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AbstractÐThe bridging tractions developed behind a crack tip are considered for a stationary crack under
cyclic loading conditions at elevated temperatures in high-toughness, monolithic ceramics. Assuming a tem-
perature range where the grain-boundary phases are su�ciently soft such that bridging can occur due to a
viscous layer in the boundary, a viscoelastic model is developed in which bridging forces associated with
the shear resistance of the grain-boundary phase are transmitted across the surfaces of a crack. Throughout
the work, cyclic and static damage mechanisms which may be operating ahead of the crack tip (e.g. creep
cavitation) are ignored in order to focus exclusively on the role of viscous grain bridging. A primary goal
is to incorporate microstructural details like grain shape, grain-boundary thickness, and glass viscosity, as
well as the e�ects of external variables such as loading rate and temperature. A fully self-consistent numeri-
cal approach is adopted, which does not require any prescribed assumptions as to the shape of the crack-
opening pro®le. The self-consistent solution is compared to an analytical solution for a simpli®ed parabolic
approximation of the crack-¯ank opening displacements. The model is applicable to a wide range of cer-
amic materials at elevated temperatures, and rationalizes the frequency and temperature sensitivity not gen-
erally observed in ceramics at room temperature. Solutions identify a non-dimensional group associated
with microstructure and external loading conditions, and solutions are presented over a range of this par-
ameter. # 1999 Acta Metallurgica Inc. Published by Elsevier Science Ltd. All rights reserved.
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1. INTRODUCTION

Elevated-temperature cyclic fatigue behavior in

monolithic ceramics is poorly understood. Data are

sparse, published observations are contradictory,

and mechanistic understanding is lacking. This is

due in part to the experimental complexity and ex-

pense involved in gathering necessary data. In fact,

only recently have experimental techniques

appeared which allow for consistent crack-growth

monitoring in these materials at high temperatures,

and even these methods are somewhat limited. The

primary objective of the present work is to propose

a micromechanical model to rationalize at least

some of the existing observations. The work focuses

on high toughness, liquid-phase sintered ceramics

which contain amorphous grain-boundary ®lms.

It is clear that in many monolithic ceramics, such

as Al2O3, Si3N4, and SiC, the presence of secondary

amorphous phases (with attendant low melting tem-

peratures) dominates high-temperature mechanical

properties. These ®lms arise from liquid-phase sin-

tering techniques in which reaction products

between sintering additives and starting powders

segregate to grain boundaries and triple

junctions [1]. Even in small quantities, e.g. as

01 nm thick continuous ®lms, they can profoundly

in¯uence mechanical properties such as strength,

toughness, creep, and subcritical crack growth [1±

10].

Under quasi-static loading, subcritical crack

growth at high homologous temperatures is reason-

ably well studied in ceramic materials. Stable crack-

extension results from the growth and linkage of

cavities along grain-boundary interfaces due to vis-

cous ¯ow of the secondary phase [2, 4, 6±8]. Under

cyclic loading, however, very few data have been

reported. At present, most of the high-temperature

data have been generated in the form of stress-life

(S/N) data on unnotched specimens in a very

narrow range of ceramics [11±18]. Such data are

di�cult to interpret mechanistically since total life

may include contributions from both the initiation

and propagation of ¯aws. In addition, large

amounts of scatter are inevitable due to the large

sensitivity of life to initial ¯aw populations.

More recently, a few researchers have generated

high-temperature cyclic crack-growth rate data in

Al2O3, Si3N4, and several ceramic-matrix

composites [10, 19±30]. Not only are such data
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sparse, but there is essentially no consensus on

either the mechanisms of crack growth or the re-

lationship between cyclic and static crack-growth

rates at high temperature. For example, two separ-

ate studies on hot-pressed Al2O3 and three separate

studies on hot-pressed Si3N4 concluded that cyclic

crack-growth rates are faster [10, 19], slower [22, 25],

or the same [27±30] as corresponding growth rates

under static loading at equivalent stress-intensity

levels. In addition, experiments to determine the

role of microstructure are limited [10, 25, 31].

Such experimental discrepancies are likely to be

the result of the mutual competition between four

distinct microstructural phenomena localized to the

regions either ahead of or behind the crack tip,

termed intrinsic or extrinsic, respectively: (i) intrin-

sic creep damage via cavitation and sliding of the

grain-boundary amorphous ®lms, (ii) intrinsic fati-

gue damage [which does not appear to exist at

room temperature (e.g. Refs [32, 33])], (iii) extrinsic

crack-tip shielding from the interlocking of bridging

grains, and (iv) extrinsic crack-tip shielding from

viscous grain-boundary ®lms (or in some cases,

entire viscous ligaments [34]) spanning the crack

faces (Fig. 1). The nature of the grain-boundary

®lms clearly plays a large role in determining the

relative potency of each of these mechanisms, and

can act to enhance growth rates by accelerating

microstructural damage via promotion of creep

cavitation and grain-boundary sliding [2, 6, 7], or

reduce growth rates by promoting crack-tip shield-

ing via viscous bridging [11, 34]. It is therefore likely

that any microstructural parameter (such as grain

size, grain-boundary thickness and impurity con-

tent) or external parameter (such as temperature

and frequency) which alters the deformation beha-

vior of the grain boundary glass will have an e�ect

on cyclic fatigue behavior.

In fact, recent observations on Al2O3 under cyclic
loading which show reduced crack-growth rates [25],

or in the case of S/N measurements increased time
to failure [11, 17], have been attributed to the highly

rate-dependent nature of viscous phase
deformation [11, 34]. The cyclic growth rates

measured in these cases are even lower than those
predicted based on the assumption that cyclic crack

extension is simply the accumulation of static creep

damage [35]. It has been proposed that this
measured reduction in growth rates is due to

enhanced viscous bridging during load cycling; in
these cases, glassy ligaments are indeed observed to

span the crack faces [11, 34] (e.g. Fig. 2). Because
the load-bearing capacity of a viscous bridge is

directly proportional to strain or displacement rate,
cyclic loading enhances crack-tip shielding and sub-

sequently reduces crack-growth rates (all else being

equal). Consistent with such a mechanism, exper-
iments on Al2O3 and an Al2O3±SiCw composite in-

dicate that growth rates slow with increased test
frequency (due to higher strain rates) and increase

with temperature (due to reduced viscosity) [19, 24].
Similar trends are observed in Si3N4 [10, 27±29].

On the other hand, in the cases where cyclic

crack-growth rates are actually faster than static
rates, it is presumed that viscous bridging is inac-

tive. In order to explain such behavior, grain-brid-
ging degradation models similar to those invoked at

room temperature [36, 37] have been proposed [10].
Indeed, there is evidence that in cases where viscous

bridging is inactive, due to relatively low tempera-

tures, frequencies or di�ering grain-boundary chem-
istry, the room-temperature bridging degradation

models may be applicable to some materials even at

Fig. 1. Schematic illustration of the intrinsic (damage) and extrinsic (crack-tip shielding) mechanisms
associated with elevated-temperature fatigue-crack growth in ceramics. Note that all mechanisms

involve the grain-boundary phase.
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higher temperatures [10]. At present, however, ex-
perimental data are insu�cient and su�ciently con-
tradictory to make any uni®ed model of this

behavior unlikely.
The aim of the present work is to examine in

detail the mechanics of the extrinsic viscous-®lm

bridging process, with speci®c emphasis on its role
in in¯uencing elevated-temperature cyclic fatigue-
crack propagation in ceramics. A model is devel-

oped which incorporates microstructural parameters
such as grain size, and viscosity and thickness of
the grain-boundary ®lm, as well as external vari-

ables such as loading frequency, cyclic load ampli-
tude, and load ratio (ratio of the minimum to
maximum load). Unlike previous high-temperature
viscous bridging models [11, 34], a fully self-consist-

ent numerical approach is adopted. No limiting
assumptions as to the shape of the crack-opening
pro®le are made. Moreover, the model is not based

on a viscous ¯uid ®lm ®lling the crack (viscous-liga-
ment bridging) [38], but rather bridging loads are
transmitted across the crack walls due to the shear

resistance of a grain-boundary ®lm deforming
between the matrix and the active bridging grain,
allowing us to incorporate more microstructural
detail. Our solutions identify a non-dimensional

grouping associated with microstructure and exter-
nal loading conditions, and solutions are presented
over a range of this parameter. The model is appli-

cable to a wide range of ceramic materials at elev-
ated temperatures, and it rationalizes the frequency
and temperature sensitivity not generally observed

in ceramics at room temperature. E�orts are made
to rationalize published observations on elevated-
temperature ceramic fatigue using the model; the

limitations of this approach are discussed.

2. VISCOUS GRAIN-BRIDGING MODEL

2.1. Bridging stress distribution

Calculations are performed using the microstruc-
tural model illustrated in Fig. 3. By assuming a

temperature range where grain-boundary phases are

su�ciently soft for viscous bridging to dominate,

we develop a model in which bridging forces are

transmitted across the crack ¯anks via shear resist-

ance of the grain-boundary phase. The general

strategy is to calculate local crack-tip stress ®elds

based on an applied far-®eld loading cycle, and to

use the magnitude of these local ®elds to rationalize

macroscopically observed cyclic fatigue behavior.

We ignore intrinsic cyclic and static damage mech-

anisms which may operate ahead of the crack tip

(e.g. creep cavitation) in order to focus exclusively

on the role of viscous grain bridging. Note, how-

ever, that the calculation of the near-tip driving

force based on the actions of a bridging zone are

crucial to understanding the severity of these intrin-

sic damage mechanisms.

As indicated in Fig. 3, the fundamental bridging

element consists of a single grain located at dis-

tance, x, behind the crack tip. This grain is pulling

out of its socket against the resistance of a visco-

elastic grain-boundary phase of thickness, d, which
lies between it and the stationary matrix. An area

fraction, Af, of active bridging grains participates in

the shielding process. For simplicity, the bridging

grains are oriented perpendicular to the crack

plane, and modeled as rectangular plates with

Fig. 2. Example of viscous ligament bridging during cyclic
fatigue-crack growth in an in situ toughened SiC at

12008C in an air atmosphere.

Fig. 3. Schematic illustration of the model for viscous
grain-boundary ®lm bridging at elevated temperatures,
showing the development of the viscous force resulting

from the velocity gradient in the ®lm.
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height, d, width, ld, and thickness, h [Fig. 3(a)].

Note that a physically meaningful geometry restricts

the range of l to between h/d, for a rod-like grain,

to 1 for a plate-like grain. The matrix is considered

stationary with the grain moving downward at a
velocity, v(x), where pullout occurs on only one

side of the crack plane.

In order to develop the model the viscous re-
sponse of the grain-boundary phase is ®rst con-

sidered. Subsequent development of the elastic

portion of the element's response is made by com-

parison of the elastic stress with the time-dependent

viscous-induced stress.

The resulting shear stress, t, acting along the side

surface of a grain at position x [Fig. 3(b)] at the

grain/grain-boundary interface is given by [39]

t � Z
v�x�
d

�1�

where Z is the viscosity of the grain-boundary phase

and v(x)/d the velocity gradient in the glassy phase

across the grain boundary, assuming a linear,

steady-state velocity pro®le. The net bridging force

in the grain acting normal to the crack walls is

found by multiplying the shear stress, t, by the area

of the side-face of the grain which contacts the
matrix. This area changes with total crack opening,

2u(x), and so the net force on the grain is given by

t�dÿ 2u�x���h� ld �. For a force evenly distributed

across the grain, the bridging stress, p(x), is

obtained by dividing this force by the cross-sec-

tional area of the grain, ldh, and inserting the ex-
pression for t given in equation (1):

p�x� � AfZv�x�
dh

�dÿ 2u�x��
�
1� h

ld

�
�2�

where the pre-factor Af allows for partial coverage

with bridging elements. The pullout velocity, v(x), is

given by the simple expression

v�x� � 2du�x�=dt � 2 _u�x� �3�
which yields the following p(x) for an arbitrary
u(x):

p�x� � 2ZAf

dh
_u�x��dÿ 2u�x��

�
1� h

ld

�
: �4�

The shielding term resulting from viscous brid-

ging, Kb(t), is determined by integrating the brid-

ging stress distribution over a bridging zone of

length lb. We use here the semi-in®nite near-tip sol-

ution for Kb(t), ignoring specimen geometry con-

siderations and preserving the most generality [40]:

Kb �
�
2

p

�1=2�lb
0

p�x����
x
p dx: �5�

It should be noted, however, that any suitable geo-

metry-dependent formulation for Kb(t) may be
employed by using an appropriate Green's function.

Finally, the stress intensity experienced at the crack

tip is given by a superposition of the applied far-
®eld loading, Ka(t), and the shielding term resulting

from viscous bridging, Kb(t):

Ktip�t� � Ka�t� ÿ Kb�t�: �6�

The primary computational di�culty is determin-
ing the crack-opening pro®le, u(x), the bridging
stress distribution, p(x), and the bridging stress

intensity, Kb(t), in a fully consistent fashion. We in-
itially simplify the task by making the common
assumption of a parabolic crack-opening displace-

ment pro®le controlled by the crack-tip stress inten-
sity, Ktip. This assumption is frequently made, and
we later compare the results with a self-consistent
solution where no pre-conditions are placed on the

form of u(x).

2.2. Parabolic crack-opening pro®le formulation

For simplicity we treat the response of the grain-

boundary phase as only viscous and assume a para-
bolic pro®le for u(x) controlled by Ktip, as given by
the near-tip traction-free, linear-elastic solution [41]:

u�x� � Ktip

E*

�
8x

p

�1=2

�7�

where E* � E (Young's modulus) in plane stress

and E=�1ÿ ��2 in plane strain (n = Poisson's ratio).
This parabolic pro®le is an often-used approxi-
mation (e.g. Refs [11, 34]) and has the advantage of
being relatively easy to solve. Combining

equations (4)±(7) yields the following non-linear
di�erential equation:

Ktip�t� � Ka�t� ÿ b _Ktip�t� � b1 _Ktip�t�Ktip�t� �8�
where b and b1 are constants given by

b � 8AfZdlb
pdhE*

�
1� h

ld

�
�9a�

b1 �
64

���
2
p

ZAfl
3=2
b

3dhE 2
*p3=2

�
1� h

ld

�
: �9b�

Under the condition where the displacement, u(x),
is small compared to the grain height, d (as is true

for su�ciently small lb), equations (9a) and (9b)
reduce to

Ktip�t� � Ka�t� ÿ b _Ktip�t�: �10�

2.3. Self-consistent formulation

Instead of seeking a global representation of the
e�ect of the bridging tractions [e.g. Kb(t)] from a
prescribed displacement distribution, as in

equation (7), we seek here a displacement distri-
bution which is self-consistent with the correspond-
ing traction distribution. For the general problem
this may be accomplished as outlined below.
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The displacements due only to an arbitrary,

smooth traction distribution in the wake of a crack

are given by

ub�x� �
�a
0

�a
x

G�a, x�G�a, x 0�p�x 0� da dx 0 �11�

where G is the appropriate Green's function. For

the self-consistent solution, where p(x) is a function

of u(x), the following relation must be satis®ed:

u�x� � u1�x� � ub�x� �12�
where ub(x) is the contribution to the displacement

from the bridging tractions, and u1(x) the traction-

free displacement distribution along the ¯ank of the

crack. For the self-consistent solution, the grain-

boundary phase displacements are divided into elas-

tic- and viscous-based components. The relation

between these components is determined by using

the equality of the elastic and viscous shear stresses

in the grain-boundary phase, as outlined in the

Appendix A.

While noting that any appropriate traction-free,

geometry speci®c, form may be used for u1(x), we
use here the traction-free distribution for a semi-in-

®nite body in plane strain, given by equation (7). It

is clear that because the displacements due to the

bridging tractions depend on the total crack-¯ank

opening, a local solution along the ¯ank of the

crack is necessary in order to provide a self-consist-

ent solution for any non-trivial problem. The meth-

odology used here provides this local solution by

discretizing the crack ¯ank and forming a pointwise

solution. Where the solution between points is

needed [for integration as in equation (5)], a quad-

ratic interpolation of the solution using the adjacent

solution points is used:

u�x� � 1

2
x�xÿ 1�uiÿ1 � �1ÿ x2�ui

� 1

2
x�x� 1�ui�1 �13�

where

x � 2x

x i�1 ÿ xiÿ1
ÿ x i�1 � xiÿ1
x i�1 ÿ xiÿ1

�14�

and xi and ui are the coordinate and displacement

at point i, respectively. Note that for all of the sol-

utions done here the velocity, _u�x�, is approximated

linearly in time as

_u�x, t� � u�x, t� ÿ u�x, tÿ dt�
dt

: �15�

The self-consistent solution, for a given timestep,

is carried out by forming a pointwise error function,

Fi, where

Fi � ui ÿ �ubi � u1i �: �16�
Minimization of the error at each point was done

iteratively by solving the set of equations (in matrix

form):

�F � � �J ��du� �17�
where J is the jacobian (Jij � @Fi=@uj). The solution

of equation (17) yields the correction vector, du, for
the current iteration and the process is continued

until the pointwise error [equation (16)] is essen-

tially zero, ensuring that a self-consistent solution

has been obtained. The solution may subsequently

be continued by incrementing time. In order to

ensure that a steady-state solution was obtained,

the behavior of the normalized crack-tip loading

was monitored over time. Plots of normalized

crack-tip loading (e.g. Kmax/Km, where Kmax and

Km are the maximum and mean stress intensity of

the loading cycle, respectively) vs the reciprocal of

the number of applied loading cycles (1/N) were

found to show a marked change in shape after the

attainment of a steady-state condition, as shown in

Fig. 4.

Fig. 4. Plot of the predicted maximum crack-tip stress-
intensity, Kmax, normalized to the mean applied stress
intensity, Km, vs the reciprocal of the cycle number for (a)
Z � 5� 103 Pa s and (b) Z � 5� 105 Pa s. Steady state is
reached when the plot approaches a horizontal line with

increasing cycles (time).
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2.4. External loading conditions

For both the assumed parabolic crack-opening
displacement formulation and the fully self-consist-
ent formulation, solutions were developed under

fatigue loading conditions. The applied cyclic wave-
form, Ka(t), is a sine wave of frequency f, where

Ka�t� � Km � DKa

2
sin�2pft�: �18�

Here, DKa � Kmax ÿ Kmin is the amplitude of the

applied far-®eld waveform, where Kmax and Kmin

are, respectively, the maximum and minimum
applied far-®eld stress intensities, R � Kmin=Kmax is

the load ratio, and Km � 1
2 �Kmin � Kmax� the stress

intensity corresponding to the mean load of the
cycle.

3. RESULTS AND DISCUSSION

Solutions were developed under the external load-

ing conditions speci®ed in equation (18), using both
the simpli®ed and the fully self-consistent formu-
lations described by equations (10) and (17), re-

spectively. Such solutions allow for a complete
description of the crack-opening displacements,
u(x), bridging stress distributions, p(x), crack-brid-

ging terms, Kb(t), and crack-tip loading conditions,
Ktip(t), throughout the loading history. We have
used these solutions to explore a wide parameter
space in the microstructural and loading variables

shown in Table 1 where the range for each variable
was chosen to be physically meaningful.

3.1. Parabolic approximation

For the parabolic Ktip-controlled approximation
with the crack-¯ank displacements small compared

to the grain height [u�x� � d], a solution to the sim-
pli®ed di�erential equation [equation (10)], with
applied waveform as given in equation (18), is
found to be

Ktip � Km � DKa

2

�
bo eÿt=b

1� o 2b2
� sin�o tÿ c��������������������

1� o 2b2
p �

�19�

where o � 2pf, c � tanÿ1�ob� and

b � 8AfZdlb
pdhE

�
1� h

ld

�
as previously de®ned. This solution may serve as a

comparison with the self-consistent solutions pre-

sented below and provides a rationale for the non-

dimensional grouping G � ob. The form of both

the di�erential equation [equation (10)] and its sol-

ution is similar to that solved previously for a single

viscous bridging element in the wake of a crack [34].

However, the current model has the advantage of

being microstructurally based and, as such, esti-

mates of the loading conditions for a given material

may be made as a function of temperature, loading

conditions and microstructural variables (e.g. grain

morphology and grain boundary composition).

Additionally, by ascribing a speci®c, physically

reasonable geometry to the calculations it is poss-

ible to evaluate the applicability of the proposed

mechanism.

Note that Ktip cycles around Km and is bounded

in amplitude by the applied waveform. As might be

expected from the viscous model employed here,

Ktip depends on the applied loading, which is modi-

®ed by two terms. The ®rst term is a transient, ex-

ponentially decaying term with a time constant of b
while the other is cyclic and of the same form as

the applied loading but is out of phase (lags) by an

amount c. The cyclic response at the crack tip,

DKtip, is given by the sum of the two terms, which

scale the applied stress-intensity range. For long

times (tÿÿÿ41), the cyclic response at the crack tip

is given by the second term which results in the re-

duction of the applied DK given by

DKtip

DKa
� 1��������������

1� G2
p �20�

where G � ob. Figure 5 shows the variation in

Table 1. Microstructural and loading parameters investigated in
the viscous bridging model

Range

Loading parameters
Load ratio, R 0.1 < R < 0.7
Frequency, f (Hz) 0.1 < f < 100
Load magnitude, DK (MPa Zm) 1 < DK< 100
Microstructural parameters
Viscosity, Z (Pa s) 101 < Z< 107

Area fraction, Af 1
Grain aspect ratio, d/h 1 < d/h < 50
Grain-boundary width, d (nm) 0.1 < d< 100
Bridging-zone length, lb (mm) 0.25 < lb < 10

Fig. 5. Plot of the predicted crack-tip stress-intensity
range, DK, normalized to the applied stress intensity
range, DKa, vs the non-dimensional parameter G for the
simpli®ed parabolic approximation. Note that most of the

applied loading is damped by G1100.
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steady-state normalized crack-tip loading with
respect to changes in the non-dimensional grouping,

G. It is clear that transmission of the applied load-
ing to the crack tip decreases abruptly over the
range 1<G<100, with the normalized cyclic loading,

DKtip/DKa, changing from 070% to less than 1%.
For ceramic materials of interest, typical values of
loading and microstructural parameters

(E* � 400 GPa, R � 0:1, f � 10 Hz, d=h � 5,
d � 1 nm, lb � 500 mm, h=dRlR1) yield values of G
between 1 and 104 over the range of viscosities,

103<AfZ<107. Note that over this range, the decay
constant, b, for the transient term is in the range
from 00.1 to 1000 s. In addition, with increasing b,
even though the decay time for the transient term

becomes increasingly long the magnitudes of both
the transient and steady-state terms decrease
rapidly. These trends tend to make the system reach

steady-state behavior rapidly.

3.2. Self-consistent solution

Results from the self-consistent, visco-elastic sol-
utions are presented in Fig. 6 by showing changes
in the normalized crack-tip loading (Kmax/Km,

Kmin/Km) at steady state vs changes in the model
parameters. Crack-tip shielding from bridging is
seen to grow with increases in grain-aspect ratio, d/

h, viscosity, Z, and test frequency, f, when the
remaining parameters are ®xed [Fig. 6(a)±(c), re-
spectively]. Clearly, viscous-®lm bridging, when
active, is an e�ective shielding mechanism which

markedly reduces the stress intensity actually ex-
perienced at the crack tip during cyclic fatigue at el-
evated temperatures. Indeed, recent measurements

on silicon nitride in fatigue [42, 43] demonstrate
slower growth rates at higher frequency and larger
grain size, as our model predicts.

Although there are di�erences in the assumptions
between the parabolic approximation and the self-
consistent formulations (Table 2), inspection of the

solution for the parabolic Ktip-controlled case yields
a useful non-dimensional group for characterizing
the results of the self-consistent calculations. We
again use G � ob and, in terms of microstructural

and mechanical parameters:

G � 16AfZdlbf
dhE*

�
1� h

ld

�
: �21�

Variations in the non-dimensional group G are

explored through changes in the microstructural
and loading parameters, as outlined in Table 1.
A comparison of the trends predicted using self-

consistent and parabolic solutions is presented in
Fig. 7 by plotting the normalized crack-tip cyclic
loading, DKtip/DKa, vs the non-dimensional group,

G. We have indicated which of the model par-
ameters change with changes in G as shown by the
legend in Fig. 7. It is evident that the parameter, G,
normalizes the results over the entire range of the

parameters studied in the self-consistent formu-

lation here and acts as an appropriate non-dimen-

sional grouping even in this case. Examination of

Fig. 6. Self-consistent solution results showing predicted
variations in the maximum, Kmax, and minimum, Kmin,
crack-tip stress intensity, normalized to the maximum
applied stress intensity, K 1max, vs changes in the model
parameters, namely (a) grain aspect ratio, d/h, (b) vis-
cosity, Z, and (c) frequency, f. The normalized crack-tip
stress intensity range, DK=K 1max, is shown as the di�erence

between the two curves.
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equation (21) implies that an order of magnitude

trade-o� exists between the various parameters of

the model. For example, an increase in the viscosity

by a factor of ten would have exactly the same

e�ect as a decrease in the frequency by a factor of

ten.

The variation in the maximum and minimum

crack-tip loading, normalized to the mean applied

loading (Kmax/Km, Kmin/Km), shown in Fig. 8,

demonstrates that, as expected, the mean applied

load is approached asymptotically, with increasing

G. This is anticipated from the physical form of the

bridging traction law [equation (4)] and the results

of the parabolic solution. Note that this model pre-

dicts that fatigue threshold drops with increasing G,
as seen in silicon nitride [10], and that cyclic growth

rates will always be lower than static growth

rates [10, 19]. In cases where the reverse is observed,

other damage mechanisms are presumably operat-

ing.

Similar to the parabolic approximation, the nor-

malized cyclic loading rapidly changes over the

range 1<G<100 from full to very low transmission

of the applied loading to the crack tip. At low G,
the self-consistent and parabolic solutions converge

as expected. Indeed, the parabolic solution is quite

robust throughout the most interesting region, e.g.

between 0:1<DKtip=DKa<1. While the self-consist-

ent solutions conform to trends observed in earlier

studies (e.g. Refs [11, 34]), the rigorous nature of

our formulation allows for the parameterization of

both mechanical and microstructural variables.

Furthermore, it identi®es a speci®c range in par-

ameter space where viscous bridging e�ects are

expected to be signi®cant.

At high G, where the bridging tractions are lar-

gest, the parabolic and self-consistent solutions

begin to diverge with the parabolic solution over-

predicting the dampening e�ect of the bridging

zone. In part, this is due to the visco-elastic brid-

ging traction law used in the self-consistent solution

vs a viscous law necessary for solution of the para-

bolic model. An additional contribution to this de-

viation presumably arises from the enforced choice

of a parabolic displacement distribution in the case

of the parabolic model vs an arbitrary, self-consist-

ent distribution in the full solution.

The displacement distributions along the crack

¯ank are shown in Fig. 9 within the bridging zone.

Note that near the end of the bridging zone the dis-

placements in the self-consistent solutions begin to

deviate from the parabolic form. This may be an-

ticipated as the self-consistent solutions must con-

verge to the far-®eld displacements outside of the

bridging zone. This convergence could be expected

to cause geometry-dependent changes in the self-

consistent solutions whenever the bridging zone is

comparable to the K-dominant region for the par-

ticular geometry chosen. The calculations per-

Table 2. Di�erences in parabolic and self-consistent formulations

Parabolic approximation Self-consistent formulation

Bridging element Viscous Viscoelastic
Displacement distribution Parabolic Any smooth
Displacement magnitude u(x)<<d Any u(x)

Fig. 7. Self-consistent solution results showing variations
in the crack-tip stress-intensity range, DK, normalized by
the applied stress-intensity range, DKa, vs the non-dimen-
sional parameter G. Changes in the individual parameters
of the model are shown by symbols while the parabolic
solution is denoted by the solid line. Note that the self-
consistent solution, which diverges from the parabolic at

high G, is well represented over the entire range by G.

Fig. 8. Self-consistent solution results showing predicted
variations in the maximum, Kmax, and minimum, Kmin,
crack-tip stress intensity, normalized to the maximum
applied stress intensity, K 1max, vs changes in the non-
dimensional parameter G, showing that the crack-tip load-
ing approaches the mean applied load (dashed line) with

increasing G.
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formed here have implicitly assumed an in®nite K-

dominant region through the selection of the far-

®eld displacement distribution along the crack ¯ank

[equation (7)].

Previous studies (e.g. Refs [25, 31]) indicate that

the amount of intergranular glassy phase has a

strong e�ect on high-temperature mechanical prop-

erties, with additional glass increasing both creep

and fatigue-crack growth rates. The explicit depen-

dence of the current solution may be seen by re-

arranging equation (21) when d� d, ld, h, as

G � 16AfZlbf
VfhE*

�
1� h

ld

��
1� d

h
� 1=l

�
�22�

where Vf is the volume fraction of glassy phase.

Hence, an increase in Vf results in a decrease in vis-

cous shielding; where these rate-dependent bridging

mechanisms are operative, this presumably leads to

faster crack-growth rates.

Due to the sensitivity of the solutions to G,
changes in test frequency and temperature (because

of its large e�ect on viscosity) would appear to be

the most likely of the model variables a�ecting the

crack-tip loading conditions in testing or service.

While considerations relating to applied loading fre-

quency can be anticipated directly from the sol-

utions presented here, those involving viscosity are

more di�cult to quantify. This is due to the scarcity

of information relating to the composition and

structure of the grain-boundary phase and the rela-

tive absence of viscosity data on such boundaries.

In order to investigate the anticipated response of a

material under test or service conditions, over a

given temperature range, we use a model material

with values of elastic modulus, E*, grain boundary

thickness, d, grain size, d/h, and bridging-zone

length, lb, given in Table 3.

The temperature dependence of the loading con-

ditions enters through the viscosity, which is

assumed to follow the familiar form:

Z � Z0 e
ÿQ=RT �23�

where Q is the activation energy for viscous ¯ow, Z0
is a scaling parameter, and R here is the gas con-
stant. Two Si3N4-based systems are considered, one

very high purity [44], the other, an older, lower-

purity commercial grade [45]. A plot of the normal-
ized cyclic crack-tip loading, DKtip/DKa, vs tempera-

ture is presented in Fig. 10 where, for the higher
purity Si3N4, the temperature range has been lim-

ited to below onset of material decomposition [46].
This plot demonstrates how rapidly the loading

conditions can change with a change in the test
conditions for the lower purity Si3N4. Additionally,

it is clear that for the higher purity Si3N4, tested in

an inert environment, a viscous boundary phase
would be unlikely to a�ect test conditions. The

stark di�erences in the temperature ranges over
which viscous bridging may a�ect crack-tip loading

conditions underscores the importance of the prop-

Fig. 9. Crack-opening displacements for parabolic (dashed
lines) and self-consistent (solid lines) solutions vs distance
behind the crack tip, x, normalized by the bridging zone
length, lb. Displacements, u, are normalized by the maxi-
mum traction-free displacement, u1max, at the end of the

bridging zone.

Table 3. Parameter values for model system

Parameter Value

R 0.1
f 10 Hz
E* 400 GPa
Af 0.1
d/h 5
d 1 nm
lb 500 mm
l h/d (rod-like grains)

Fig. 10. Predicted variation in the crack-tip stress-intensity
range, DK, normalized by the applied stress-intensity
range, DKa, vs temperature for two Si3N4 materials.
Material A [45] is a presumably low-purity commercial
material while material B [44] has been fabricated to mini-
mize impurity content. The crack-tip stress-intensity range
is predicted to have a strong temperature dependence for
the lower-purity material while the grain boundary in the
high-purity material is expected to show no viscous e�ects

up to the disassociation of the Si3N4.
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erties of the grain-boundary ®lms in a�ecting the
overall mechanical behavior of the material.

4. SUMMARY AND CONCLUSIONS

A model for grain bridging during cyclic fatigue-
crack growth in ceramics at elevated temperatures

has been proposed which includes both the applied
loading conditions and the microstructure. The
model seeks to investigate the driving force at the

crack tip over a wide range of microstructural par-
ameters and applied loading conditions. The funda-
mental bridging unit is composed of a rigid grain
whose movement is resisted by a visco-elastic grain-

boundary ®lm. Through this unit such variables as
grain size and shape, grain-boundary thickness and
viscosity, and bridging-zone length are introduced.

Both a simpli®ed parabolic and completely self-
consistent solution have been obtained for the case
of an applied cyclic load. For the simpli®ed para-

bolic approximation, a closed-form solution is poss-
ible while in the self-consistent case numerical
methods were used to ®nd a solution over a wide,
physically plausible range of the model parameters.

The parabolic solution provides a rational for the
appropriate non-dimensional grouping and this
group, G � 16AfZdlbf �1� h=ld �=dhE*, is found to

describe the response even in the case of the self-
consistent solution. At small G, where the bridging
zone is relatively weak, the solutions converge as

expected. However, the parabolic solution is found
to be surprising robust at describing the amount of
crack-tip shielding over most of the parameter

space.
As expected from the viscous nature of the brid-

ging element, increases in the magnitude of the re-
sponse of the bridging tractions (increasing G) lead
to a reduction in the transmittance of the cyclic
loading from the far-®eld to the crack tip, which
approaches a constant driving force equal to the

mean applied load.
Application of the model to two Si3N4 systems,

one high purity and one commercial grade, has

identi®ed that the local crack-tip loading conditions,
through the viscosity, are expected to have a strong
temperature dependence. For the higher purity sys-
tem, where the viscosity of the grain-boundary

phase is relatively high throughout the stable ther-
modynamic range, the viscous grain-bridging mech-
anism would not be expected to play a role.

However, as the viscosity of the boundary phase is
expected to depend strongly on impurity content,
contamination of the material during test or service

conditions may result in activation of this type of
mechanism. This last point should be emphasized
since the viscous behavior of the grain-boundary

®lm may change over time due to both anticipated
thermodynamic evolution of the as-processed ma-
terial as well as by impurity addition from environ-
mental sources.
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APPENDIX A

Separation of elastic- and viscous-based displacements

For the viscoelastic boundary phase with geometry
de®ned in Fig. 3 and described by a simple Maxwell
model, the displacements may be partitioned as

u � ue � uZ �A1�
where ue and uZ are the elastic and viscous portions of the
total displacement, u. The elastic and viscous shear stresses
in the ¯uid are given by

te � 2Gue
d

�A2�

tZ � 2Z
d
duZ
dt

�A3�

where G is the shear modulus of the viscoelastic boundary
phase, Z the viscosity, and duZ/dt the relative velocity of
the adjacent grains. A linear velocity gradient across the
¯uid, of width d, is assumed. By equating the elastic and
viscous shear stresses, the relation between the elastic and
viscous displacements is obtained as

uZ � u

1� Z
G

duZ
dt

: �A4�
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