation of fatigue striations (Neumann, 1969; Pelloux, 1970), where
growth rates are expected to be proportional to the crack-tip opening displacements
and hence to scale with �K2 (Neumann, 1969; Pelloux, 1970; Gu and Ritchie, 1999),
Equation (4) represents a rather limited case. In reality, experimentally measured Paris
law exponents typically vary between 2 and 4 for ductile materials, and can be consid-
erably larger for brittle materials, i.e., approaching 10 in low toughness metals (Ritchie
and Knott, 1973) and even higher in intermetallics and ceramics (Ritchie, 1999).

If incomplete similarity is assumed in the parameter �K/KIc �1, then:

� =
(

�K

KIc

)α

�1 (R, Z) ,
da

dN
= (�K)2+α

σ 2
y Kα

Ic
�1(R,Z), (5)

which now represents the Paris law (Equation (1)) with:

C = �1 (R, Z)

σ 2
y Kα

Ic
, m = 2 + α (R,Z) , (6)

where α is a function of R and Z. In this less restrictive form, it is apparent that con-
siderations of similarity imply that both the C and m constants in the Paris law are
not simply a function of the material properties and the nature of the applied load-
ing, but also on specimen size, h, through the basic similarity parameter Z. Indeed,
comparison with Heiser and Mortimer data (Heiser and Mortimer, 1972) on 4340
steel revealed such a relationship between m and Z, as predicted by Equations (5)
and (6) (Barenblatt and Botvina, 1981). One aim of the present study is to explain
such a result in terms of physical mechanisms.

3. Comparison with experimental data

Since in the original analysis of Barenblatt and Botvina (1981) only a single set of
experimental data was considered, we first examine a large body of fatigue-crack
growth rate results in order to interrogate relationships between the Paris exponent
m and specimen dimensions. To facilitate this approach, we use the compilation of
ambient-temperature data from the work of Ritchie and Knott (1973), based on
experimental fatigue-crack propagation studies at ambient temperatures on a wide
range of steels from (Carman and Katlin, 1966; Wei et al., 1967; Crooker et al., 1968;
Miller, 1968; Bates et al., 1969; Crooker and Lange, 1970; Clark and Wessel, 1970;
Evans et al., 1971; Ritchie and Knott, 1973). This collection of data represents steels
with almost a fivefold variation in yield strength, from 433 to 2035 MPa, and includes
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several Ni–Cr low alloy steels (4340, En24, En30A, D6Ac), a 9Ni–4Co steel, Ni–
Mo–V rotor steel, an H-11 tool steel, and a series of ultrahigh strength Ni-maraging
steels. Furthermore, the variable R is nominally constant (R ∼ 0) and any influence
of νt is expected to be small.

Plotted in Figure 1 are the Paris exponents m from these data as a function of the
basic similarity parameter Z(=σy

√
h/KIc), where the characteristic specimen dimen-

sion h has been identified with the specimen width W and thickness B. Although
these data represent a wide range of microstructures, orientations, specimen geom-
etries and test frequencies, which contribute to the considerable scatter, it is clear
that as first reported by Barenblatt and Botvina (1981), there is a definitive trend of
increasing Paris exponents m with increasing specimen size, both in terms of the spec-
imen width and thickness.

4. Physical interpretation

To provide some physical explanation as to why the Paris exponent m should
increase with specimen size, or more specifically with increasing Z, we must exam-
ine the nature of the latter similarity parameter. Using linear-elastic fracture mechan-
ics considerations, we note that the extent of local plasticity ahead of the crack tip,
i.e., the plastic-zone size, ry, scales with K2

Ic/σ
2
y (Irwin, 1960). It follows then that

Z ∼√
h/ry.

Considering first the case where the characteristic specimen dimension h is
equated to the specimen width W , we note that according to ASTM Standard
E-399 (ASTM E399-90, 2002) a state of small-scale yielding, i.e., a valid K-
field at the crack tip, is reached when ry is small (typically 1/15) compared to
the specimen in-plane dimensions. This implies that small values of Z less than
about 3 can be associated with a deviation from small-scale yielding, i.e., exces-
sive local plasticity. Under such conditions, mechanisms of fatigue-crack advance
pertaining to fully ductile materials would prevail, i.e., fatigue striation forma-
tion, via alternating or simultaneous shear, involving alternating blunting and re-
sharpening of the crack tip during the fatigue cycle (Neumann, 1969; Pelloux,
1970). Since in the limit of fully plastic conditions, the (mode I) crack-growth rate
per cycle is proportional to the cyclic crack-tip opening displacement (� CTOD)
(Pelloux, 1970):

da

dN
≈ β �CTOD ∝ �K2

σy E′ , (7)

where the maximum value of β (at full recovery of the �CTOD on unload-
ing) is 0.35 (Gu and Ritchie, 1999), and E′ is equal to E (Young’s modulus) in
plane stress and E/(1 − ν)2 in plane strain (ν is Poisson’s ratio), we would expect
that with decreasing values of Z, the Paris exponent should decrease to approach
this lower (fully plastic) limit of m = 2, as shown by the experimental data in
Figure 1.

On the other hand, where the characteristic specimen dimension h is equated to
the specimen thickness B, we also note that according to ASTM Standard E-399
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Figure 1. Plot of the Paris law exponent m for a range of steels as a function of the basic similarity
parameter Z = σy

√
h/KIc, where h is a characteristic specimen dimension. In the diagram, h is

identified both with the in-plane dimension of specimen width W (closed symbols) and with the
out-of-plane specimen thickness B (open symbols). Data are taken from the compilation in Ritchie
and Knott (1973), derived from the experimental fatigue-crack growth results for low to ultrahigh
strength steels at ambient temperatures at R ∼ 0 in Carman and Katlin (1966), Wei et al. (1967),
Crooker et al. (1968), Miller (1968), Bates et al. (1969), Crooker and Lange (1970), Clark and Wessel
(1970), Evans et al. (1971), Ritchie and Knott (1973).

(ASTM E399-90, 2002) a state of plane strain deformation is reached when ry is
small (typically 1/15) compared to B.2 This implies that large values of Z greater
than approximately 3 can be associated with plane-strain conditions being met,
i.e., with full triaxial constraint at the crack tip. Furthermore, in general high Z

(= σy
√

h/KIc) values are associated with high strength/low toughness materials.
Under these conditions, more brittle mechanisms of fatigue-crack advance would be
anticipated. Indeed, the premise of Ritchie and Knott’s original study (Ritchie and
Knott, 1973) was that as Kmax in the fatigue cycle approaches KIc, additional modes
of fracture, specifically motivated by higher peak and/or hydrostatic stresses, occur in
additional to striation crack growth. Such static modes, i.e., transgranular cleavage,
intergranular cracking and microvoid coalescence (dimples), were shown to signifi-
cantly accelerate growth rates and specifically to result in higher values of the Paris
exponent m. Their results showed an inverse relationship between m and KIc with the

2The E-399 Standard (Irwin, 1960) actually specifies that B, (W − a) and a > 2.5(KIc/σy)
2 for plane

strain and small-scale yielding conditions to exist. This is equivalent to ry being approximately 1/13–
1/15 of the out-of-plane and in-plane specimen dimensions, respectively.
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high exponents (m�3) occurring almost entirely in the lower toughness steels where
KIc was less than ∼60 MPa

√
m. Thus, in physical terms, the increase in the Paris

exponent m with increasing Z, shown in Figure 1 for h = B, is consistent with the
onset of more brittle mechanisms of fatigue-crack advance (static modes), induced by
the increasing triaxial constraint and limited local plasticity associated with high val-
ues of the similarity parameter Z (as ry �h).

5. Conclusions

The property of self-similarity associated with scaling laws has been considered in
the context of the well known Paris power law – da/dN = C(�K)m – relating the
fatigue-crack growth rates to the stress-intensity range. Although the constants C

and m in the Paris law are generally assumed to depend only on material properties,
dimensional and similarity analysis predicts that they should additionally be depen-
dent on specimen size. Through comparison to the fatigue-crack growth properties of
a wide range of low to high strength steels, the Paris exponent m is shown to indeed
increase with increasing Z, the basic similarity parameter equal to σy

√
h/KIc, where

h is a characteristic specimen dimension. By identifying h respectively, with the spec-
imen width W and thickness B, it is further shown that in terms of physical mech-
anisms, (i) low values of m (m → 2) at small Z (Z <∼ 3) are consistent with exten-
sive crack-tip plasticity which promotes crack advance via ductile striation formation
(where da/dN ∝�K2), whereas (ii) high values of m at larger Z result from increased
triaxial constraint/plane-strain conditions at the crack tip that promote additional
more brittle fatigue fracture mechanisms, i.e., static modes, leading to a much higher
dependence of growth rates on the stress intensity.
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