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Abstract

Data for fracture in human humeral cortical bone are re-analyzed to assess the validity for this material of linear-elastic fracture mechanics
(LEFM), which is the standard method of analyzing toughness and one basis for analyzing clinical data relating to bone quality. A nonlinear fracture
model, which is based on representing the damage zone in the bone by a cohesive model, is calibrated against a number of sets of test data for normal
(not diseased or aged) human cortical bone taken from cadavers. The data consist of load vs. load-point displacement measurements from standard
compact–tension fracture tests. Conventional LEFM is unable to account for the shape of the load–displacement curves, but the nonlinear model
overcomes this deficiency. Calibration of the nonlinear model against one data curve leads to predictions of the peak load and the displacement to
peak load for two other data curves that are, for this limited test set, more accurate than those made using LEFM. Furthermore, prior observations of
damage mechanisms in bone are incompatible with the modeling assumption of LEFM that all nonlinearity is confined to a zone much smaller than
the specimen and the crack length. The predictions of the cohesive model and the prior observations concur that the length of the nonlinear zone in
human cortical bone varies in the range 3–10 mm, which is comparable to or larger than naturally-occurring bones and the specimens used to test
them. We infer that LEFM is not an accurate model for cortical bone. The fracture toughness of bone deduced via LEFM from test data will not
generally be a material constant, but will take different values for different crack lengths and test configurations. The accuracy of using LEFM or
single-parameter fracture toughness for analyzing the significance of data from clinical studies is called into question. The nonlinear cohesive zone
model is proposed to be a more accurate model of bone and the traction-displacement or cohesive law is hypothesized to be a material property. The
cohesive law contains a more complete representation of the mechanics of material failure than the single-parameter fracture toughness and may
therefore provide a superior measure of bone quality, e.g., for assessing the efficacy of therapy for osteoporosis.
© 2005 Elsevier Inc. All rights reserved.
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Introduction

Cortical bone is a natural composite with an organic
component, mainly collagen, and a mineral apatite phase,
arranged in a complex, hierarchical structure [41]. Akin to
engineering composite materials, experiments show that
damage initiates as diffuse but discrete strain localization
events distributed in space in a way that is strongly correlated
with the heterogeneous structure. The localizations include
damage bands that continue to transfer stress into the
surrounding material and microcracks, which are traction-free.
Under some conditions, such distributed damage evolves into a
single dominant crack, around the tip of which the diffuse
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damage events continue to occur as part of the crack-growth
process. To date, most assessments of the toughness of bone,
which represents a macroscopic characterization of such
processes, have involved linear-elastic fracture mechanics
(LEFM) analyses, which yield a single-valued fracture
toughness, KIc. This has proved to be an important concept as
it is one measure of the probability of fracture and hence of bone
quality. Thus, toughness evaluated using LEFM is one possible
basis for analyzing the effect of drug therapies on bone quality,
using fracture data from either animal models or cadavers.
However, due to the size-scales involved, LEFM may not
represent an accurate or physically correct approach. In this
work, we show that the complexity of fracture in cortical bone,
over dimensions comparable to those in the human skeleton,
warrants a more detailed (nonlinear) evaluation of such fracture
instability. In light of this, we believe that nonlinear methods
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ought to be considered for analyzing either animal models or
clinical data.

Background

Linear fracture models of bone

Prior mechanical descriptions of fracture in cortical bone,
based on LEFM, assume that the toughness is a material constant
identified with a point process at the crack tip. Any inelastic
behavior is assumed to be limited to a small near-tip region
(small-scale yielding) so that the stress and displacement fields
local to the tip of a pre-existing crack can be described, for mode
I loading, by the stress–intensity factor, KI. The resistance to
fracture, or fracture toughness, is then defined for a particular
loading mode as the critical stress–intensity value, KIc, at the
onset of unstable fracture.1 This critical value has been assumed
to be a material constant for a particular specimen, although it
has been recognized to vary with age, disease, environmental
exposure, and the location and orientation of the bone specimen,
among other factors [7–9,32,38,39,54,57,58].When regarded as
an undamaged continuum, bone has also been recognized to
have anisotropic and rate-dependent properties. Microstructural
anisotropy accounts for a marked anisotropy observed in
fracture resistance, e.g., between cracks growing parallel and
normal to the axis of the osteon structures. Specifically, cortical
bone is much tougher (typically by a factor of two) in the
transverse orientation, where the crack must cut the osteons, in
part due to the fact that the crack tends to deflect along the
cement lines [8,35]. The toughness has also been described as
rate-dependent, corresponding to subcritical crack growth,
which can occur under both sustained and cyclic (fatigue)
loading [33,35], and to be variable with respect to such factors as
size and type of bone, anatomical location, material history,
thickness, organic content, mineral distribution, degree of
hydration, and age (for a recent review, see [44]).

Recently, a new series of papers have challenged the LEFM
paradigm for fracture in cortical bone. Most notably, it has been
recognized that the fracture toughness cannot be characterized
by a single-value toughness, and that cracking behavior must be
described in terms of a so-called crack-resistance curve (or R-
curve), where the driving force for cracking increases with crack
extension [30,35,51–53]. Implicit in this behavior are the
origins of the toughness of bone, which are now believed
primarily to involve mechanisms such as crack bridging that
operate in the crack wake [43].

A key observation that is most germane to this viewpoint is that
high-resolution imaging of cracks in human cortical bone shows
1 The fracture toughness, KIc, may be defined as the critical value of the stress
intensity KI at the onset of unstable fracture at a pre-existing crack under mode I
(tensile opening) conditions, i.e., when KI = Yσapp(πa)

½ = KIc, where σapp is the
applied stress, a is the crack length, and Y is a function (of order unity) of crack
size and geometry. Alternatively, the toughness can be expressed as a critical
value of the strain–energy release rate, GIc, defined as the change in potential
energy per unit increase in crack area. For an isotropic material loaded in mode
I, GIc = KIc

2 /E′, where E′ = E in plane stress and E’ = E/(1 − ν2) in plane strain (E
is Young’s modulus, ν is Poisson’s ratio).
that the crack advances as a complex system of mother–daughter
cracks; microcracks are spawned ahead of and around the primary
crack and link back to it only after lands of intact material deform
and break after further loading (Fig. 1) [32,35,36]. The zone of
microcracks and intact lands can be depicted as a bridging zone at
the leading edge of the dominant crack, in a single crack
idealization. The bridging is provided by uncracked ligaments,2

which continue to transfer some stress across the zone of damaged
material, thus shielding the crack tip from the applied load. The
size of the bridges can range from a few to hundreds of
micrometers. Their pattern is strongly correlated with the
heterogeneity of the bone, e.g., microcracks appear to be
associated with the osteon structures [35]. The total length, λb,
of the zone of such bridges in the crack wake is a primary
characteristic of the fracture process; in human cortical bone, this
bridging zone can be quite large, i.e., λb ∼5 mm [27,28,35,36].3

The very fact that observed bridging zones (or nonlinear
process zones) are so large and thus of the same order of
magnitude as the thickness of the cortical layer, at once calls into
question the validity of LEFM. When a fracture process zone is
commensurate with the structure, a condition known as large-
scale bridging or yielding [16], the fracture toughness is no
longer a material constant [3,5,11,12,16,18,26,29,42,45,46,50].
For a single (mother) crack with a process zone, the toughness
KIc depends on extrinsic factors such as the specimen shape and
loading configuration, because the contribution to toughening
arising from bridging, Kb, is not independent of crack length
(e.g., [5,13,14]). In such systems, the fracture properties can only
be correctly accounted for by determining the constitutive
behavior of the bridging process.

Methods

Nonlinear models for bone

In this paper, nonlinear fracture formulations will be shown to account for
important features in fracture data for human cortical bone. The formulations are
based on those developed for structural materials, where they have proven
accurate and practicable [47]. Attention will be restricted to the problem of a
single dominant crack, around which numerous microcracks or other nonlinear
material events will usually occur, within a nonlinear fracture process zone, as
shown schematically in Fig. 1a. Tests in which a single dominant crack is
induced, e.g., from a sharp, machined notch, are a standard method for assessing
the fracture resistance of bone. We believe that the analysis of nonlinear aspects
of dominant-crack fracture will constitute one element of a strategy of
formulating high-fidelity models of bone, in which diffuse, discrete damage
events are modeled in sufficient detail at different scales to predict the relation of
bonemorphology and composition to macroscopic properties. Such high-fidelity
models have potential clinical importance in identifying factors that control bone
quality and determining whether they are amenable to therapy.

The nonlinear fracture model used for this analysis is the line-spring
idealization [6,21,45,49], in which changes in the displacement fields around a
crack that are due to a diffuse fracture process zone are collapsed into a
2 In the context of fracture, “ligament” here refers to any unfailed material
i.e., a crack “bridge”, of any type, shape, and size, that spans the crack; not a
ligament in the anatomical sense.
3 Other mechanisms of crack bridging, for example intact collagen fibers that

span the crack, have been identified in bone [22,59]. Collagen fibers can generate
significant tractions at small crack displacements and therefore can be an especially
significant contribution to toughening for cracks at the micron scale [37].



Fig. 1. (a) An optical micrograph of a crack in 61-year-old human cortical bone. Note the formation of daughter cracks and corresponding uncracked ligaments [36]. (b)
Bridging by collagen fibrils in the wake of a crack in human cortical bone [36].
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displacement discontinuity existing across a surface. Since the displacement
jump accounts for material nonlinearity, the idealization allows the rest of the
body to be treated as linear material (Fig. 2b). In mode I, the displacement
discontinuity, 2u, is defined to equal the net nonlinearity across the whole zone
in the real material. For a plane problem in which the crack propagates in the x1
direction along x3 = 0:

uðx1Þ ¼
Z wbðx1Þ

0
ep33ðx1;x3Þdx3; ð1Þ

where 2wb(x1) is the width of the nonlinear damage zone at position x1, and εij
(p)

is the plastic strain tensor, i.e., the excess strain above that expected for linear,
undamaged material under the same local stress state. The plastic strain need not,
and generally will not, be uniform in the damage zone; it may incorporate
localization events, including microcracks.

A traction field, p, is imposed along the material surfaces that have become
separated by the displacement discontinuity, to ensure that the normal stress,
σ33, in the material abutting the surfaces is identical to that expected in the
nonlinear material, for the given net displacement across the nonlinear zone
(Fig. 2b). The single dominant crack is thus represented as two domains: one
traction-free (0 ≤ x1 ≤ a0; p = 0) and one where line springs act (a0 ≤ x1 ≤ a;
p ≠ 0).4 All the nonlinearity in the fracture problem is represented by the
displacement discontinuity, 2u, and the nonlinear constitutive behavior of the
material in the damage zone is subsumed in the relationship p(u).

Cohesive and bridged crack models

The leading edge of the nonlinear zone in the line-spring model, which lies at
x1 = a in the plane symmetry conditions of Fig. 2, will be referred to in this paper
as the crack tip, rather than the furthest progression of the traction-free domain
(x1 = a0). The boundary condition imposed at the crack tip to close the fracture
problem is taken to be that the stress–intensity factor at the crack tip is zero, so
that the stress component, σ33, in the material immediately ahead of the crack tip
(x1 = a + δ) approaches the value p(0) as δ → 0.

The critical step in applying the cohesive crack model is evaluating the
relation, p(u). Given this relation, all fracture properties can in principle be
predicted. The relation will be inferred in this paper for one source of human
4 The name “line spring” derives from the fact that, in plane problems, the
nonlinear tractions act along a single line. In problems of general symmetry, the
discontinuity and tractions will be defined over an arbitrary surface, since the
crack may advance on a nonstraight front or develop a curved fracture surface.
cortical bone using data from the literature. The inferred relation will then be
exploited to analyze the characteristics of the fracture process and to assess the
validity of using LEFM to establish clinical correlations involving bone fracture.
Results

Analysis of fracture data for human cortical bone

Data for human cadaveric cortical bone tested using
compact–tension C(T) specimens have been presented previ-
ously by Nalla et al., together with observations of the
mechanisms of crack resistance [35]. The tests and therefore
all model formulations are cases of purely mode I fracture
(negligible crack-sliding displacement), due to the symmetry of
the specimen and the material. Plane-stress conditions will be
assumed to apply and the crack will be assumed to advance
along a straight front (x1 = a, x3 = 0).

A bilinear form will be assumed for p(u), as illustrated in Fig.
3. This is consistent with deductions of the spatial distribution of
tractions, p(x1), made in [35] using destructive specimen
measurements. The parameters in the bilinear form will be
evaluated by fitting test data for load vs. load-point displacement
from refs. [35,36]. The degrees of freedom available in the
bilinear form prove to be sufficient to fit these data to within the
experimental noise.

Because a bilinear traction law has been assumed, it is
convenient in discussing the results to refer to the fracture
energy partition indicated in Fig. 3:

Wtotal ¼ Wtip þWbrid; ð2aÞ
Wtip ¼ 2
Z u0

0
pðuÞdu; Wbrid ¼ 2

Z uc

u0

pðuÞdu: ð2bÞ

The subscripts “tip” and “brid” (for wake bridging) may suggest
that a distinction exists between mechanisms acting near the



Fig. 2. Schematic of (a) discrete damage that has evolved into a single dominant crack with a diffuse crack tip damage zone and (b) the same system idealized as a
planar crack with a bridging or cohesive zone. Tractions, p, are shown acting on one surface only, but must also act in equal magnitude and opposite sense on the other
surface. As suggested, the tractions can vary in direction and magnitude along the cohesive zone. The displacement discontinuity across the crack is exemplified by the
points marked A, which were coincident prior to fracture.
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crack tip and in the further crack wake. However, the present
analysis of fracture data cannot by itself resolve whether distinct
mechanisms exist. The partition of Eqs. (2a) and (2b) is
introduced purely for convenience and without any necessary
physical significance.

For a monotonically decreasing cohesive traction law, the
parameter pc is equal to the unnotched tensile strength of the
material under plane-stress conditions, in the idealization of the
cohesive model (e.g., [5]). Higher stresses cannot be achieved
because the material will suffer strain localization on some plane,
followed by progression to failure at decreasing stresses. However,
the measured tensile stress of unnotched bone specimens may
differ from pc, because strength is defect sensitive.

Compact–tension C(T) test data and analysis

Fig. 4 shows the C(T) test configuration used in ref. [35] and
the location and orientation of the specimens in the bone. Three
specimen tests will be analyzed here, among which the sample
dimensions varied slightly (Table 1), leading to small but significant
variations in the test data, especially the peak load. In the tests, a pre-
crack was formed by machining a notch and then creating a small
notch extension with tip radius of∼15 μm by polishing with a razor
blade. The notch and pre-crack are similar to a natural crack with no
Fig. 3. A hypothetical cohesive traction law for a mode I cohesive zone.
wake bridging, so that their total length can be modeled as the initial
value, c0, of the traction-free crack length, a0 (measured from the
center-line of the loading hole). Values of c0 varied as shown in
Table 1. The specimen was oriented so that the crack propagated
along the long axis (proximal–distal direction) of the bone.

Records of the load vs. load-point displacement (P vs. Δ)
during the loading of the three specimens show an initial
linear regime followed by nonlinearity (reduction of the
tangent stiffness) until peak load is achieved, followed by a
decline in the load (e.g., Fig. 5). The numerous downward
spikes in the data mark instances of partial unloading used in
[34] to measure the residual stiffness of the specimen. The
test data beyond the peak load are inconsistent from specimen
to specimen; in particular, the load in two cases falls
anomalously fast. This suggests that excessive damage has
been caused in the crack process zone by the repeated
unloading events. In contrast, the unloading events had only a
modest effect on the data before peak load and a single model
can account for this domain very well for all specimens (see
below).
Fig. 4. (a) Geometry of the compact–tension specimens and (b) their location
and orientation in the bone.



Table 1
Dimensions (mm) of experimental test specimens

w h d1 d2 t c0

Specimen 1 a 15.7 17.0 4.0 3.8 2.5 3.6
Specimen 2 b 16.0 15.6 3.7 3.7 2.35 3.75
Specimen 3 b 17.0 16.8 4.1 3.8 1.9 4.1
a Taken from the right arm of the cadaver of a 37-year-old male.
b Taken from the left arm of the cadaver of a 41-year-old female.
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The experiment was simulated by a finite-element calculation,
using the commercial ABAQUS software (version 6.4; ABAQUS,
Inc., Pawtucket, RI 02860). The possibility of a cohesive zone was
introduced by incorporating a set of special cohesive elements,
which allow a displacement discontinuity when a critical stress is
reached at any point along the potential crack path. Within the
cohesive elements, special numerical procedures are employed to
allow the domain of displacement discontinuity to end part-way
across an element, thus assuring smooth growth, and to assure that
stress–traction continuity conditions are properly satisfied between
the cohesive elements and the adjacent solid material elements at
irregular features such as edges or corners. The numerical
formulation of the cohesive elements is described in ref. [56].
The mode I cohesive traction law, p(u), was assigned the piecewise
linear form shown in Fig. 3. The loading pin was modeled as a
rigid cylindrical shell coupled to the specimen by contact elements.

Elasticity of the specimen

Considerable variance exists in literature elasticity data for
similar bone, with Young’s moduli E1 in the range 16–20 GPa
and E3 in the range 10–14 GPa [1,19,23,40,55]. The shear
modulus μ31, which is germane for the present C(T) tests, has
not been measured for strain magnitudes relevant to these tests
(it is a difficult orientation to test). Therefore, prior data being
inadequate for quantitative analysis, we assume that the subject
specimens are elastically orthotropic, which is a more
reasonable idealization of cortical bone than isotropic elasticity,
and use the test data themselves to evaluate the required
elasticity coefficients.

Because no evidence of crack growth or damage could be seen in
the experiments up to the point where the load–displacement data
become nonlinear (Fig. 5), the slope, s1, of the initial linear portion
reflects only the elastic compliance of the specimen. For plane-stress
conditions, s1 is determined by the Young’s moduli, E1 and E3,
along the long axis and the circumferential direction of the bone,
respectively, and by the shear modulus, μ31.

The Young’s moduli were assigned the values E1 = 16 GPa
and E3 = 12 GPa. The shear modulus, μ31, was then determined
by fitting predictions in the elastic regime to the measured slope,
s1. For the test data of [34], s1 = 1050 N/mm2, which leads to
μ31 = 1.5 GPa.5 Poisson’s ratio in the x1–x3 plane, ν13, was
5 The displacement data reported in ref. [35] were the displacements of the
actuator of the testing machine. As greater sensitivity is required for the present
analysis, the same data are reported here, but with the displacements in the
frame and load cell of the testing machine subtracted out. This gives a more
accurate representation of the displacement of the material itself at the loading
point of the specimen.
assigned the typical literature value,ν13 = 0.3; ν31 follows from
ν31/E3 = ν13/E1. The influence of the assumed values of the
elastic constants on the deduced cohesive law was checked by
varying E1, E3, and μ31 over ranges typical of the variance in
literature values, always subject to the constraint of fitting the
initial slope of the data. Predicted load–displacement curves
using the modified elastic constants but the same optimal
parameter values for the cohesive traction law were almost
indistinguishable from those predicted with E1 = 16 GPa and
E3 = 12 GPa.

Fitting the cohesive law

To evaluate the four coefficients, pc, p0, u0, and uc, of Fig. 3,
a process of trial and error was used to minimize the residual
difference between the prediction and the data of Fig. 5
(specimen 1 of Table 1). Because of the inconsistency in the
data beyond peak load, the calibration fitting procedure used
data only up to peak load in specimen 1. This fitting was always
made to the envelope of the data, ignoring the unloading events.

Fitting revolves around several key features of the load–
displacement data: (i) the slope of the linear region, reproduced
by proper choice of elastic constants, (ii) the stress at the onset
of the first significant nonlinearity, which is marked in Fig. 5,
(iii) the predicted shape of the load–displacement curve
between the onset of nonlinearity and peak load, and (iv) the
location of the peak, in load and displacement.

Numerous trials showed that the onset of nonlinearity is
sensitive to the contribution to the work of fracture that has been
designated Wtip (Eqs. (2a) and (2b)), i.e., the traction law up to
u3 = u0, but not to the parameters pc p0, and u0, which define this
part of the law, separately. Fitting the onset of nonlinearity yields
Wtip = 0.544 kJ/m2. The predicted onset of nonlinearity
corresponds to the development in the model of a cohesive
zone of small but nonzero length, along which p ranges from pc
Fig. 5. Fitting fracture data (from [34]) in the form of normalized load vs. load-
point displacement for one specimen (Specimen 1 of Table 1) of cortical humeral
bone, taken from the humerus of a 37-year-old male.
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to approximately p0. The influence of this small zone on the
fracture process depends not on pc alone, but on the integrated
effect of the tractions in the zone, represented by Wtip. The first
attainment of the condition σ33 = pc at the root of the notch
extension (x1 = c0), and therefore the first activation of the
cohesive zone, will have occurred considerably before this point
in the load history. However, this earlier event has no significant
immediate effect on the load–displacement curve; only when the
crack opening at the root of the notch extension begins to exceed
u0 does the curve become noticeably nonlinear. Since the choice of
pc ifWtip is fixed also has no significant effect on the remainder of
the load–displacement curve, pc cannot be separately determined
from the load–displacement data. A prescribed value is suggested
for pc, namely pc = 60 ± 10 MPa, consistent with literature data for
the unnotched tensile strength in the circumferential direction of
human Haversian bone [20,40].

The remaining parameters were varied to fit the data beyond
the onset of nonlinearity. Three predictions that are optimal or
near-optimal fits, with variance similar to the experimental
uncertainty, are shown in Fig. 5 (trials 2–4). For trials 2–4, the
traction law is the same in each case up to u3 = u0, preserving
Wtip = 0.544 kJ/m

2. Also shown in Fig. 5 (trial 1) is the prediction
found if the cohesive traction law is reduced to a simple triangle
with work of fracture equal to Wtotal = Wtip = 0.544 kJ/m2. The
parameter values for the four trials are shown in Table 2.

At the onset of the nonlinear regime, the curve for trial 1 rises
slightly and then falls, with the ultimate load barely exceeding
the load to nonlinearity. The curves for trials 2–4 at first rise in
unison in the nonlinear regime, before separating and reaching
different ultimate loads. Beyond the ultimate load, they fall with
similar slopes. The peak load and concomitant displacement rise
with Wbrid (or Wtotal).

Many other trials were run, including trials for traction laws
in which the tail (u N u0) was rectangular (dp/du = 0) or
hardening (dp/du N 0). A qualitative summary of how features
of the predicted load–displacement curves are sensitive to the
different traction law parameters is as follows. The initial slope
of the law, dp/du for small u, influences the slope of the
predicted curve immediately following the onset of nonlinear-
ity, but not for long. Most of the shape of the nonlinear regime is
determined by the shape of the tail to the traction law (i.e., p for
u N u0) and the corresponding contribution to the work of
fracture, Wbrid. For hardening laws, the nonlinear regime is
predicted to be concave, rather than convex, in contradiction of
the experiments. For rectangular laws, the gradually softening
behavior of the predicted curves up to the peak load is not
reproduced; the predicted curve tends to be piece-wise linear,
and the specimen displacement at ultimate tends to be
Table 2
Parameter values of the cohesive traction law for the trials of Fig. 5

Trial pc(MPa) p0 (MPa) u0 (μm) uc (μm) Wtip

(kJ/m2)
Wbrid

(kJ/m2)

1 60 0 9.44 9.44 0.544 –
2 60 30 6.04 25.23 0.544 0.576
3 60 30 6.04 30.43 0.544 0.732
4 60 30 6.04 35.97 0.544 0.898
underestimated, if the law is chosen to yield a correct prediction
of the ultimate load.

The deduced best-fit parameter values were taken to be those
of Trial 4, since this trial fitted the data best up to peak load,
including the value of the peak load, Pmax, and the displacement
at peak load, Δmax. The best-fit values were p0 = 30 ± 3 MPa,
u0 = 6 ± 0.5 μm, and uc = 36 ± 4 μm, with the errors estimated
from uncertainty in the fitting of Trial 4 to the data. (Not that all
of the errors can be independent, because of the constraint of
satisfying the optimal value ofWtip.) These parameter values will
be used in all further analyses. They implyWbrid = 0.90 ± 0.08 kJ/
m2, which, together with the fitted value Wtip = 0.54 ± 0.05 kJ/
m2, yields Wtotal = 1.44 ± 0.1 kJ/m2.

Test of predictive capability of cohesive law

Using the same elasticity and the same cohesive law (Trial 4)
deduced by fitting the data of Fig. 5, predictions were attempted of
the load–displacement data for specimens 2 and 3 of Table 1,
which had different dimensions and different peak loads. The
predictions fit the data well, being correct in the nonlinear behavior
prior to peak load and the predicted values of Pmax and Δmax (Fig.
6). The goodness of fit can be partially quantified by the errors in
Pmax and Δmax (Table 3). The error in Pmax is only 1%, whereas its
greatest variation from specimen to specimen is∼8%. The error in
Δmax is greater, but Δmax is sensitive to small changes in the model
or the calibrating data, being the location of an extremum.
Prediction of the slope of the data following peak load is poor, with
the data tending to fall much faster than the prediction, but this is
expected, since accelerated damage due to the cycling sequence in
the tests is not simulated by the model.

A direct comparison with the predictive capability of LEFM
can be made as follows. The LEFM toughness, deduced from
Pmax according to standard ASTM procedures [2], gives a value
of KIc = 2.38 MPa-m−1/2 using the data of Fig. 5. The load–
deflection curve predicted by LEFM has the simple shape
marked “LEFM” in Fig. 5: a linear response (in the absence of
global plasticity) up to peak load, followed by a monotonic
decline in the load. The true shape of the load–displacement
data and the value Δmax cannot be reproduced, if KIc is chosen to
fit Pmax. Furthermore, the ability of LEFM to predict the
response of the other two specimens is poor (Fig. 6 and Table 3).
The error in Pmax ranges up to 9% and that in Δmax is 15–23%.

Discussion

Considerations of length scales

Within an order of magnitude, the length of the cohesive
zone, λb = a − a0 (Fig. 2), is given by a characteristic length, lch,
which can be estimated from the cohesive law [5,16,26,42]. For
a mode I crack:

lch ¼ WtotalE′
p2c

; ð3Þ

where E′ is the elastic constant of footnote 1, modified for
orthotropic elasticity in [15,48], and taking the value E′ = 7.88



Fig. 6. Predictions of the load–displacement curves for two specimens (Specimens 2 and 3 of Table 1) of human cortical bone, taken from the humerus of a 41-year-old
female (data from [34]).
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GPa for the elastic constants E1 = 16 GPa, E3 = 12 GPa, and
μ31 = 1.5 GPa (E′ is not strongly sensitive to Poisson’s ratios).
With pc = 60 MPa andWtotal = 1.44 kJ/m2, lch ≈ 3.2 mm, which
is comparable to the zone length of 3.5 mm calculated in the
simulations.

From these estimates, it is clear that only in the limit that the
traction-free crack length, a0, is much greater than lch and the
damage zone does not approach other specimen boundaries,
will the crack propagate under conditions that are well described
by LEFM; indeed, only under these quite restrictive conditions
will fracture toughness exist as a material constant, expressed,
for example, as a critical value of the stress intensity, KIc, or
strain-energy release rate, GIc. In this limit, referred to as small-
scale bridging conditions, GIc will given by [10,46]:

GIc ¼ Wtotal ¼ 2
Z uc

0
pðuÞdu: ð4Þ
Implications for establishing clinical correlations involving
bone quality

Proposed procedure for characterizing fracture properties
Since fracture is a primary mechanism of bone failure,

especially in patients afflicted by age or osteoporosis, the
cohesive law may be a preferred property on which to base
clinical trials of the efficacy of drug and other therapies for
Table 3
Predictions of peak load and corresponding displacement using the cohesive model

Peak load per unit specimen thickness, Pmax (N/m

Data Cohesive model
prediction (% error)

LEFM
(% erro

Specimen 1
(calibration specimen)

62.5 n/a n/a

Specimen 2 59.1 59.8 (+1%) 64.5 (9
Specimen 3 64.2 65.0 (+1%) 64.4 (−
ageing, osteoporosis, or other bone diseases. The question arises
of what is the best experiment for determining the law.

The load vs. load-point curve taken alone contains sufficient
information to determine the traction law with a degree of
resolution of detail that is sufficient for predicting fracture
behavior. These curves are readily available from standard
fracture test procedures. The more difficult experiments of
measuring crack profiles or mapping the spatial distribution of
damage can certainly reveal additional information of clinical
importance, but may not significantly improve the prediction of
macroscopic features of fracture behavior. Such data would be
relevant to models of local deformation events, rather than
macroscopic cracking.

On the question of what test configuration should be
preferred for acquiring load–displacement data for mode I
fracture, the compact–tension test offers the following advan-
tages. (1) Because it involves both bending and shear
deformation, it provides, through the slope of the initial linear
response, good information on the degree of elastic anisotropy
of the material. Getting this information from the same
specimen as that yielding fracture information has much
merit, in view of the spatial inhomogeneity of bone. (2)
Because of the presence of a compressive zone ahead of the
growing crack, the process zone is relatively limited in extent,
so that even in a specimen only 15–20 mm in total width, a
and LEFM

m) Displacement at peak load, Δmax (mm)

prediction
r)

Data Cohesive model
prediction (% error)

LEFM prediction
(% error)

83 n/a n/a

%) 78 83 (+6%) 66 (−15%)
0.3%) 83 85 (+2.5%) 64 (−23%)
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steady-state zone is attained. Information about the complete
traction law is therefore contained in the test.

Significance of the cohesive law in clinical studies
If one regards fracture as the primary failure mechanism of

bone, then the reported weakness of correlation between bone
quality andmineralization (e.g., [25]) is not surprising. Themineral
phase in bone is certainly the stiffer and stronger phase, but fracture
resistance in a composite such as bone is not determined by the
properties of one phase alone. This is manifest at the fracture
mechanics level from the present paper; if the mineral phase
determined the fracture resistance of bone, then the fracture would
be well described by LEFM, because the mineral phase, taken
alone, is brittle. The fact that LEFM is inaccurate implies by itself,
necessarily and very strongly, that the fracture process involves
mechanisms beyond the mineral phase.

Such mechanisms have recently been sought in events
occurring at the micrometer and even nanometer scales
[4,24,36,44]. Principal putative energy absorbing mechanisms
include plasticity in the collagen phase, crack deflection,
especially along cement lines around osteons, diffuse micro-
cracking, and the bridging of cracks by ductile phases (e.g., Fig.
1b). One might reasonably speculate, therefore, that bone quality
is related not only or even primarily to mineralization, but also to
the character of the collagen and other protein content of the bone
and the morphological organization of the phases and structures
in bone. The properties of the softer phases will, for example,
have a strong influence on the efficacy of the crack bridging
mechanism. The morphology of the composite, especially the
connectivity of soft and hard phases, will govern crack deflection,
the coalescence of microcracks, the elastic and nonlinear
response of the bone prior to cracking, and other phenomena.
Both the properties of the soft phases and the morphology of the
bone might also, and perhaps more influentially for bone quality
than mineralization, be changed by drug therapy.

The cohesive law, p(u) (e.g., Fig. 3), contains a record of the
effect of all internal mechanisms on the fracture performance of
bone. All mechanisms at the micrometer and nanometer scales,
crack deflection, microcracking, crack coalescence, plasticity,
crack bridging, etc., act together to determine the relation p(u).
Furthermore, the internal mechanisms are relevant to macro-
scopic fracture (and perhaps therefore to mechanical aspects of
bone quality) only as far as fracture test data determine p(u), and
no further. The extent to which the shape of the cohesive law
can be determined from fracture data is limited exactly by the
sensitivity of the experiment to changes in the material; the
analysis here shows that mode I fracture data resolve no more
than four independent scalar parameters in p(u). (Analysis of
engineering materials that have similar fracture characteristics
[17,31] resolves a similar number of degrees of freedom.) If the
fitting procedure cannot resolve further details in the traction
law, then those further details of material behavior do not matter
to the fracture observables. The determination of p(u) from
fracture data is an optimal measure of the role of internal
mechanisms in bone fracture resistance.

We therefore advocate that fracture test data analyzed by
nonlinear fracture modeling be used in establishing the efficacy
of drug and other therapies that are purported to enhance bone
quality. We propose the hypothesis that the parameters of the
cohesive law will give a much more useful account of changes
in bone quality than either mineralization or the single-
parameter toughness of LEFM.

Concluding remarks

A cohesive fracture model has been formulated and applied
to data for human femoral cortical bone. The central constitutive
property in the model is the relation, p(u), between the tractions
supplied by nonlinear (failing) material across the fracture plane
and the displacement discontinuity across the same plane. The
relation p(u) is hypothesized to be a material property for a
given source of bone with given age and condition. The limited
data analyzed here imply that a nonlinear model is superior to
LEFM in accounting for the shape of load–displacement data
and the peak load.

According to the nonlinear model, the onset of significant
nonlinearity in the test data has been shown to be associated
with the development of a cohesive zone of length ∼ 0.5 mm
over which tractions of 30–60 MPa exist, the upper value of
stress being the conjectured critical value of the local stress for
damage initiation. The cohesive zone length increases to
approximately 3 mm as the crack propagates, concurring with
experimental observations. Considerable variation of the
cohesive zone length might be expected with the age and
condition of the bone, shorter zones being associated with more
brittle fracture, e.g., for aged or diseased bone.

Linear-elastic fracture mechanics can only be an internally
consistent and accurate model of fracture in bone if the
specimen and crack length both exceed the process-zone length.
For the traction law deduced from fracture data for human
cortical bone in the present work, this condition is unlikely to be
met in any transverse fracture (normal to the long axis of the
bone). Therefore, LEFM will not accurately describe the whole
fracture process in human cortical bone.

The traction law, p(u), offers an internally consistent
approach to accounting for all macroscopic features of fracture.
It includes, in the limit of long cracks (often longer than can be
sustained in a bone), the fracture toughness, KIc, represented by
LEFM; it also enables prediction of the initiation and
propagation of fracture when the apparent toughness is not
constant and can predict the effects of specimen shape and
loading configuration. Because it describes the spatial distribu-
tion of stress over the nonlinear process zone associated with
fracture, the traction law relates much more directly than does
KIc to the underlying fracture processes.

Nomenclature
a Crack length
a0 Length of traction-free crack
bij Voigt elastic constants
c0 Length of initial notch plus notch extension
d1, d2 Specimen dimensions
δ Small quantity
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Δ Load-point displacement
E, EI Young’s moduli
E’ Combination of elastic constants
εij Component of strain
εij
(c) Critical value of strain
εij
(p) Component of plastic strain
f Fitting function
Gi Strain energy release rates, i = I, II, III
Gic Critical value of Gi, i = I, II, III
h Specimen height
KI Stress–intensity factor in mode I (tensile opening)
KIc Critical value of KI at fracture
Kb Reduction of stress–intensity factor due to bridging
KR(a) Apparent critical stress–intensity factor at crack

length a
λb Length of bridging or process zone
lch Characteristic length of traction–displacement law
LEFM Linear-elastic fracture mechanics
μ, μij Engineering shear moduli
N Elapsed load cycles
ν, νij Poisson’s ratios
wb Half-width of bridging or process zone
wm Maximum value of ωb

P Load per unit specimen thickness
p Mode I traction
pc, p0 Parameters of traction–displacement law
s1 Initial slope of load vs. load-point displacement data
σij Component of stress
t Specimen thickness
τ Time
u Crack opening displacement
uc, u0 Parameters of traction–displacement law
x Spatial (x1, x2, x3) coordinates
w Specimen width
Wi Total and partial values of the work of fracture,

i = total, dip, brid
Y a constant
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