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Abstract

Recently published data for fracture in human humeral cortical bone are analyzed using cohesive-zone models to deal with the

nonlinear processes of material failure. Such models represent the nonlinear deformation processes involved in fracture by cohesive

tractions exerted by the failing material along a fracture process zone, rather than attributing all damage to a process occurring at a single

point, as in conventional linear-elastic fracture mechanics (LEFM). The relationship between the tractions and the net displacement

discontinuity across the process zone is hypothesized to be a material property for bone. To test this hypothesis, the cohesive law was

evaluated by analyzing published load vs. load-point displacement data from one laboratory; the calibrated law was then used to predict

similar data taken for a different source of bone using a different specimen geometry in a different laboratory. Further model calculations

are presented to illustrate more general characteristics of the nonlinear fracture of bone and to demonstrate in particular that LEFM is

not internally consistent for all cases of interest. For example, the fracture toughness of bone deduced via LEFM from test data is not

necessarily a material constant, but will take different values for different crack lengths and test configurations. LEFM is valid when the

crack is much longer than a certain length scale, representative of the length of the process zone in the cohesive model, which for human

cortical bone ranges from 3 to 10mm. Since naturally occurring bones and the specimens used to test them are not much larger than this

dimension for most relevant orientations, it is apparent that only nonlinear fracture models can give an internally consistent account of

their fracture. The cohesive law is thus a more complete representation of the mechanics of material failure than the single-parameter

fracture toughness and may therefore provide a superior measure of bone quality. The analysis of fracture data also requires proper

representation of the approximately orthotropic elasticity of the bone specimen; if the specimen is incorrectly assumed to be isotropic, the

initial measured compliance cannot be reproduced to within a factor of four and the fracture toughness deduced from the measured work

of fracture will be overestimated by �30%.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

It is well known that the deterioration in the quantity
and quality of bone in the human musculoskeletal system
with aging and disease results in severely increased risks of
bone fracture [1]; for the very elderly, this can lead to
significant mortality [2]. In cortical bone, such aging results
in the accumulation of microdamage, invariably in the
form of microcracks [3], and a definitive decay in the
e front matter r 2005 Elsevier Ltd. All rights reserved.
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inherent resistance to fracture [4–11]. Whereas the precise
links between the increasing levels of diffuse microdamage
and increased fracture risk remain unclear, the degradation
in the fracture resistance, quantified in terms of the
toughness, is undisputed. In this work, we consider how
the toughness of bone should be evaluated. To date, most
assessments have involved linear-elastic fracture mechanics
(LEFM) analyses which yield a single-valued fracture
toughness. However, we show that the complexity of
fracture in cortical bone, over dimensions comparable to
those in the human skeleton, warrants a more detailed
(nonlinear) evaluation of such fracture instability.

www.elsevier.com/locate/biomaterials
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Nomenclature

a crack length
a0 length of traction-free crack
bij Voigt elastic constants
c0 length of initial notch plus notch extension
d1, d2 specimen dimensions
d small quantity
D load-point displacement
E, Ei Young’s moduli
E0 combination of elastic constants
eij component of strain

eðcÞij critical value of strain

eðpÞij component of plastic strain

f fitting function
Gi strain energy release rates, i ¼ I; II; III
Gic critical value of Gi, i ¼ I; II; III
h specimen height
Ki stress-intensity factors, i ¼ I; II; III
Kic critical value of Ki, i ¼ I, II, III
Kb reduction of stress-intensity factor due to

bridging
KRðaÞ apparent critical stress-intensity factor at crack

length a

lb length of bridging or process zone

lch characteristic length of traction-displacement
law

LEFM linear-elastic fracture mechanics
m, mij engineering shear moduli
N elapsed load cycles
n, nij Poisson’s ratios
wb half-width of bridging or process zone
wm maximum value of wb

P load per unit thickness
p vector ðp1; p2; p3Þ of crack tractions per unit

thickness
pc, p0 parameters of traction-displacement law
s1 initial slope of load vs. load-point displacement

data
sij component of stress
t specimen thickness
tg minimum thickness of a grooved CðTÞ speci-

men
t time
u crack displacement vector ðu1; u2; u3Þ

uc, u0 parameters of traction-displacement law
x spatial coordinates ðx1;x2;x3Þ

w specimen width
W i total and partial values of the work of fracture,

i ¼ total, tip, brid
Y a constant

1Ki can be defined for three modes of loading: i ¼ I (mode I tensile-

opening), II (mode II shear) and III (mode III anti-plane shear). For each

of these modes, a corresponding fracture toughness, Kic, may be defined as

the critical value of Ki at fracture instability, i.e., when Ki ¼ Ysapp(pa)1/2 ¼

Kic, where sapp is the applied stress, a is the crack length, and Y is a

function (of order unity) of crack size and geometry. Alternatively, the

toughness can be expressed as a critical value of the strain-energy release

rate, Gc, defined as the change in potential energy per unit increase in

crack area. For an isotropic material, Gc ¼ KIc
2 /E0+KIIc

2 /E0+KIIIc
2 /2m,

where E0 ¼ E in plane stress and E0 ¼ E=ð1� n2Þ in plane strain, with E

Young’s modulus and n Poisson’s ratio, and m is the engineering shear

modulus. See text for amendments necessary for an orthotropic material.
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2. Limitations of prior fracture models of bone

2.1. Traditional engineering view of constitutive/fracture

behavior of cortical bone

Cortical bone is a natural composite consisting of an
organic matrix of �90% type-I collagen with 10% other
organic materials (mainly proteins) together with a mineral
phase of hydroxyapatite [12]. This is similar for all
collagen-based mineralized tissues, although the distribu-
tion and ratio of the organic and mineral phases varies with
the function of the particular tissue; for human cortical
bone this ratio is roughly 1:1 by volume and 1:3 by weight
[13]. Composition and structure, however, vary with such
factors as skeletal site, age, sex, physiological function and
mechanical loading, making bone a very heterogeneous
material, with the need for vascularization adding to the
complexity of the tissue. Its structure is hierarchical and
thus can be considered at several dimensional scales. At the
nanoscale, bone is composed of type-I mineralized collagen
fibers (up to 15 mm in length, 50–70 nm in diameter, and
bundled together) made up of a regular, staggered
arrangement of collagen molecules. These fibers are bound
and impregnated with carbonated apatite nanocrystals
(tens of nanometers in length and width, 2–3 nm in
thickness) [12] and are further organized at microstructural
length-scales into a lamellar structure with adjacent
lamellae being 3–7 mm thick [14]. Generally oriented along
the long axis of bones are the secondary osteons [15], which
are central to the remodeling process to repair damage in
vivo. They are composed of large (�50–90 mm diameter)
vascular channels surrounded by circumferential lamellar
rings, with so-called ‘‘cement lines’’ at the outer boundary.
To date, mechanical descriptions of fracture in cortical

bone have, with only a few recent exceptions, been
presented via LEFM, with the toughness deemed to be a
material constant and identified with a point process at the
crack tip (e.g., [11,16–18]); any inelastic behavior is
presumed to be limited to a small near-tip region. Under
such small-scale yielding conditions, the stress and
displacement fields local to the tip of a pre-existing crack
are described by the stress-intensity factor, Ki, and
resistance to fracture, or the fracture toughness, is defined
as the critical stress-intensity value, Kic, at the onset of
unstable fracture. 1 These Kic values have been assumed to
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Fig. 1. (a) An optical micrograph of a crack in 34-year-old human cortical bone. Note the formation of daughter cracks and corresponding uncracked

ligaments [27]. (b) Bridging by collagen fibrils in the wake of a crack in human cortical bone [27].
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be material constants, although the toughness is known to
depend on various factors including age, disease, loading
mode, and the anatomical location and orientation within
the bone [9,10,12,19–21]. The anisotropic properties can be
related to microstructural anisotropy, in particular to the
orientation of osteon structures, collagen fibrils, and
apatite mineral platelets. Specifically, cortical bone is
typically a factor of two tougher in the transverse
orientation, i.e., where the crack must cut the osteons,
largely because cracks tend to deflect along the cement lines
(osteon/bone–matrix interfaces) [21,22]. Curiously, how-
ever, given the highly heterogeneous and hierarchical
structure and morphology of bone, the great majority of
studies to date do not entertain the prospect of spatial non-
uniformity in continuum or fracture properties. An out-
standing problem is therefore to model heterogeneity in
mechanical properties (elasticity, viscosity, etc.), over all
scales that are shown to be relevant by detailed experi-
ments, in terms of variations in the composition and
morphology of the bone.

2.2. Evidence for nonlinear fracture (bridged cracks) in

cortical bone

Recently, this LEFM paradigm has been challenged in a
series of papers that have recognized that the fracture of
bone cannot be characterized by a single-valued toughness,
rather that behavior must be described in terms of a so-
called crack-resistance curve (R-curve), where the driving
force for fracture increases with crack extension [23–25].
This phenomenon can arise when toughening mechanisms
act in the crack wake [26]. Such a notion is consistent with
recent studies in cortical bone that show that fracture
occurs via a complex system of mother–daughter cracks;
microcracks associated with the osteon structures [24] form
ahead of, and around, the primary crack and link back to it
only after lands of intact material, a few to hundreds of
micrometers in size, deform and break after further loading
(Fig. 1a) [21,24,27]. In a single-crack idealization, such
nonlinear processes are represented by a cohesive or
bridging zone at the leading edge of the dominant crack;
the nonlinear mechanisms continue to carry load in this
zone, which would otherwise be available to drive the
crack.
The total length, lb, of the nonlinear zone in the crack

wake is a primary characteristic of the fracture process; in
human cortical bone, the observed zone of bridging can be
as large as lb �5mm [24,27]. As this is comparable to the
cortical layer thickness, even in larger human bones such as
the humerus or femur, the validity of LEFM for bone is
questionable. When a fracture process zone is commensu-
rate with the structure, large-scale bridging or yielding
conditions apply and the fracture toughness is no longer a
material constant [28–33]. For a single (mother) crack with
a process zone, e.g., the crack-bridging zone of microcracks
or daughter cracks in Fig. 1b, the critical applied (or
measured) stress-intensity factor, Kc, depends on extrinsic
factors such as the geometry and loading configuration,
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because the contribution to toughening from bridging, Kb,
depends on the crack length (e.g., [28,34,35]). In such cases,
the fracture properties can only be correctly accounted for
by determining the constitutive behavior of all the non-
linear crack wake mechanisms.

3. Nonlinear fracture model

3.1. The line-spring idealization

To account for these features in fracture data for cortical
bone, nonlinear fracture formulations will be presented for
the problem of a single dominant crack, around which
microcracks or other nonlinear material events can occur
within a nonlinear fracture process zone (Fig. 2a). The line-
spring idealization [32,36–38] provides an accurate and
simple formulation, in which the changes in the displace-
ment fields around the crack due to a diffuse fracture
process zone are collapsed into a displacement disconti-
nuity existing across a surface (Fig. 2b). The vector
displacement discontinuity, 2u, is defined as the net
nonlinearity across the whole zone in the real material,
i.e., for a plane problem in which the crack propagates in
the x1 direction along x3 ¼ 0:

uiðx1Þ ¼

Z wbðx1Þ

0

eðpÞi3 ðx1;x3Þ dx3; ði ¼ 1 or 3Þ, (1)

where 2wbðx1Þ is the width of the nonlinear damage zone at
position x1, and eðpÞij is the plastic strain tensor, i.e., the
strain in excess of that for linear, undamaged material
under the same local stress state. The plastic strain is not
necessarily uniform in the damage zone and may incorpo-
rate localization events such as microcracking.
(a)

traction-free crack

zon
dam

(b)

idealized planar crack
trac

a00

Fig. 2. Schematic of (a) discrete damage that has evolved into a single domin

idealized as a planar crack with a bridging or cohesive zone. Tractions, p, are sh

opposite sense on the other surface. As suggested, the tractions can vary

discontinuity across the crack is exemplified by the points marked A, which w
Traction fields, p, are imposed along the material
surfaces that have become separated by the displacement
discontinuity, to ensure that the stress in the material
abutting the surfaces is identical to that expected in the
nonlinear material (Fig. 2b). For problems with plane
symmetry, the single dominant crack is thus represented as
two domains: one traction-free (0px1pa0; p ¼ 0) and one
where line springs act (a0px1pa; pa0). All the non-
linearity in the fracture problem is represented by the
displacement discontinuity, 2u, and the nonlinear consti-
tutive behavior of the material in the damage zone is
subsumed in the relationship pðuÞ, in which both opening
and sliding displacements are possible. In the cases of plane
symmetry studied here, p will denote the tractions per unit
specimen thickness.
In many materials, the relationship pðuÞ proves to be a

material constant, i.e., a fixed relation pðuÞ accounts for
data from different types of test, even under conditions in
which the deduced value of the fracture toughness is not
constant but depends on the crack length or the specimen
geometry [28,35]. However, other variables may influence p
in bone, including loading rate (time, t), elapsed cycles, N,
and the biological state of the material (protein composi-
tion, chemical environment, hydration, etc.), which may be
a function of position, x. In the most general conditions,
one expects a relation p(u, t, N, x, y ), whose true form
remains a challenging topic for future research; but these
effects are not evident in the data analyzed here.

3.2. Cohesive and bridged crack models

The leading edge of the nonlinear zone in the line-spring
model, which lies at x1 ¼ a in the plane symmetry
e of nonlinear,
aged material

tions p [u, … ]

bridging or cohesive zone
�b

crack tip

A

A

a

2Wb(x1)

2u1

2u3

x1

ant crack with a diffuse crack tip damage zone and (b) the same system

own acting on one surface only, but must also act in equal magnitude and

in direction and magnitude along the cohesive zone. The displacement

ere coincident prior to fracture.
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Fig. 3. A hypothetical cohesive traction law for a mode I cohesive zone.
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conditions of Fig. 2, will be referred to in this paper as the
crack tip, rather than the furthest progression of the
traction-free domain (x1 ¼ a0). The boundary condition
imposed at the crack tip to close the fracture problem is
taken to be that the stress-intensity factor at the crack tip
should be zero and thus the stress components, s33, s31,
and s12 in the material immediately ahead of the crack tip
(x1 ¼ aþ d) approach the values p3ð0Þ, p1ð0Þ, and p2ð0Þ,
respectively, as d-0. This closure condition is known as a
cohesive crack model. This formulation is equivalent,
mathematically and physically, to a bridged crack model
in which a critical condition is imposed on the stress-
intensity factors, KI, K II, and K III (or equivalently on the
strain-energy release rates, GI, GII, and GIII) at the crack
tip, provided a traction-free crack domain (0px1pa0)
exists and is reasonably large [29,39]. Equivalence is
accomplished by defining, in the cohesive crack model, a
part of the traction law, pðuÞ, that will contribute high
traction values at small displacements u, e.g., when u3ou0

for a mode I crack (Fig. 3). This part of the cohesive law
describes physical processes occurring relatively near to the
crack tip (x1 � a). The work required per unit area to
separate material to crack displacements exceeding u0 is

W tip ¼ 2

Z u0

0

p3ðu3Þ du3. (2)

An asymptotically equivalent bridged crack model pos-
sesses a critical value, K Ic, for the mode I stress-intensity
factor that satisfies

W tip ¼
K2

Ic

E0
, (3)

where E 0 is an elastic constant defined in Appendix A.
The critical step in applying the cohesive crack model is

evaluating the relation, pðuÞ, from which all fracture
properties can in principle be predicted.

4. Analysis of fracture data for human cortical bone

We first analyze data for human cadaveric cortical bone
tested using the compact-tension CðTÞ geometry [24].
These tests and thus all model formulations pertain to
pure mode I fracture, due to the symmetry of the specimen
and the material; consequently, the cohesive law reduces to
the scalar relation p3ðu3Þ. Plane-stress conditions are
assumed with the crack allowed to advance along a straight
front (x1 ¼ a, x3 ¼ 0).
A bilinear form is assumed for p3ðu3Þ, as illustrated in

Fig. 3. This is consistent with deductions of the spatial
distribution of tractions, p3ðx1Þ, made in [24] using
destructive specimen measurements. The parameters in
the bilinear form will be evaluated by fitting test data for
load vs. load-point displacement from Ref. [24]. The
degrees of freedom available in the bilinear form prove to
be sufficient to fit these data to within the experimental
noise.
For the assumed bilinear traction law, the fracture

energy can be partitioned as (Fig. 3)

W total ¼W tip þWbrid, (4a)

W tip ¼ 2

Z u0

0

p3ðu3Þ du3; Wbrid ¼ 2

Z uc

u0

p3ðu3Þ du3, (4b)

The subscripts ‘‘tip’’ and ‘‘brid’’ (for wake bridging) imply
that a distinction exists between mechanisms acting near
the crack tip and in the further crack wake, although the
present analysis cannot by itself resolve whether distinct
mechanisms exist. Indeed, the traction law can be
calibrated without any reference to what the underlying
mechanisms giving rise to nonlinearity might be; they need
not be known at all.
For a monotonically decreasing cohesive traction law,

the parameter pc is equal to the unnotched tensile strength
of the material under plane-stress conditions, in the
idealization of the cohesive model (e.g., [28]). Higher
stresses cannot be achieved because the material will suffer
strain localization on some plane, followed by progression
to failure at decreasing stresses. However, the measured
tensile stress of unnotched bone specimens may differ from
pc, because strength is defect sensitive.

4.1. Compact-tension test data and analysis

The compact-tension test configuration used in [24] is
shown in Fig. 4a; tests from three such specimens, of
slightly varying dimensions (Table 1), are analyzed here. A
calibration specimen for which results prove representative
of all three test specimens was defined with dimensions
w ¼ 16mm, h ¼ 17mm; d1 ¼ 4mm, d2 ¼ 3:8mm, and
loading hole diameter ¼ 3.6mm. In the tested specimens,
a pre-crack was formed by machining a notch and then
creating a small notch extension with tip radius 15 mm by
polishing with a razor blade. The notch and pre-crack are
similar to a natural crack with no wake bridging, so that
their total length can be modeled as the initial value, c0, of
the traction-free crack length, a0 (measured from the
center-line of the loading hole). Values of c0 varied as
shown in Table 1; the value c0 ¼ 3:6mm was taken for the
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Table 1

Dimensions (mm) of experimental test specimens

Specimens w h d1 d2 t c0

1 15.7 17.0 4.0 3.8 2.5 3.6

2 16.0 15.6 3.7 3.7 2.35 3.75

3 17.0 16.8 4.1 3.8 1.9 4.1

Anterior

Lateral

x3

x2

x1

Posterior

Medial

Fig. 5. Schematic illustrating the orientation of the CðTÞ specimens in the

humerus from which they were extracted.

P, ∆ 

P, ∆ 

w

h

crack path

2 w

2 c 0
x 1

x 3

2w

2c0

d1

d2

c0
x1

x1

x3

x3

(a) (b)

Fig. 4. Geometry of (a) the compact-tension CðTÞ specimen and (b) a center-notch specimen.
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calibration specimen. The specimen was oriented as shown
in Fig. 5, so that the crack propagated along the long axis
of the bone, from the proximal towards the distal end.

The load vs. load-point displacement data taken during
the loading of the three specimens show an initial linear
regime followed by nonlinearity (reduction of the tangent
stiffness) until peak load is achieved, followed by a decline
in the load (Fig. 6). The downward spikes in the post-linear
curve mark instances of partial unloading to measure the
residual stiffness of the specimen. The envelopes of the
three sets of load–displacement data shown in Fig. 6, up to
the point of unloading, were fitted to evaluate the
parameters of the cohesive law.

The experiment was simulated with finite-element analysis,
using the commercial ABAQUS software (version 6.4;
ABAQUS, Inc., Pawtucket, RI 02860). The possibility of a
cohesive zone was introduced by incorporating a set of
special cohesive elements, which allow a displacement
discontinuity when a critical stress is reached at any point
along the potential crack path. The numerical formulation of
the cohesive elements is described in Ref. [40]. The mode I
cohesive traction law, p3ðu3Þ, was assigned the piecewise
linear form shown in Fig. 3, modified to include an initial
linearly rising segment with a slope equal to 1000pc/uc (not
shown in Fig. 3), which aids in numerical stability without
altering the outcome. The loading pin was modeled as a rigid
cylindrical shell coupled to the specimen by contact elements.
4.2. Elasticity of the specimen

Literature data for similar bone shows values of the
Young’s moduli E1 in the range 16–20GPa and E3 in the
range 10–14GPa [41–45]. Shear moduli, mij, have been
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Fig. 6. Fracture data in the form of normalized load vs. load-point

displacement data for cortical humeral bone from three CðTÞ specimens

[24].

2The displacement data reported in Ref. [24] were the displacements of

the actuator of the testing machine. As greater sensitivity is required for

the present analysis, the same data are reported here, but with the

displacements in the frame and load cell of the testing machine subtracted

out. This gives a more accurate representation of the displacement of the

material itself at the loading point of the specimen.
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measured either by ultrasound propagation or torsion
tests. Ultrasound measures dynamic elasticity at very small
strains, which may not be representative of static elasticity
at the relatively high strains achieved in a fracture test, even
where the specimen remains ostensibly linear. Torsion tests
have not been applied, to the authors’ knowledge, for the
modulus m31, which is germane for the present compact-
tension tests, presumably because shear tests are difficult to
perform on specimens cut with this alignment. Reported
mechanical test data for m23 come from other test
configurations, for whose analysis the different shear
moduli are often assumed equal. With substantial varia-
bility evident in the literature, reported shear moduli range
from 3 to 6GPa (a range that covers all components). This
range extends significantly lower than would be expected
if the material were isotropic and Young’s modulus fell in
the ranges reported for E1 and E3. For example, taking
E ¼ 16GPa and Poisson’s ratio n ¼ 0:3 in an isotropic
material, one finds m ¼ 6GPa. Thus orthotropic elasticity
is a more reasonable idealization of cortical bone for
general cases than isotropic elasticity. The present data will
support this view.

For the specimens to be analyzed here, no independent
measurements of elasticity were made. This in fact will be a
common situation, because the shape of a fracture speci-
men is not well suited to mechanical tests of the nine
components of elasticity of an orthotropic material.
Furthermore, since cortical bone is inhomogeneous over
length scales of order 10mm (the scale of features in the
parent bone), elasticity measurements from different speci-
mens cannot be assured to represent the elasticity of a given
fracture specimen.
A practical resolution of this difficulty is found in the
compact-tension test data themselves. Because no evidence
of crack growth or damage could be seen in the
experiments up to the point where the load–displacement
data become nonlinear (Fig. 6), the slope, s1, of the initial
linear portion should be independent of the cohesive law
(since there is no crack, only a traction-free notch and
notch extension). It reflects only the elastic compliance of
the specimen. For plane-stress conditions, the three
components of elasticity that influence s1 significantly are
the Young’s moduli, E1 and E3, in the x1 direction (long
axis of the bone) and x3 direction (circumferential direction
of the bone); and the shear modulus, m31, in the x12x3

plane. Thus,

s1 ¼ E1f
E3

E1
;
m31
E1

� �
, (5)

for some function f , which is dimensionless, provided that
the ordinate in Fig. 6 refers to the force per unit specimen
thickness. The behavior of this function is detailed in
Appendix B.
For calibrating the cohesive law, Young’s moduli were

assigned the values E1 ¼ 16GPa and E3 ¼ 12GPa. The
shear modulus, m31, was then determined from the measured
slope, s1, using Eq. (5), resulting in the value m31 ¼ 1:5GPa.
For the test data of Fig. 6, s1 ¼ 1050� 50N=mm2, the error
representing variance from specimen to specimen.2 The only
other elastic constants that enter into the plane-stress
problem are Poisson’s ratios in the x12x3 plane, n31 and
n13. The former was assigned the typical literature value,
n13 ¼ 0:3; the latter is then implied by the relation
n31=E3 ¼ n13=E1.

4.3. Calibrating the cohesive law

The problem is to evaluate the four coefficients, pc, p0,
u0, and uc, of Fig. 3. This was done by a process of trial and
error, minimizing the residual difference between the
prediction and the data of Fig. 6.
Discussion of the fitting will refer to several key features

of the load–displacement data: (i) the slope of the linear
region, reproduced by proper choice of elastic constants,
(ii) the stress at the onset of the first significant
nonlinearity, which is marked in Fig. 6, (iii) the predicted
shape of the load–displacement curve between the onset of
nonlinearity and peak load, (iv) the location of the peak, in
load and displacement, and (v) the slope of the curve
beyond the peak.
Numerous trials showed that the onset of nonlinearity is

sensitive to the contribution to the work of fracture that
has been designated W tip (Eq. (4), i.e., the traction law up



ARTICLE IN PRESS

0

10

20

30

40

50

60

70

80

0 0.02 0.04 0.06 0.08 0.1 0.12

Load-point displacement (mm)

1
2

3

4

predicted onset
of nonlinearity

trials 2-4

trial 1

5

p3

p3

u0

u0

u3

u3
u3 ≈ u0

Lo
ad

 p
er

 u
ni

t t
hi

ck
ne

ss
 (

N
/m

m
)

Fig. 7. Calibration of the cohesive law using the data of Fig. 6. For

parameters in trials 1–5, see text.

Table 2

Parameter values of the cohesive traction law for the trials of Fig. 7

Trial pc
(MPa)

p0
(MPa)

u0 (mm) uc (mm) Wtip (kJ/m2) Wbrid

(kJ/m2)

1 60 0 9.44 9.44 0.544 —

2 60 30 6.04 25.23 0.544 0.576

3 60 30 6.04 30.43 0.544 0.732

4 60 30 6.04 35.97 0.544 0.898
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to u3 ¼ u0, but not to the parameters pc p0, and u0, which
define this part of the law, separately. Fitting the onset of
nonlinearity yields W tip ¼ 0:544 kJ=m2. The predicted
onset of nonlinearity corresponds to the development of
a cohesive zone of small, but non-zero length, along which
the bridging traction diminishes from pc to approximately
p0. The first attainment of the condition s33 ¼ pc at the
root of the notch extension (x1 ¼ c0), and therefore the first
activation of the cohesive zone, will have occurred
considerably before this point in the load history. How-
ever, this earlier event has no significant immediate effect
on the load–displacement curve; only when the crack
opening at the root of the notch extension begins to exceed
u0 does the curve become noticeably nonlinear. Once W tip

is set, changing the parameter pc also has no significant
effect on the remainder of the load–displacement curve.
Therefore, pc cannot be separately determined from the
load–displacement data.3 A prescribed value is suggested
for pc, namely pc ¼ 60� 10MPa, consistent with literature
data for the unnotched tensile strength in the circumfer-
ential direction of human Haversian bone [15,42].

The remaining parameters were varied to fit the data
beyond the onset of nonlinearity. Three predictions that
are optimal or near-optimal fits are shown in Fig. 7 (trials
2–4). For trials 2–4, the traction law is the same in each
case up to u3 ¼ u0, preserving W tip ¼ 0:544 kJ=m2. The
fourth curve in Fig. 7 (trial 1) is the prediction found if the
cohesive traction law is reduced to a simple triangle with
work of fracture equal to W total ¼W tip ¼ 0:544 kJ=m2.
Since the law for trial 1 has a different shape up to u3 ¼ u0,
it must have a steeper initial slope than the laws for
trials 2–4 to achieve the stated condition on the work of
fracture. The parameter values for the four trials are shown
in Table 2.

In the nonlinear regime immediately after the onset of
nonlinearity, the curve for trial 1 rises slightly and then falls,
with the ultimate load barely exceeding the load to
nonlinearity. The curves for trials 2–4 at first rise in unison
in the nonlinear regime and do not soften as rapidly as the
curve for trial 4, because of the greater (negative) slope of the
law for trial 4. Beyond a certain load, the curves for trials 2–4
show distinct behavior, rising at different rates and reaching
different ultimate loads. Beyond the ultimate load, they fall
with similar slopes. The ultimate load and displacement rise
with Wbrid (or W total) for the three trials shown.

Many other trials were run, including trials for traction
laws in which the tail (u34u0) was rectangular
(dp3=du3 ¼ 0) or hardening (dp3=du340). A qualitative
3This is hardly surprising. Since the crack tip in the model is infinitely

sharp, a singularity would exist at the crack tip as long as the material

remains elastic, if not for the finiteness of the numerical mesh. The

maximum stress realized obviously rises as the mesh is refined; and the

external load for first failure diminishes reciprocally. However, the range

of the high elastic stress values is extremely limited, so that this first failure

affects a very small domain and has negligible effect on the global stiffness

of the specimen. This sequence of events in the model has no clear parallel

in the material itself, which cannot support an elastic singularity.
summary of how features of the predicted load–displace-
ment curves are sensitive to the different traction law
parameters is as follows. The initial slope of the law,
dp3=du3 for small u3, influences the slope of the predicted
curve immediately following the onset of nonlinearity, but
not for long. Most of the shape of the nonlinear regime is
determined by the shape of the tail to the traction law (i.e.,
p3 for u34u0) and the corresponding contribution to the
work of fracture, Wbrid. For hardening laws, the nonlinear
regime is predicted to be concave, rather than convex, in
contradiction of the experiments. For rectangular laws, the
gradually softening behavior of the predicted curves up to
the peak load is not reproduced; the predicted curve tends
to be piece-wise linear, the specimen displacement at
ultimate tends to be underestimated, if the law is chosen
to yield a correct prediction of the ultimate load, and the
slope of the predicted curve following peak load tends to be
overestimated. For bilinear softening laws, only those near
to the three trials shown in Fig. 7, both in the values of p0

and uc (or equivalently, p0 and Wbrid), show a satisfactory
fit to the data. Reciprocally, the ultimate load and the
ultimate displacement tend to determine these tail para-
meters of the cohesive law.
In total four degrees of freedom are determined by the

data, which, in the preceding discussion, have been
represented by W tip, dp3=du3 (for small u3), p0, and uc.
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calibrated against the data of Nalla et al. [24]. The load is normalized by

the quantity {tgt}
1/2 (see Appendix C). LEFM prediction, using K Ic

evaluated from the data of Nalla et al., is also shown.

4The difference in geometry between the tests of Refs. [24] and [46] leads

to a large change in the peak load (E40%), which has been predicted here

using a calibration based on the average of the three tests in Fig. 6.

Interestingly, the finer variations that occur within the three data sets of

Fig. 6 (�9%) due the smaller geometrical variations of Table 1 can also be

accounted for by using a cohesive model calibrated on just one of them, as

described elsewhere [47]. The conclusions of this paper would not be

affected by using this alternative calibration.
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These quantities can be mapped onto the set {pc, u0, p0, uc}.
The deduced best-fit parameter values are close to those of
Trial 3, viz., p0 ¼ 30� 5MPa, u0 ¼ 6� 0:5mm, p0 ¼ 60�
10 and uc ¼ 31� 6mm, with the errors estimated from the
variance among trials 2–4. (Not all of the errors can be
independent, because of the constraint of satisfying the
optimal value of W tip.) These parameter values lead to
Wbrid ¼ 0:74� 0:16 kJ=m2, which, with the fitted value
W tip ¼ 0:54 kJ=m2, yields W total ¼ 1:28� 0:16 kJ=m2.

4.4. Effect of uncertainty in the elastic constants

The influence of the assumed values of the elastic
constants on the deduced cohesive law was checked by
varying E1, E3, and m31 over ranges typical of the variance
in literature values, always subject to the constraint of
Eq. (5). Predicted load–displacement curves using the
modified elastic constants but the same optimal parameter
values for the cohesive traction law were almost indis-
tinguishable from those predicted with E1 ¼ 16GPa and
E3 ¼ 12GPa. This is an important and useful result;
consistent inferences of traction laws can be made from a
single test, without special efforts to measure the elasticity
of the test specimen independently.

On the other hand, if isotropic elasticity were assumed
for the present specimens, errors would be quite severe.
First, Young’s modulus would have to be reduced to a
value, E � 7:4GPa, that is well below the range of
reasonable values to fit the slope, s1. Second, the deduced
traction law would be significantly different to that
deduced using orthotropic elasticity.

5. Test of predictive capability

The universality of the calibrated law was tested by
attempting to predict load–displacement data published by
Akkus et al. [46] for nominally healthy humeral cortical
bone taken from the cadavers of males aged 37–40 years.
Those data were taken using a compact-tension specimen,
but with different dimensions (w ¼ 14:2mm, h ¼ 17:0,
c0 ¼ 6:78mm, t ¼ 3:16mm) and modified by the inclusion
of side grooves along the projected crack plane. The
significant difference in c0 (at least 70% longer than for the
specimens used in [24]) and the presence of side grooves,
where the local thickness is reduced to 1.31mm, resulted in
a substantially different load–displacement curve, with the
peak load per unit thickness (see Appendix C for definition
of thickness for the grooved CðTÞ specimen) reduced by
more than 50% and the displacement at peak load 20%
lower (Fig. 8). Prediction was attempted using the same
elasticity and same cohesive law as established by the data
of Nalla et al., with no alteration or iterative adjustment;
only the specimen geometry was changed (see Appendix C
for details of the model definition). Results are shown for
each of the parameter sets of Trials 2–4 of Table 2 (Fig. 8).
All three trial parameter sets fall well within experimental
error up to peak load. Some variance arises following peak
load, the data tending to fall faster than the predictions.
The same discrepancy is visible in Fig. 6. One possible
cause of this is rate-dependent softening of the cohesive
tractions, which was not modeled. The agreement of the
prediction with the data overall is excellent.4

6. An internally consistent model of fracture in bone

6.1. Characteristics of the deformation field

The CðTÞ specimen can be regarded, for building
intuition into its behavior, as comprising two loaded
cantilever arms, which join at the crack tip. The arms
deform approximately as stubby Timoshenko beams,
subject to built-in boundary conditions at the crack tip.
Thus, the displacement of the loading points is a
combination of bending and shear, with shear perhaps
the dominant contribution, due to the stubbiness of the
arms. Indeed, as detailed in Appendix B, the load-point
displacement is sensitive to the choice of both the shear
modulus and Young’s moduli in these specimens. In other
words, by virtue of its geometry, the CðTÞ specimen can be
a good test of elastic anisotropy in the tested material. This
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underpins the merit of using the measured elastic com-
pliance of the specimen itself to derive the information
needed about elasticity to complete the nonlinear fracture
analysis.

A typical plot of the distribution of the stress compo-
nent, s33, i.e., the component normal to the fracture plane,
is shown in Fig. 9, for near-optimal cohesive traction law
parameters. All fields are elastic, the nonlinearity of the
specimen being confined in the model to the line x3 ¼ 0. A
tensile field surrounds the nonlinear process zone. The
bending character of the specimen is evidenced by a
countering compression field at the far specimen boundary.
The non-uniform curvature of the upper specimen bound-
ary is one indication of the presence of shear deformation.

A series of snapshots of the distribution of s33 along the
fracture plane reveals the predicted behavior of the
nonlinear damage during an experiment (Fig. 10a). The
location of the crack tip (furthest extent of damage) is
marked by the point where s33 ¼ pc ¼ 60MPa in each case.
The cohesive zone (where s33 is in equilibrium with the
bridging traction, p3) can be identified as the region of
Fig. 9. Typical predicted distribution of the component of stress, s33.
Only the top half of the specimen is shown.

-60

-40

-20

0

20

40

60

1 -- = 0.04 m
2 -- 
3 -
4 -
5 -

1 5432

1 --∆ =
2 -- 
3 -
4 -
5 -

1 - = 0.04 mm (initiation)
-∆ = 0.07 mm (developing bridging zone)
-∆ = 0.10 mm (developing bridging zone)
-∆ = 0.12 mm (developing bridging zone)
-∆ = 0.20 mm (free edge effects)

2 --
3 -
4 -
5 -

initial 

notch

X1(mm)
0 2 4 6 8 10 12 14 16

N
or

m
al

 s
tr

es
s,

 �
33

, o
n 

fr
ac

tu
re

 p
la

ne
 (

M
P

a)

specimen 
edge

(a)

Fig. 10. Predicted distribution of the normal component of stress along the

specimen.
approximately (but not necessarily exactly) bilinear varia-
tion of s33 with x1, where s33 decreases from s33 ¼ 60MPa
to zero as x1 decreases, i.e., as one moves further into the
crack wake. The first case shown corresponds to the onset
of nonlinearity marked in Fig. 7. This is the case for which
the knee in the cohesive tractions (the discontinuity in slope
in the bilinear shape of s33ðx1Þ) first appears in the cohesive
zone. After the cohesive zone fully develops (between 2
and 3), it translates across the specimen with fixed length
(cases 3 and 4), until the crack tip approaches the far side
of the specimen, whereupon it begins to shrink (case 5). The
latter effect is caused by enhanced rotation due to bending
when the surviving ligament of intact material decreases;
the crack must open more rapidly and the condition u3 ¼ uc

is therefore met nearer to the crack tip [34].

6.2. Mesh requirements

One requirement for achieving mesh-independent pre-
dictions is that the numerical element size must be small
compared to the cohesive zone [40]. More stringently, for
correct prediction of the onset of nonlinearity, it must also
be smaller than the length of the first linear segment in the
cohesive zone, i.e., the zone length in case 1 in Fig. 9, or
approximately 0.5mm. On the other hand, since non-
linearity does not arise in the load–displacement curves
until the configuration of case 1 is reached, the onset of
nonlinearity is not sensitive to the maximum stress in the
zone at this epoch, but to some weighted average of the
stress over the zone, which extends to the point where the
condition u3 ¼ uc is satisfied. This is consistent with the
onset of nonlinearity being determined by W tip, rather than
pc or u0 separately. Furthermore, since the radius of
curvature of the notch extension, 15 mm, is much smaller
than the zone length at the onset of nonlinearity, no
significant error is introduced by neglecting this geome-
trical feature in the definition of the model; similarly, there
is no error by choosing a mesh that is larger than 15 mm
0
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which would be unable to predict the details of the stress
concentration associated with the notch tip.
5For such a smooth law, one would still expect, based on the analysis

here, to determine four degrees of freedom, e.g., pc, the initial slope

dp3=du3 for small u3, the curvature of the law, and uc.
6.3. Considerations of length scales

Within an order of magnitude, the length of the cohesive
zone, lb ¼ a2a0 (Fig. 2), is given by a characteristic length,
lch, which can be estimated from the cohesive law
[28–30,48]. For a mode I crack:

lch ¼
W totalE

0

p2
c

, (6)

where E0 is defined in Appendix A and takes the value
E0 ¼ 7:88GPa for the elastic constants E1 ¼ 16GPa,
E3 ¼ 12GPa, and m31 ¼ 1:5GPa (E 0 is not strongly
sensitive to Poisson’s ratios). (See Appendix D for further
remarks on the elastic constant that appears in Eq. (6).)
With pc ¼ 60� 10MPa and W total ¼ 1:28 kJ=m2, lch �

2:8mm, which is in fact quite close to the calculated zone
length of 3.2mm (Fig. 9). This value of lch is also consistent
with microscopic observations, which show zones of crack
bridging typified by Fig. 1 in the range lb ¼ 526mm.

While these results are encouraging and give important
insight, the reality is that using the length of the damage
zone to characterize a fracture process will always be
problematic. First, the furthest progression of damage in a
bone specimen may consist of microscopic or sub-micro-
scopic (down to nano-scale) nonlinear strains, which are
very difficult to detect in any fracture experiment. Because
the mineralized domains of bone are generally separated by
collagen or other proteins, incipient damage may consist
not of brittle fracture of the mineralized constituent, but
small strain localizations within the organic phase. The
organic phase separates the mineralized phases, which
therefore do not form a continuously connected domain;
consequently, high-resolution images of bone fracture,
such as Fig. 1, show no single location that can be clearly
identified as the furthest progression of damage, but rather
a disconnected series of fracture events. The presence of an
unseen microcrack or strain localization event, beneath the
observed surface or on the surface but with associated
displacement discontinuity beneath the resolution of the
experiment, is difficult to discount. Experimental observa-
tions should therefore be regarded as yielding a lower
bound to lb. Second, from a modeling viewpoint, the
length of the predicted damage or cohesive zone is quite
sensitive to the shape of the assumed cohesive law. In
the extreme, if a law is chosen in which p3ð0Þ ¼ 0, then the
cohesive-zone length in a specimen loaded in uniform
remote tension will be predicted to be infinity at the first
loading [29]. A fracture model using a cohesive law such as
that in Fig. 3 will yield a lower bound to lb under
variations in which p3(0)-0 [49]. Finally, for a given
traction law, both experiments and models will exhibit
different zone lengths for different loading conditions and
specimen geometry, as discussed below.
In spite of these sources of variance and uncertainty, the
experimentally observed value of lb and that predicted by
Eq. (6) stand firm as estimates of the process-zone length to
within a factor of order unity. Strong conditions are thus
implied by Eq. (6) for a fracture model to be internally
consistent. In particular, only in the limit that the traction-
free crack length, a0, is much greater than lch and the
damage zone does not approach other specimen bound-
aries, will the crack propagate under conditions that are
well described by LEFM. Only under these quite restrictive
conditions (Fig. 9) will fracture toughness exist as a
material constant, expressed, for example, as a critical
value of the strain-energy release rate, GIc. In this limit, GIc

will given by [50,51]

GIc ¼W total ¼ 2

Z uc

0

p3ðu3Þdu3. (7)

This limit is known in the bridged crack literature as small-
scale bridging conditions.
The extent to which the bone studied here departs from

LEFM conditions can be illustrated by predicting the
load–displacement curve that would result if LEFM
conditions are assumed (work of fracture concentrated at
a point at the crack tip) and the bone is attributed a
fracture toughness given by Eq. (7). This is shown in Fig. 7
by the curve labeled ‘‘5’’. The peak load is overestimated by
10–15% and the shape of the load–displacement data is
reproduced very poorly. Another test of LEFM was made
by attempting to predict the experiment of Akkus et al.
with a value of K Ic calibrated using the data of Nalla et al.
The peak load is overestimated by 40%. Thus LEFM is a
poor model for this material.
6.4. Association of mechanisms with characteristics of the

traction law

The inference of the traction law from load–displace-
ment data is a fracture analysis, not a material model, and
neither relies on knowledge of nor gives any direct
information about the physical mechanisms involved in
the damage (cohesive) zone or the fracture process. In
particular, the inferred traction law offers no information
on whether distinct mechanisms are associated with the
crack tip and the crack wake. The choice of a bilinear
traction law was arbitrary, as was its division into what
have been termed, for convenient discussion, crack tip and
bridging contributions, W tip and Wbrid, to the work of
fracture. A law consisting of a monotonically decreasing
function, following the general shape of the bilinear law of
Fig. 3, but without a discontinuity of slope, would
probably fit the load–displacement data just as well; there
is not enough information in load–displacement data to
resolve such a fine distinction.5
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Information about fracture mechanisms must come from
other sources. Observations of mechanisms point to
bridging, principally by intact ligaments of mineralized
bone and to a lesser extent (and on a smaller scale) by
fibrils of collagen (Fig. 1) [4]. Assuming that these
mechanisms co-exist, the cohesive traction law may be
interpreted as representing their net effect, operative
wherever the material is nonlinear.

The fact that nonlinearity in the load–displacement data
occurs at a large, non-zero value of the load can be
attributed to the necessity (i) of attaining a critical value of
the local stress before material is damaged, and (ii) that this
should occur over a sufficiently large gauge for the fracture
test to be measurably influenced. This product of stress and
gauge length is linked qualitatively to what has been called
W tip in this work. Progression from this first measurable
damage, with crack displacements u3ou0, to a fully
developed cohesive zone can occur, as the cohesive model
has demonstrated, with no disruption or discontinuity in
the stress fields associated with the evolving cohesive zone.
In other words, the same mechanisms that give rise to first
nonlinearity can also, as they evolve and support decreas-
ing loads, account for the softening process along the
whole cohesive zone, i.e., the whole crack wake. Such a
view of common mechanisms for all crack displacements
has some appeal in a heterogeneous composite such as
bone, for the reasons discussed above.

6.5. Prediction of the R-curve

With the cohesive law established, predictions of all
measurable aspects of a fracture experiment are available.
In particular, the conditions under which LEFM is a
satisfactory representation of fracture data can be quanti-
fied.

As the crack progresses, the work expended in the
fracture process can be deduced from the bridging
tractions, which represent the nonlinear mechanics of the
process zone. The work expended in fracture, GI, per unit
specimen width and unit increment in crack length, is given
by [52,53]

GIðaÞ ¼ 2

Z umaxðaÞ

0

p3ðu3Þdu3, (8)

where umaxðaÞ is the maximum crack opening attained at
crack length a, defined as the furthest calculated advance of
the damage zone (condition s3 ¼ pc). Given GI, the
apparent critical mode I stress-intensity factor, KR, at a
particular crack length follows from

KRðaÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GIðaÞE

0
p

, (9)

where E0 is an elastic constant, defined for an orthotropic
material in Appendix A. The function KRðaÞ is the R-curve.
The functions GIðaÞ and KRðaÞ are plotted for the CðTÞ

specimen in Fig. 11, for the parameter sets of trials 2–4
(Table 2). The onset of nonlinearity in the load vs. load-
point displacement curve occurs near the condition
u3 ¼ u0, while the attainment of a fully developed cohesive
zone occurs exactly (within the domain of the model) at the
attainment of the condition u3 ¼ uc. Upon the satisfaction
of the latter condition, the curves for either GI or KR

become independent of crack length and in particular
KR-KIc, the critical stress-intensity factor (i.e., fracture
toughness) of LEFM.
The onset of nonlinearity also corresponds approximately

to the conditions reported previously as crack initiation [24];
the concomitant value KR ¼ 2:1MPa�m1=2 corresponds
to that reported for the initiation toughness, K init. While the
data of Ref. [24] do not clearly show a plateau for the crack
lengths that were attained, the predicted plateau value
KR ¼ 3:0–3.4MPa-m1/2 is similar to the maximum KR in
the data. Attaining a steady-state condition in KRðaÞ is a
necessary condition for LEFM to be valid. The present
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predictions show that the required crack growth in the
compact-tension configuration is �5mm.

A discrepancy may arise between the model predictions
of both K init and K Ic and those reported in prior analyses
of experiments, including Ref. [24], because in the present
work, the elastic constant E0 is evaluated for orthotropic
elasticity. This results in a value for E 0 that is approxi-
mately 50% of the value that would follow if isotropic
elasticity had been assumed, with a consequent error in K ,
when evaluated from a measurement of the work of
fracture (Eq. (9)), of approximately 30%. An error of
similar magnitude to this could arise in prior reports of K Ic

for humeral cortical bone wherever elastic anisotropy has
been overlooked. The actual error will depend on the
elasticity of the bone specimen and the test configuration.

6.6. Similarity to nonlinear fracture models of concrete

Many of the earliest applications of cohesive zone
models to fracture problems were for concrete, beginning
with the seminal paper of Hillerborg et al. [30]. That the
fracture of concrete should have inspired a nonlinear
treatment is attributable to the fact that fracture process
zones in concrete are remarkably long—typically substan-
tial fractions of 1m. The common perception of concrete as
a brittle material is a little misleading in this aspect. With
such long process zones, size effects in strength that cannot
be described by LEFM are inevitable (e.g., [30,54,55]). The
fracture process zone in concrete shows some character-
istics that are quite similar to those seen in cortical bone,
especially the presence of systems of mother-daughter
cracks, with surviving ligaments of material providing
bridging across the damage zone (the physical source of the
cohesive tractions). Furthermore, the cohesive law that
applies to concrete is, like that determined here for cortical
bone, a softening law (traction decreasing with increasing
crack displacement), which is, furthermore, often repre-
sented successfully as a bilinear function (e.g., [56]).

7. Effect of specimen configuration on predicted

characteristics

Model calculations using the optimal cohesive law allow
the effect of choosing specimen configurations that are
different from those used in [24,46] on deduced bone
properties to be quantified. To illustrate specimen depen-
dence, predictions are compared for the compact-tension
specimen used in the experiments of Ref. [24] and a
plate with a centered notch under uniform remote tension
(Fig. 4b). The center-notch specimen is distinguished
qualitatively from the compact-tension specimen by greatly
reduced bending and shear in the displacement fields and
much lower crack-tip constraint. It consists of a tensile
plate with width 2w ¼ 32mm (twice that of the active
section of the CðTÞ specimen) and an initial traction-free
notch of length 2c0 ¼ 7:2mm (again twice that of the notch
plus notch extension in the CðTÞ specimen). Boundary
conditions are imposed that generate a state of uniform
remote tension in the direction normal to the plane of
the notch.
Substantial differences arise in the predicted distribution

of stresses along the fracture plane during crack growth for
the two specimens (Fig. 10). There is no compressive zone
in the tensile specimen, and the cohesive zone does not
reach a fully developed condition (s33 ¼ 0 in the crack
wake), even when the crack tip approaches the specimen
boundary (Fig. 10b). In the fourth epoch illustrated in Fig.
10b, the cohesive zone (extending from the peak stress back
to the notch root) has almost spanned the entire net section
of the tensile specimen, exceeding 11mm. Thus, for this
specimen configuration and the same material constitutive
properties (elastic anisotropy and cohesive law) as those
deduced from the compact-tension experiments, the steady-
state condition required for LEFM to be approached is
never attained. This means that a compact-tension test,
analyzed by LEFM, could not account for the fracture
behavior of the tensile specimen.
Consistent differences between the two specimens arise

in the predicted R-curves. The apparent mode I fracture
toughness, KR, rises much more slowly with crack
extension, a–c0, in the case of the tensile center-notch
specimen and does not reach the asymptotic steady-state
value (Fig. 12). Furthermore, the slope of the R-curve,
which controls the stability of crack growth for different
notch sizes, is test-configuration dependent. The slope
determined from one test may give misleading predictions
of crack stability in general.
The load–displacement curves for the two specimens are

also quite different (Fig. 13). Even when the load per unit
thickness is normalized by the specimen width, the loads for
the CðTÞ specimen are an order of magnitude lower, a result
of the stress concentration at the notch root due to bending
and shear. Interestingly, the predicted curve for the center-
notch tension specimen shows a relatively small increase of
load beyond the first visible nonlinearity and a rapid drop
in load beyond ultimate. These characteristics might be
mistaken for a brittle fracture process (fracture process
confined to a small volume near the notch root, prior to
unstable crack propagation), but in fact Fig. 10b shows this
is far from the case. It is, to the contrary, the nature of this
specimen configuration that the damage zone spans the
entire section of the specimen (excluding the notch) before
ultimate and the brittle appearance of the load–displace-
ment curve derives from the fact that the bridging material
in the cohesive zone fails almost simultaneously across the
whole specimen. Because of these mechanics, load–displa-
cement data from the center-notch tension specimen would
be less suited to the deduction of the traction law than are
the compact-tension data.
As for the CðTÞ specimen, LEFM would make a poor

prediction of the load–displacement data for the center-
notch tension test. The LEFM prediction, made with a
fracture toughness equal to the work required to rupture
the cohesive elements (Eq. (7)) all concentrated at the crack
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tip, is also shown in Fig. 13. The peak load is overestimated
by approximately 23%. Comparison with Fig. 7 shows
that the error incurred in the predicted peak load using
LEFM is different for different test specimens. Therefore,
no consistent correcting calibration for LEFM can be
defined.
8. Implications for understanding bone fracture

8.1. Proposed procedure for characterizing fracture

properties

Because of its more complete accounting of fracture
data, the cohesive law may be a preferred material property
for characterizing the fracture resistance of cortical bone.
The question arises of what is the best experiment for its
determination. While much further experience in data
reduction must be accumulated before an authoritative
answer can be reached, the first analyses described in this
paper already suggest the outcome.
First, the load vs. load-point curve taken alone contains

sufficient information to determine the traction law with a
degree of resolution of detail that is sufficient for predicting
fracture behavior. These curves are readily available from
standard test procedures. The more difficult experiments of
measuring crack profiles or mapping the spatial distribu-
tion of damage can certainly reveal additional information
of clinical importance, but may not significantly improve
the prediction of macroscopic features of fracture behavior.
Such data would be relevant to models of local deforma-
tion events, rather than macroscopic cracking.
On the question of what test configuration should be

preferred for acquiring load–displacement data for mode I
fracture, the compact-tension test offers the following
advantages. (1) Because it involves both bending and shear
deformation, it provides, through the slope of the initial
linear response, good information on the degree of elastic
anisotropy of the material. Getting this information from
the same specimen as that yielding fracture information
has much merit, in view of the spatial inhomogeneity of
bone. (2) Because of the presence of a compressive zone
ahead of the growing crack, the process zone is relatively
limited in extent, so that even in a specimen only 15–20mm
in total width, a steady-state zone is attained. Information
about the complete traction law is therefore contained in
the test. In contrast, a uniform tension test in a specimen of
doubled width never achieves the steady state, and a
portion of the traction law at high crack-opening displace-
ments is not sensed. (3) The load vs. load-point displace-
ment data show significantly more nonlinearity for the
CðTÞ specimen than is predicted for a uniform tension
specimen, which is likely to translate to better resolution of
the traction law.
As has been remarked, both experimental observations

and model predictions leave the length of the process zone
inexactly determined. A longer zone than observed or
predicted can be present if the most advanced damage gives
rise to very small net displacements. In a heterogeneous
material such as bone, vanishingly small displacements in
the collagen phase, in advance of those that are easily
detected, are in fact quite likely. However, such an
uncertainty in the total length of the damage zone has
little effect on the outcome of a fracture experiment, either
in the load–displacement data, the inferred traction law, or,
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when a cohesive model is used for analysis, the inferred
work of fracture.

8.2. Possible significance of the cohesive law in clinical

studies

The value taken by the characteristic length, lch, along
with the zone lengths and other fracture characteristics
predicted for the cases analyzed here, have fundamental
implications for assessing clinical fractures. The zone
length varies with loading configuration, ranging from
3mm (predicted) or 5mm (experimental observation) for
the compact-tension test to410mm for the center-notched
tension test; all of which values are consistent with the
order of magnitude pointer, lch � 3mm. While detailed
analysis of fracture for the real geometry of a complete
bone is beyond the scope of this paper, one would expect
that, of the two cases analyzed here, that of the center-
notched tension test may be the more representative of the
cohesive-zone behavior in, for example, a transverse
femoral fracture. The degree of bending and shear
deformation in a naturally occurring bending fracture of
a long bone will be much less than in the CðTÞ specimen.
Bending effects in a femur, of typical diameter 20mm, for
example, will only be pronounced when the crack length is
10mm or so; up until then, the damage zone develops in a
predominantly tensile field and the zone length is likely to
be closer to the higher length predicted for uniform remote
tension. Therefore, small-scale bridging conditions are

unlikely to be achieved when a crack propagates through
cortical bone normal to the long axis in any human bone.
The LEFM parameter, K Ic, can at best be an approximate
method of characterizing fracture resistance.

Neither will a single critical stress, such as the parameter
pc evaluated here (Fig. 3), be an adequate predictor of
fracture. While pc is correlated here with the onset of
nonlinearity in the load vs. load-point displacement curve
(or more generally, the far-field stress–strain relationship),
it cannot also account for the measured ultimate load. The
substantial increase of load beyond the onset of non-
linearity will only be accounted for by including the wake
tractions in a fracture model, and the account will only be
accurate if the distribution of tractions along the crack
wake is modeled correctly.

The cohesive traction law of Fig. 3, hypothesized for
analyzing the present mode I problem, provides four
degrees of freedom in place of the single parameter, GIc or
K Ic, of LEFM. While four degrees of freedom suffice in the
present case, a cohesive law for another material could
possibly contain more numerous degrees of freedom.
Indeed, the cohesive model formulation provides a
convenient route to obtaining all the information about
material behavior that can have an influence on a fracture
experiment. The extent to which the shape of the cohesive
law can be determined from fracture data is limited exactly
by the sensitivity of the experiment to changes in the
material; if the fitting procedure cannot resolve further
details in the traction law, then those further details of
material behavior do not matter to the fracture observa-
bles. Qualitative assessment of the present fitting exercise
and prior experience with engineering materials that have
similar fracture characteristics [57,58] suggest that the four
degrees of freedom used here may be close to the limit of
the information content of static fracture experiments on
bone.
The four degrees of freedom of Fig. 3 provide much

deeper insight into the nonlinear material behavior that
underlies fracture than the single measure, K Ic or GIc, of
LEFM. For example, the stress, pc, which is evaluated from
the first onset of nonlinearity in the fracture data, may
represent tensile material failure under general conditions,
i.e., in the absence of a single dominant crack. Further, the
critical displacement, uc, indicates the maximum suppor-
table displacement discontinuity, which is a measure of the
material’s ductility. If a measurement is available from
other observations of the maximum width, wm, of the zone
of damage (wm ¼ max{wb(x1)}, Fig. 2), then a critical
strain,

eðcÞ33 ¼ uc=wm, (10)

can be inferred for the loss of all load-bearing capacity in
the material, which might be representative of the material
behavior in more general conditions. From Fig. 1 and
similar images, a rough estimate is that wm � 1mm;
together with uc ¼ 35 mm, this suggests eðcÞ33 � 0:03 for the
present bone specimen. Residual (small) load-bearing
capacity persists to quite large local strains.
In conjunction with more detailed models of the micro-

mechanics of nonlinear crack damage zones, the character-
istics of the cohesive law, such as pc and uc (or the related
quantity eðcÞ33 ), are much more direct measures of the under-
lying damage mechanisms in the bone than is the LEFM
parameter, GIc or K Ic. Therefore, correlating the cohesive
traction law with the use of drug therapies for bone, for
example, may prove a useful way of linking therapies to
desired bone performance.

9. Concluding remarks

A cohesive fracture model has been formulated and
applied to data for human femoral cortical bone. The
central constitutive property in the model is the relation,
pðuÞ, between the tractions supplied by nonlinear (failing)
material across the fracture plane and the displacement
discontinuity across the same plane. The relation pðuÞ is
hypothesized to be a material property for a given source
of bone with given age and condition. This hypothesis was
tested successfully by using a relation p3ðu3Þ, the compo-
nent of pðuÞ pertinent to mode I fracture, calibrated against
data from one laboratory to predict test results taken in a
different laboratory for a different source of nominally
similar bone tested in a specimen of different shape and
size. When the same challenge problem was attempted
using LEFM, the predicted strength was too high by
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approximately 40%. That LEFM can generate an error of
such magnitude in analyzing two sets of data from
specimens with size variations typical of common practice
raises the question of whether much of the variance in
fracture resistance reported previously in the literature
might arise from inadequate fracture analysis.

The onset of significant nonlinearity in the experimental
load–displacement curves has been shown to be associated
with the development of a cohesive zone of length �0.5mm
over which tractions of 30–60MPa exist, the upper value of
stress being the conjectured critical value of the local stress
for damage initiation. Further development of the cohesive
zone occurs before and after the attainment of peak load,
to a predicted total length of 3mm. Considerable variation
of the cohesive-zone length might be expected with the age
and condition of the bone, shorter zones being associated
with more brittle fracture, e.g., for aged or diseased bone.

Further simulations using the empirically determined
relation, p3ðu3Þ, show that strong variations can occur in
fracture characteristics, when different test configurations
are chosen. In a center-notch tension specimen, much more
extensive cohesive zones arise, of length exceeding 10mm.
Consistently, the evolution of the apparent fracture
toughness with crack length is different to that for the
compact-tension test.

For LEFM to be accurate, the specimen and crack
length must both exceed the process-zone length, which is
indicated to an order of magnitude by the characteristic
length, lch. For human cortical bone, this condition is
unlikely to be met in any transverse fracture (normal to the
long axis of the bone). Therefore, the fracture toughness,
K Ic or GIc, deduced from experiments using LEFM
analysis cannot be expected to be a material constant,
but will depend on the geometry and crack configuration.

The traction law, pðuÞ, offers an internally consistent
approach to accounting for all macroscopic features of
fracture. It includes, in the limit of long cracks (often
longer than can be sustained in a bone), the fracture
toughness, K Ic, represented by LEFM; it also enables
prediction of the initiation and propagation of fracture
when the apparent toughness is not constant and can
predict the effects of specimen shape and loading config-
uration. Furthermore, because it describes the spatial
distribution of stress over the nonlinear process zone
associated with fracture, the traction law relates much
more directly than does K Ic to the underlying material
processes. Therefore, it may prove useful in establishing
clinical correlations to assess, for example, the efficacy of
drug therapies that seek to improve bone quality.

The initial linear behavior of the fracture specimens
analyzed here also implies that humeral cortical bone is
strongly anisotropic in the elastic regime. The shear
modulus in the plane of the test, i.e., the medial plane of
the bone, is less than half that expected for an isotropic
material (or a material that possesses a plane of transverse
isotropy normal to the long axis of the bone). If Young’s
moduli are assigned the plausible values E1 ¼ 16GPa and
E2 ¼ 12GPa, then the shear modulus is m31 ¼ 1:5GPa. The
test data analyzed from two laboratories are closely
consistent on this point. Since this particular component
of shear is difficult to measure independently, a procedure
is suggested in which the load–displacement fracture data
themselves are used to evaluate a constraint on the
components of elasticity needed to analyze the fracture
data. Only if the elastic constants satisfy this constraint can
accuracy be anticipated in the subsequent fracture analysis:
strong anisotropy has a substantial effect on the relation, in
the long-crack limit where LEFM is valid, between the
work of fracture and the critical stress-intensity factor. The
latter may have been miscalculated in prior literature, if the
material anisotropy was mis-represented.
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Appendix A. Relation between K and G for an orthotropic

material

The elastic constant E0 that appears in Eq. (3) is given
for an orthotropic material in which a crack in plane-stress
conditions propagates in the x1 direction along the plane
x3 ¼ 0 by [59,60]

1

E0
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
b11b33

2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b33

b11

� �1=2

þ
2b31 þ b55

2b11

s
, (A.1)

where the bij are Voigt elastic constants defined by

ei ¼
X6
j¼1

bijsj, (A.2)

with e1�e11, y , e6�e12; s1�s11, y , s6�s12. In plane
strain, Eq. (A.1) holds with b11 replaced by b11–b12/b22, b33
by b33–b23/b22, and b31 by b31–b23b12/b22.

6 For a specially
orthotropic specimen (axes of orthotropy aligned with the
axes of symmetry of the specimen), the Voigt elastic
constants are related to the engineering elastic constants by
(e.g., [61,62])

b11 ¼ 1=E1; b12 ¼ �n12=E1; b66 ¼ 1=m12;

b22 ¼ 1=E2; b23 ¼ �n23=E2; b55 ¼ 1=m31;

b33 ¼ 1=E3; b31 ¼ �n31=E3; b44 ¼ 1=m23;
(A.3)

where Ei is Young’s modulus in the xi direction, nij is one
of Poisson’s ratios, and mij is an engineering shear modulus.
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For the alignment of the specimen in Fig. 4a, the engineering
constants involved in E0 are E1, E3, m31, and n31.
Appendix B. Elastic response of the uncracked compact-

tension specimen

Numerical results for the initial linear slope of the
load–displacement curve for a compact-tension specimen
with the dimensions of Fig. 4a, i.e., the response prior
to initiation of a crack from the notch root, are shown in
Fig. B.1. The initial slope is presented as the function, f , of
Eq. (5), which is the slope normalized by the modulus, E1.
An engineering approximation to the computed data is

f ¼
m31
E1

� �0:64

0:2105� 0:2337
m31
E1

�

þ0:1758
E3

E1
� 0:0481

m31
E1

E3

E1

�
,

in the regime 0om31=E1o0:4 and 0:5oE3=E1o1, provided
s1 and E1 have the same units.
Appendix C. Representation of the side-grooved CðTÞ
specimen

For a specimen in which LEFM prevails,

K Ic ¼
Pmax

t
f ða;wÞ, (C.1)

for some function f of the crack length and the specimen
width. From Eq. (3),

GIct ¼
P2
max

E0t
f 2
ða;wÞ. (C.2)

For a side-grooved specimen with groove section thickness
tg, the energy dissipation per unit crack extension must
be GIctg, which leads in combination with Eqs. (C.1) and
(C.2) to

K Ic ¼
Pmaxffiffiffiffiffiffiffiffiffi

t � tg
p f ða;wÞ. (C.3)

Even though the tests studied here do not accord with
LEFM, Eq. (C.3) recommends using the geometrical mean
of the specimen thickness, t, and grooved section thickness,
tg when making qualitative comparisons of the side-
grooved and the ungrooved CðTÞ data. The data from
Ref. [46] have accordingly been normalized by this
thickness measure (Fig. 8).
In the numerical simulations of the side-grooved CðTÞ

specimen, the grooved section is not represented geome-
trically in full detail. The simulations were formulated in
plane stress, with a nominal thickness associated with each
element in the model (a feature allowed in ABAQUS—the
thickness appears in the equations of nodal force balance
expressly to permit thickness variations while retaining the
simplicity of plane-stress conditions). The side-grooved
section was represented as a set of plane-stress elements of
reduced thickness equal to the minimum thickness of the
groove, tg. Thus, the traction force per unit crack length
due to the cohesive mechanism, p3tg, has the correct
magnitude for balancing with the other stresses in the
system. This simplified treatment of the side-groove
geometry is a good approximation, because the elastic
deformation within the grooved region (which would
depend on the geometrical details of the groove) is a
negligible contribution to the total displacement fields; the
dominant contribution to the displacement fields from the
vicinity of the crack plane arises from the displacement
discontinuity, u3, which remains accurately calculated.
Appendix D. Dependence of characteristic length, lch, on
elasticity

In an infinite body that contains a bridged crack and is
loaded in plane conditions, an application of Castigliano’s
theorem allows the crack displacement to be derived in
terms of weight functions (e.g., [63]). The weight functions
define the crack-tip stress-intensity factor caused by a point
force acting at some distance from the crack tip. To a good
approximation, the weight functions are independent of the
elasticity of the material, including the degree of aniso-
tropy, provided symmetry about the crack plane is not
violated (this condition requires, for example, that an
orthotropic material be specially orthotropic, i.e., that the
crack plane is a plane of orthotropy) [64]. The derivation
also involves the relation between the crack-tip stress-
intensity factor and the energy release rate, within which an
elastic constant appears (see [63] for details). For an
orthotropic body, this is the elastic constant, E0, defined in
Appendix A. This is the only elastic constant that appears
in the expression for the crack opening profile; under
changes of elasticity, the cohesive zone length must,
therefore, scale with E0.



ARTICLE IN PRESS
Q.D. Yang et al. / Biomaterials 27 (2006) 2095–21132112
For a crack in an infinite body that is loaded in shear, the
weight functions remain identical in form to those for
mode I (e.g., [65]) and the elastic constant that appears in
the relation between the crack-tip stress-intensity factor
and the energy release rate is

1

E0
¼

ffiffiffiffiffiffiffiffiffiffiffi
b11=2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb11b33Þ

1=2
þ ðb31 þ b55=2Þ

q
ðmode IIÞ.

(D.1)

The cohesive zone length will scale with this constant,
which is essentially the same as that in Appendix A, with
indices permuted.

In a slender body, a different elastic constant appears.
For example, in a thin plate or beam containing a mid-
plane crack propagating in the x1 direction and loaded in
mode II (applied shear, e.g., an end-notch flexure speci-
men), the elastic constant that appears in results for the
cohesive zone length is the reduced Young’s modulus:

Ē ¼
E1

1� n13n31
, (D.2)

where x3 is the through-thickness direction and nij are
Poisson’s ratios [49].
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[49] Massabò R, Cox BN. Concepts for bridged mode II delamination

cracks. J Mech Phys Solids 1999;47:1265–300.

[50] Budiansky B, Hutchinson JW, Evans AG. Matrix fracture in fiber

reinforced ceramics. J Mech Phys Solids 1986;34(2):167–89.

[51] Rose LRF. A cracked plate repaired by bonded reinforcement. Int J

Fract 1982;18:135–44.

[52] Lawn BR. Fracture of brittle solids. Cambridge, UK: Cambridge

University Press; 1993.

[53] Rice JR. A path-independent integral and the approximate analysis

of strain concentration by notches and cracks. J Appl Mech 1968;

35:379.
[54] Bazant ZP, Planas J. Fracture and size effect in concrete and other

quasibrittle structures. Boca Raton, FL: CRC Press; 1998.

[55] Carpinteri A, editor. Nonlinear crack models for nonmetallic

materials. Kluwer Academic Publishers: Dordrecht; 1999.

[56] Cook RF, Fairbanks CJ, Lawn BR, Mai Y-W. Crack resistance by

interfacial bridging: its role in determining strength characteristics.

J Mater Res 1987;2:345–56.

[57] Cox BN, Marshall DB. The determination of crack bridging forces.

Int J Fract 1991;49:159–76.
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