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Abstract

The mixed-mode delaminating beam (MMDB) is a widely used test geometry designed to measure the fracture resistance
of bimaterial interfaces under mixed-mode loading conditions. In the present work, linear-elastic finite element analyses are
employed to determine the complex stress intensity factor, K, for an interfacial crack in this sample; results are found to
confirm those of previous studies of the bilayer specimen. However, the numerical results further reveal that the region of
K-dominance near the crack tip is very limited, extending merely ~ 1/100 to 1 /1000 of the sample height, about an order
of magnitude smaller than for other common fracture-mechanics test samples. Analyses performed for this specimen
geometry modified to include a thin sandwiched interlayer also indicate a very limited region of K-dominance, for example,
extending ~ 1/10 of the height of the sandwiched layer from the crack tip for very thin sandwiched layers. For the
sandwiched geometry, two situations leading to a useful small scale yielding condition are described. Examples of the use of
this specimen in the evaluation of the fracture toughness of ceramic joints are cited from the literature and comparisons are
made between the size of the K-dominant region and the extent of crack tip plasticity. Based on these comparisons, the
geometry-independent predictive power of linear-elastic fracture mechanics for common bimaterial couples and specimen
dimensions using this geometry is challenged.
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1. Introduction of thin films (e.g., film decohesion) and in micro-

electronics packaging (Evans et al., 1987; Drory et

The fracture of materials at, or near, internal al., 1988). Invariably, such failures are mixed-mode

interfaces is a failure event critical to the strength in nature, with the crack loaded in both tension and

and toughness behavior of composites (e.g., debond- shear; the relative magnitude of these modes is char-
ing of fiber reinforcements), the structural integrity acterized by a phase angle, V.

As the fracture resistance of bimaterial interfaces

is a strong function of this mode mixity, several
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Fig. 1. Mixed-mode delaminating beam test specimen (MMDB),
showing (a) the bilayer specimen, with unit height, &, =25,
2a=3h, 2d=10h, and b=h and (b) the modified specimen
containing a sandwiched interlayer with height A, 4. The crack is
grown between the top layer and the sandwiched layer.

conditions (O’Dowd et al., 1992). One popular spec-
imen geometry is the mixed-mode delaminating beam
(MMDB) test specimen (sometimes referred to as the
‘UCSB’ specimen). In this geometry (Fig. 1a), the
degree of mode mixity can be varied by changing the
relative heights (k,, h,) of the bimaterial layers,
such that crack-growth characteristics for a given
material couple can be determined over a range of
phase angles (Charalambides et al., 1989). This ge-
ometry can also be used with a thin sandwiched
interlayer (usually a metal foil) (Fig. 1b). The sand-
wiched layer is constrained by the top layer and the
substrate, which reduces or eliminates the driving
force for crack extension due to residual stresses and
limits the extent of plastic deformation in the sample.

Since both these specimen configurations have
been used to test a large range of material pairs, the
purpose of the current work is to re-examine the
validity of this specimen geometry for linear-elastic
fracture mechanics based studies, specifically by in-
vestigating the extent of the region of dominance of
the stress singularity (the K-dominance) near the
crack tip.

2. Background
2.1. Mechanics of interface cracks

2.1.1. Linear-elastic fracture mechanics (LEFM) so-
lutions

The characteristics of the local stress and dis-
placement fields for a crack lying at the interface
between two elastic materials are different from that
of a crack in monolithic solid due to the discontinu-
ity in elastic properties across the interface. This
elastic mismatch can be characterized by two non-di-
mensional groups (Dundurs, 1969) known as the
Dundurs’ parameters « and B: :

E\ —E,
= and
E,+E)

__1_,"51(1_21’2)_#2(1_27’1)
2 u(l=w) (i) M)

where for materials i = 1 lying above the crack and
2 below, w, are the elastic shear moduli, »; are the
Poisson’s ratios and E| are the Young's moduli, E;,
in plane stress or E,/(1 — »?) in plane strain. Note
that @ and B are zero when the materials 1 and 2
have identical elastic properties. For in-plane load-
ing, the stress field at a radial distance r from the tip
of a linear-elastic interfacial crack can be expressed
as a series of the form (Rice, 1988; Rice et al.,
1990): :

1 .
O-jk = ﬁ[RC(Kf’S)ij(e, 6)

+Im(Kri®)Ti (e, 0)]
+ Tf(6) +o(rt/?*iey, jk=r,0, (2)

where i=+vV—1, K is the complex interface stress
intensity (K=K, +iK,), 6 is the angle from the
crack plane and & is the oscillation index, defined
as:

—. 3

1+ ()
Expressions for 3,(e, ) are given in Appendix A.
The second term in Eq. (2) converts to a xx-stress
which is spatially constant except for being discon-
tinuous across the interface (the ‘T-stress’). The
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1 1-8
27 (




T.L. Becker Jr. et al. / Mechanics of Materials 25 (1997) 291-308 293

corresponding strain-energy release rate G can be
calculated for plane-strain conditions as (Rice et al.,
1990):

_ [(1 —v)/p+(1- Vz)/lJvz]|K]2
¢ 4cosh*(we) (4)

where 1/cosh®(7re) is equal to (1 — 82).

2.1.2. Region of K-dominance

It is clear that as r — 0, the magnitudes of the
higher order terms in Eq. (2) are negligible when
compared to the leading term. In this region, the
magnitudes of the singularities in the stress compo-
nents are scaled by the complex interface stress
intensity K and this defines the region of K-domi-
nance in the vicinity of the crack tip. As r increases,
the relative magnitudes of the higher order terms
increase and the stress field will no longer be well-

characterized by K. The requirement that this region
envelops the relevant fracture processes is the basis
of geometry-independent LEFM-based fracture test-
ing.

The size of the region of K-dominance, extending
a distance ry from the crack tip, is often scaled by
the smallest dimension of a finite body (or the crack
length in an infinite body) such that with smaller
specimen dimensions there is a smaller region of
K-dominance. The sign and magnitude of the devia-
tion of the stresses from the K-field is also a func-
tion of the shape of the body; indeed, different
specimen geometries are known to have varying
extents of K-dominance (Fig. 2) (Knott, 1973). For
interfacial cracks, this is also a function of the degree
of elastic mismatch across the interface (Gu, 1993).
The size of the region of K-dominance in a homoge-
neous body (one with a= g=0) is of particular
interest in this study and is denoted rZ.

0.00 0.05

0.10 . 0.20

Distance Ahead of the Crack Tip/ Crack Length, x/a

Fig. 2. Deviation of the tensile-opening stress componeat, oy, from the K-field with normalized distance, x/a, directly ahead of a crack, of
length g, in a number of common fracture mechanics test samples. It is apparent that the K-field shows a considerable tendency to
over-predict the yy-stresses in the homogeneous mixed-mode delaminating beam (MMDB) geometry when compared to the compact-ten-
sion (C(T)), single-edge notch bend bar (SE(B)), single-edge notch tensile bar (SE(T)) and middle-cracked tensile sheet (MC(T)). Data for
the C(T), SE(B), SE(T) and MC(T) specimens taken from Knott (1973).
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2.1.3. Phase angle

The complex interface stress intensities in Eq. (2)
only appear in the grouping Kr’¢ with units of
(stress)(length)'/? (e.g., MPa Vm ). The real and
imaginary parts of this group can be used to form an
interface phase angle, ¥ = tan~ [Im(Kr‘¢)/
Re(Kri®)], which in turn can be used, as in the case
of a crack in a monolithic solid, to describe the ratio
of the shear and normal stresses ahead of the crack,
Oyy/ Tyyly=0=tan?. In the monolithic case, the
phase angle is constant within the region of X-domi-
nance and is a unique function of the geometry and
loading. For the interface crack, however, the phase
angle depends as well on the distance along the
interface ahead of the crack tip, x, such that the ratio
of shear to normal stresses on the interface is a
function of x.

To describe the spatial dependence of the mode
mixity, a reference phase angle ¥ * can be used to
describe a given geometry and far-field loading
through ¥ * = tan~ [Im(KL'*) /Re( KL*)], where L
is an arbitrary reference distance from the crack tip,
such as a specimen dimension (e.g., the total beam
height, &) or a microstructurally relevant size-scale,
such as the grain size. It is important to note that this
phase angle is a characteristic of the interface stress
intensity, although the reference distance L may be
well outside the region of K-dominance. The angle
¥~ is purely a reference number which can be used
to calculate ¥ at any distance ahead of the crack tip
via the relationship (Rice et al., 1990):

1If=113’*+81n(%). (3)

In Eq. (5), & effectively scales the rate of change of
the local phase angle, ¥, with the logaritim of
distance from the crack tip and Eq. (5) is pertinent
within the range of K-dominance, even if L (and
consequently ¥ * ) is not.

2.1.4. Crack face interpenetration

The linear-elastic solution for the displacement
fields in the vicinity of an interface crack predicts
that at distances very close to the crack tip (at
r=r;,), the crack faces will interpenetrate (England,
1965; Comninou, 1990; Rice, 1988); the radius over
which this occurs is governed by the Dundurs’ pa-
rameter B and the reference phase angle ¥ *, but is

independent of the magnitude of the far-field load-
ing. In a physical body the crack faces do not
actually interpenetrate, rather a small zone of contact
between the crack faces is established. This contact
violates the assumption of traction-free crack faces
posed in this elastic boundary value problem !, The
area over which interpenetration is predicted must
therefore be much smaller than the region of K-
dominance ie., 7, <ry, for LEFM to accurately

nt

characterize the state of stress around the crack.

2.1.5. Near-tip plasticity for interfacial cracks

If plastic deformation occurs in either of the
materials across the interface, then the yielding that
occurs at the crack tip will cause the local stress field
to deviate from the singular stress form of Eq. (2).
The size of the plastic-zone, Tps is defined as the
maximum radial distance from the tip to the elastic—
plastic boundary. The condition of small.scale yield-
ing (SSY) is achieved providing the extent of local
yielding remains small compared to the region of
K-dominance i.e., r, K71k Here, the strésses within
the plastic zone are still scaled by the magnitude of
the stress intensity factor and characterization of the
crack-tip fields in terms of K will still be valid
(Rice, 1974).

The problem of a crack between two bonded,
elastic—plastic half-spaces was analyzed by Shih
(1991). The plastic zone size in this infinite-body,
r; , can be calculated in terms of the yield stress of
the weaker material, oy, as:

. IK|?
= A( § ) U—;;z ’ (6)
where A(¢) is a dimensionless function of the plas-
tic phase angle, &:

IK|?

2
y

=% " +shn (7

The superscript « is used to denote that this analysis
pertains when the plastic zone is much smaller than
all other specimen dimensions.

! However, since a lingar finite element formulation is used in
the current study (i.e. involving a solution determined in the
reference configuration) such interpenetration will have no effect
on the numerical computations of the crack-tip fields.
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2.2. The bilayer MMDB specimen

Previous analytical and numerical studies on the
bilayer mixed-mode delaminating beam (MMDB)
specimen (Fig. 1a) have shown that for interfacial
cracks within the constant moment region (between
the inner two loading points), the strain-energy re-
lease rate does not change with crack length. Char-
alambides et al. (1989) formulated an analysis based
on Bernoulli-Euler beam theory in order to compute
the strain-energy release rate, G, for interface cracks
in this ‘steady-state’ region; Suo and Hutchinson
(1990) extended this analysis reporting semi-analyti-
cal values for K (from which both G, and the
reference phase angle ¥ * can be calculated). These
studies report trends of markedly decreasing G,
with increasing substrate stiffness, E,/E, (i.e., de-
creasing «) and of increasing ¥ * (referenced to the
beam height, 4) from ~ 45 to 60° with increasing
modulus mismatch. Whereas G was found to be
only a function of « (and specimen geomeiry), the
value of the phase angle is a function of both « and
B.
The results of finite element analyses of this
specimen (Charalambides et al., 1989) were in agree-
ment with the semi-analytical results of Suo and
Hutchinson (1990). In addition, computations of G
and ¥ * were developed for cracks extending be-
yond the steady-state region and effects of residual
thermal stresses and frictional loading were consid-
ered (Charalambides et al., 1990).

2.3. The sandwiched MMDB specimen

There has not been a formal analysis of effects of
the sandwiched layer on the strain-energy release
rate G and reference phase angle ¥ * of the sand-
wiched mixed-mode delaminating beam sample (Fig.
1b). A finite element analysis of the MMDB sample
with a sandwiched interlayer for a glass/epoxy sys-
tem revealed shifts in & * (~ 10°) and slight changes
in G (~ 1%) for thin epoxy layers ~ k., /h=2%

(Ritter et al., 1994). Usually the strain-energy release
rate for this sample has been approximated by using
the calibration for the bilayer sample, assuming the
elastic properties of the sandwiched layer are identi-
cal to those of the substrate, or that the interlayer is
negligibly thin.

The analysis of Suo and Hutchinson (1990) for
the MMDB specimen, in combination with their
earlier asymptotic analysis (Suo and Hutchinson,
1989) for bodies containing sandwiched layers, may
serve as a suitable approximation for sandwiched
layers that are very thin compared to the overall
height of the sample (i.e., A, << h). In this situa-
tion, the strain-energy release rate is equal to that of
the homogeneous bilayer sample and the phase angle
is shifted from that of the homogeneous sample by
an amount depending on the compliance mismatch
(a, B) and on hg,,,. However, for such an asymp-
totic analysis to be applicable, there must be a region
outside of the layer which is described by the K-field
for the homogeneous material (i.e., Ay, <rf).
Moreover, there is also a much smaller region em-
bedded within this where the interface field pertains,
which can be described as the interfacial K-domi-
nant region with size r. The size of the K-field in a
homogeneous MMDB, r,?, is used in this study to
determine when such asymptotic limits are met.

2.4. Previous methods of finite element/ fracture
mechanics analysis

Two methods of data reduction were employed in
previous finite element studies to calculate the com-
plex interface stress intensity K (or equivalently G
and ¥*) for the MMDB geometry. The first in-
volved taking values from finite element computa-
tions of the crack-face displacements to calculate the
real and imaginary parts of Kh'® (Charalambides et
al., 1989) and the second used a virtual crack-exten-
sion technique (Matos et al., 1989). The latter method
was considered to be superior because of its insensi-
tivity to mesh refinement, i.e., its ability to yield
accurate results even with coarse meshes. However,
since this method does not focus on the finite ele-
ment solution in the near-tip region, the issue of
K-dominance was not considered. In discussion of
their results, Charalambides et al. {(1989) did note
that there was some disagreement between the re-
sults of the two methods; however, the authors at-
tributed this entirely to errors in the finite element
analysis at the crack tip.

It is a contention motivating the present study that
the virtual crack-extension method permits important
aspects of the near-tip behavior in the bilayer MMDB
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geometry to be overlooked and, as a consequence,
the use of this specimen will not yield specimen-in-
dependent toughness values in many common situa-
tions. Accordingly, the prime objective of the current
work is specifically to investigate the extent of the
region of K-dominance in this specimen geometry,
both for the bilayer sample (Fig. 1a) and to a more
limited extent for the sandwiched MMDB sample
(Fig. 1b).

3. Numerical analysis

3.1. Finite element analysis

Finite element analysis was performed using the
FEAP computer program (Zienkiewicz and Taylor,

_/

=
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Fig. 3. Schematic illustration of the finite element mesh used for
the MMDB sample, with a higher magnification view of the
region near the crack tip.

1987) on a half-sample utilizing the line of symme-
try midway between the inner loading points. A
typical mesh of the bilayer sample contained roughly
10,000 nodes and a mesh of the sandwiched sample
contained roughly 12,000 nodes; a. simplified
schematic illustration is shown in Fig. 3. In order for
the model to capture the singular behavior of the
interface crack, meshing in the region of the crack
tip was very fine; typically, the smallest elements
were of the order of h/100,000. This degree of
mesh refinement was used to ensure that there were
at least five rings of elements within the region of
K-dominance.

The meshing at the tip of the crack (the detail in
Fig. 3) consisted of twelve singular 6-node triangular
elements arranged in a circle (Stern and Becker,
1978; Stern, 1979). Although these elements can
reproduce the 7~ !/2 singularity in the stresses found
near crack tips in monolithic solids, due to elastic
mismatch effects, they do not provide the exact
singularity for the field around an interface crack.
However, when compared to quadratic triangular
elements, the singular elements were féund to im-
prove the form of the solution in the elements sur-
rounding the crack tip. The remainder of the geome-
try was modeled using 9-node plane-strain linear-
elastic isoparametric elements.

3.2. Specimen calibration

A change in compliance method was employed to
calculate the value of the steady-state strain-energy
release rate G,,. Linear elastic solutions for G yield:

F*3C F 38 F AS

O % %a 2 9a 2bhAa’ . )
where F is the applied load, C is the sample compli-
ance, b is the sample thickness, a is the crack length
and & the displacement at the point of loading. Two
finite element analyses were performed on samples
with differing crack lengths (Aa/k ~ 0.05) and the
difference in the load-point deflections were used in
Eq. (8).

It is important to note that the application of a
point load to the finite element model results in
localized deformation in the region neighboring the
contact point (due to the singularity in the stresses
predicted by the theory of linear elasticity). How-




T.L. Becker Jr. et al. / Mechanics of Materials 25 (1997) 291-308 297

ever, since Eq. (8) depends only on the difference
between the load point displacements corresponding
to two crack lengths, the local effects of the point
load are not important.

Although Eq. (8) provides a means to compute
the strain-energy release rates for this sample, calcu-
lation of the interface stress intensities requires a
more detailed analysis of the finite element results,
specifically in the use of the finite element stresses
near the tip to calculate the best fit value of the
interface stress intensity. A provisional K-field pre-
diction for the tensile-opening stresses, O'y[; was
determined through Eq. (2) (excluding the higher
order terms) and a residual R was calculated using

nodal projections of the finite element stress compo-
fem

nents o™, viz.
M+N 5
— fem __ K
R= Z (Uyy,i a'yy,i) . (9)
i=M

R was formed over a series of nodes (i=M to
M + N) and was minimized over a range of interface
stress intensities to yield the best fit, K. Clearly for
this procedure to yield accurate values for the inter-
face stress intensity factor, i.e. for K, to be equal to
K for this sample geometry, the nodes M to M + N
must lie within the region of K-dominance. The
nodes used in this study were those in the finite

" elements arranged in a ring spaced two elements

away from the crack tip and excluding the elements
along the crack face. The omission of the crack tip
and crack flank elements helped in limiting the
influence of the numerical errors in the finite ele-
ment calculation on the value of Kg,. It should be
emphasized that this method, rather than a course-
mesh method such as virtual crack extension, was
utilized because it allows examination of the details
of the crack-tip stress state, specifically, K-domi-
nance. (As shown below, the computed K, values
were found to be virtually identical to previous
calculations using other methods.)

This procedure was followed using the tensile-
opening yy-stresses but could, in principle, have
been performed using any of the components of
stress, strain, or displacement, given the appropriate
knowledge of the analytical solution. However, since
beam theory predicts bending will cause xx-stresses
and x- and y-displacements everywhere in the sam-
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Fig. 4. Deviation of the stress components o;,, 0, and o,

computed by finite element analysis from the K-field values with
normalized distance ahead of the crack tip along the interface,
x/h, for the bilayer sample. Solutions for i, /h=0.5, h=1,
with E,=E, =1 and v, = v, =0.3.

ple and since the behavior of the singular region had
to be distinguished from that of the sample en
masse, these were considered to be less appropriate
choices in the data reduction scheme. By contrast,
there are no xy- or yy-stresses due to bending, thus
making it easier to analyze the field near the crack

tip.
3.3. Determination of K-dominance

The stresses computed in the finite element analy-
sis were employed with the complex interface
stress-intensity factor K (e.g., the Ky, values calcu-
lated in Section 3.2) to calculate the size of the
region of K-dominance. The leading term of Eq. (2)
was used with K to calculate the values of the
stresses around the interface crack predicted by
LEFM, the K-field. Such an analysis of the crack-tip
field is shown in Fig. 4, where the deviations of the
different stress components from those of the K-field
are displayed for this sample as a function of dis-
tance x directly ahead of the crack tip.

Closest to the crack tip, there is little deviation
between the K-field and the finite element stresses.
With increasing distance from the crack tip, the xy-
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and yy-stresses continue to exhibit a region over
which there is little difference between the K-field
and the finite element stresses (approximating the
full-series values for the stresses); this represents the
region of K-dominance. However, with progres-
sively increasing distances from the crack tip, the
difference between the K-field stresses and the finite
element stresses becomes larger, thus defining the
limit of K-dominance. It is interesting to note that
the xx-stresses more quickly deviate from the singu-
lar form, only converging to the K-field values much
closer to the crack tip.

In the current work, we define the region of
K-dominance in terms of the yy-component of stress,
a,,, as this stress component is invariably of prime
importance in the propagation of cracks along the
interface. The distance along the interface ahead of
the crack tip at which the K-field and the finite
element values of o, differed by more than 5% was
used as an operational definition of the size, ry, of
the K-dominant region. Although 5% is somewhat
arbitrary, it proved to be sufficiently larger than the
computational errors in the FEM analysis such that
the results are unambiguous. We note, however, that
using the xx-stresses to determine 7, would have led
to much smaller values of ry (by some two orders of
magnitude). This may be due to the far-field bending
xx-stresses present in the MMDB sample.

4. Results
4.1. The bilayer MMDB specimen

Finite element analyses and subsequent stress in-
tensity calibrations were performed for a series of
bilayer MMDB (Fig. la) specimens with differing
layer heights (0.05<h,/h <05, h +h,=1) but
identical elastic properties (E,/E, =1, v, =v,=
0.3). A comparison of the finite element and K-field
values of the o, stresses in Fig. 5a {and later in Fig.
7a) reveals a small plateau difference (~ 1%) at
x/h < 107*, within the region of K-dominance. This
difference is largely due to the fact that the stress-in-
tensity factor was obtained using a fit over a large
range of 6; whereas the data in Fig. 5a are obtained
considering only the stresses along the interface i.e.
at 8= 0. Indeed, had a different angle been chosen,
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Fig. 5. (a) Deviation of the tensile-opening stress components,

0y, from the K-field as a function of normalized distance ahead

of the crack tip along the interface, x/h, for a bilayer MMDB
sample with E, /E, =1 and v, = v, = 0.3, where the ratio of the
height of the top layer to the overall specimen height, &, /4 is
varied from 0.05 to 0.5 and (b) the corresponding effect of the top
layer height, /,, on the size of the region of K-dominance, ry.

a different plateau error would be seen; furthermore,
a refinement of the mesh in the 6-direction would
decrease the magnitude of this error. The use of a
range of O in the calculation of K, improved its
accuracy, such that the steady-state strain-energy
release rate G, determined from Ky, (via Eq. (4))
was found to be within 0.5% of the values calculated
in the present study from Eq. (8) and the previous
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results of Charalambides et al. (1989) and Suo and
Hutchinson (1990) (Fig. 6). Indeed, both the strain-
energy release rate G, and the reference phase angle
¥ * computed using Kg were found to be nearly
identical to the previously computed values.

However as noted above, when K, (or the previ-
ous calibration for the bilayer sample) was used to
calculate the K-field values of the yy-stresses, the
latter were found to quickly deviate from the finite
element (full-series) values with increasing distance
from the tip (Figs. 5 and 7a) once r > ry.

The change in the size of the region of K-domi-
nance with the top layer thickness (4,) is presented
in Fig. 5b. Using the 5%-deviation definition given
above, the extent of the K-dominant region for these
homogeneous samples, ri, can be seen to vary
markedly with the top layer thickness, k,. Specifi-
cally, it decreases with decreasing top layer thick-
ness, with r¢/h ranging from 0.001 (for k,/h=
0.05) to 0.005 (for k,/h=0.4). For small &, rf ~
h,/50; however, r is not strictly proportional to
the smallest specimen dimension 4, as there is little
effect of the top layer height on ri for #,/h > 0.3.

The effects of varying the substrate stiffness are
displayed in Fig. 7a, where a range of stiffnesses
0.1 <E,/E, <10 (v, = v, =0.3) is considered for
h/h=0.5. The size of the K-dominant region in-
creases slightly with increasing substrate stiffness,
with ry/h ranging from 0.005 (for E,/E, =0.1) to
0.007 (for E,/E, = 10); these results are displayed
in Fig. 7b.

4.2. The sandwiched MMDB specimen

A full and detailed analysis of the corresponding
geometry with the thin sandwiched interlayer (Fig.
1b), requiring exploring of a very wide array of
sample dimensions and material parameters, is be-
yond the scope of the present study. However, to
assess the effect of the interlayer on the stress-inten-
sity factor K and on the size of the K-dominant
region, a limited study of the sandwiched sample
with a crack at the top interface was undertaken. For
these calculations, a thin layer was sandwiched be-
tween elastically identical materials such that &, /A
=03, v,=v,=0.3 and E,/E, =1/5 or 10. The
thickness of the sandwiched layer was varied from
0.1-20% of the total beam height.

The strain-energy release rates for the sandwiched
sample are compared to G for a homogeneous bi-
layer (h,/h = 0.3) sample in Fig. 8a. It is clear that
the homogeneous solution usually underestimates the
driving force for crack growth for compliant inter-
layers, such as for metal-bonded ceramics. The phase
angles, ¥ * (referenced to the beam height, k) for
the sandwiched sample, are displayed in Fig. 8b.

Given that the size of the K-dominant region is
affected by the size of the smallest specimen dimen-
sion, it may be expected that the value of r, for the
sandwiched sample will be smaller than for the
bilayer sample. The results in Fig. 9 clearly show the
strong effect of the interlayer size and properties on
the region of K-dominance, with r, being roughly
equal to 1/10 of the interlayer height for very thin
layers (hg,,./h <0.05). The trends extending be-
yond A, ,/h = 0.3 are obtained by equating a sand-
wiched sample containing an interlayer extending
over the entire substrate (i.e. such that 4, =0) and
the bilayer sample with the same E,/E, and A,/h.
Thus, the values of r, for A, /h = 0.7 plotted in
Fig. 9 are identical to those for the bilayer sample
with &, /h=0.3.
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varies monotonically between being the smaller of
R0/ 10 and of rg for i, /h=0.3. In contrast, for
more compliant layers the limiting behaviors are

The complex behavior of r, displayed in Fig. 9,
particularly for E,/E, = 1/5, should be noted. First,
for stiffer interlayers the situation is simpler and 7y
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similar, but for intermediate values of A, r¢ is
larger than rg. This is due to a change in the form of
the deviation of the stresses from the K-field values.
Unlike the bilayer samples (Figs. 5 and 7a), the

stresses do not deviate from the K-field monotoni-
cally for intermediate layer heights (A, /kh~ 5—
10%). For example, for E, /E; = 1/5 and h,,_,/h=
0.05 the error in the K-field oscillates in sign with
increasing r up to r/h = 10"%; however, the magni-
tude of the oscillation is less that the threshold 5%
value. It is this change in the sign of the deviation
that leads to a large calculated region of K-domi-
nance.

It is clear that for very thin interlayers (A, 4 /h <
0.02), which have been commonly used in bimaterial
studies (Table 1), the size of the K-dominance zone
in the sandwiched sample is bounded by that of the
homogeneous sample. Thus, rf can be used as an
approximation of rp in the sandwiched MMDB
sample; however, %, ,/10 may be a more accurate
value of r, with any non-vanishing modulus mis-
match.

5. Discussion
3.1. The bilayer MMDB specimen

The calculations for the bilayer mixed-mode de-
laminating beam specimen described above clearly
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Fig. 9. The effect of the sandwiched interlayer height, 4,4, on
the size of the region of K-dominance, ry, for the sandwiched
interlayer sample with &, /h=03, E, /E;=10 and 1/5 and
v, = v, = 0.3. Results for the homogeneous sample with k, /h=
0.3 are included for comparison (dashed line).
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indicate that for a wide range of layer heights (0.05
< hy/h <0.5) and layer moduli (0.1 < E, /E, < 10),
the region of K-dominance at the crack tip in this
geometry is extremely limited; it is at least an order
of magnitude smaller than the ~ 1 /10 of the charac-
teristic specimen dimension commonly assumed for
other fracture-mechanics samples. Indeed, for the
range of k,/h and E,/E, studied, estimates for the
extent of r can be less than 1/1000 of the beam
height, and rarely exceed 1 /100 of this dimension.

These trends indicate that interfacial fracture
toughness data measured with these specimens could
be inherently non-conservative. This can be under-
stood from the similitude principle: the near-tip state
of stress for cracks in different bodies will be accu-
rately characterized by K (or equivalently G and
¥*). The data in Fig. 4 clearly show that the
singular K field over-estimates the elastic yy-stresses
in this specimen geometry at distances beyond ry.
For example, if an RKR-type criterion, inveolving a
critical fracture yy-stress being exceeded over some
characteristic dimension (Ritchie et al., 1973), is
assumed to describe the local fracture behavior of a
brittle solid in this geometry, then the actual stresses
ahead of the crack tip will be lower than those
predicted by the singular LEFM field; this, in turn,
means that for finite samples higher loads must be
applied to cause failure, resulting in experimental
values of G, being higher than the actual critical
value. However, as shown in Fig. 4, o, is actually
larger than the K-field value, which could, for some
damage mechanisms, offset the effect of Oyy being
smaller; in particular, at small 6 the actual mean
stress would also be somewhat larger than expected.

In addition, for stress intensities measured at in-
stability or prior to subcritical crack extension to be
geometry independent, it is imperative that the re-
gion of K-dominance extends beyond the dimen-
sions in which the assumptions of linear elasticity
are violated. For bilayer interface samples, these
latter dimensions specifically involve regions of
crack-surface interpenetration and more importantly
plastic deformation.

For the material combinations and phase angles
considered here, the displacement equations for the
crack flanks predict interpenetration to occur over
dimensions of the order of r.,/h~ 10"''-107¢,
Table 1. As this is often nearly atomic dimensions

for a laboratory sample and always many orders of
magnitude smaller than the region of K-dominance,
interpenetration is clearly not an issue with this
geometry.

Of greater importance is the dimension associated
with constitutive nonlinearity (e.g., plasticity).
Clearly for any linear-elastic analysis of a crack
geometry to be valid, the size of the inelastic zone
must be small compared to the specimen dimensions
and crack size, r,<a, h. Moreover, as stated previ-
ously, to yield meaningful results based on such
linear-elastic solutions, the SSY condition must be
met, with the nonlinear zone being small compared
to the extent of K-dominance i.e. r, << ry. Since it
has been shown that the K-dominant region is less
then 1,/100 of the specimen dimensions in the bi-
layer MMDB sample, the use of this geometry is
likely to be highly questionable for many common
ceramic/metal combinations and typical specimen
dimensions.

A review of the literature yields many examples
of the use of the bilayer MMDB geometry to study
mixed-mode bimaterial interfacial fracture behavior
(Charalambides et al., 1989; Bartlett and Evans,
1993; Howard and Clyne, 1993; Phillipps et al.,
1993). The sizes of the samples typically used in-
volve beam heights of # = 1-6 mm for a wide range
of bimaterial pairs (Table 1).

For comparison, the plastic zone size was calcu-
lated using Eq. (6). Although this analysis is strictly
valid only for an infinite body, ry should serve as a
suitable approximation for r,. A comparison of com-
puted values of r, with the mixed-mode plastic-zone
size, Tps is made for these selected examples in Table
1. For the Ti(Ta)/sapphire alloy and Ti-6Al-4V /Ti
systems examined, it is clear that the actual plastic
zones at failure extend over dimensions from the
crack tip far in excess of the zone of K-dominance;
indeed, even with the Al/PMMA system, the experi-
ments reported do not meet the criterion of r, << ry.
Since it is unclear how the stress, strain and displace-
ment fields surrounding the crack tip during the
fracture event would scale with the applied stress
intensities, it is doubtful that an appropriate charac-
terizing parameter can be obtained accurately through
the use of LEFM. However, LEFM calibrations for
the bilayer MMDB sample were used in the analyses
for all the results cited; accordingly, it is apparent
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that the toughness values reported in these studies
are specimen-dependent, i.e. not the limiting SSY
fracture toughnesses. Clearly, with such a highly
restricted region of K-dominance in this specimen,
use of the bilayer mixed-mode delaminating beam
geometry for further studies should be undertaken
with some caution.

5.2. The sandwiched MMDB specimen

The analysis of the MMDB specimen with a
sandwiched layer yielded results that depend appre-
ciably on the modulus ratio, E,/E,, and on the size
of the interlayer, %4 This work illustrates several
interesting features of interface fracture mechanics
for layered structures that also have applicability to
some other geometries.

Insight into the mechanics underlying the behav-
ior of the sandwiched MMDB sample can be gained
by comparing it to the homogeneous bilayer sample.
In the asymptotic thin-layer limit, the strain-energy
release rate for the sandwiched sample, G, is equal
to that for the homogeneous sample. The results in
Fig. 8a confirm that as A 4 —> 0, the strain-energy
release rate for the sandwiched sample approaches
that of the bilayer sample; however, for layers that
are as thin as h/50, the strain-energy release rate
can be drastically different from that of the homoge-
neous sample. In addition, the reference phase angle 2
is accurately described by the asymptotic analysis
only for *h.4/h < 100 (Fig. 8b), an unexpectedly
small value. Again, this is a consequence of the
limited region of K-dominance in the homogeneous
bilayer sample (£ /A < 0.005, Fig. 5b) which leads
to these restrictions on the application of this analy-
sis for the sandwiched sample.

For thicker layers, this asymptotic situation does
not apply, but there is a region of interfacial K-
dominance which, if E,/E, > 1, is smaller than r¥
and for smaller layers is ~ hg,,,/10. The K-domi-
nant region is larger for E,/E; <1; in certain re-

2 Note that the rapid change in reference phase angle with layer
height is a result of using A for the reference distance; if the
reference distance were set t0 Jgng, the Suo and Hutchinson
(1989) analysis would result in a constant shift in the phase angle
of —8.4° or 3.3° from the homogeneous case (for E, /E; =10 or

1/5).

gions it approaches A, 4/5 and can even exceed rf,
(Fig. 9). Furthermore, the corrections for G and ¥ *
are smaller where the layer is compliant than for the
case where the sandwiched layer is stiffer, (Fig. 8a
and b), for which the errors are appreciable with
hene €xceeding only 1% of the beam height. Com-
parison of results from Fig. 8a and b show that when
hoe/h > 005 and E, # E,|, neither the asymptotic
sandwiched nor the bilayer approximation gives a
satisfactory approximation for G.

When plasticity occurs at the crack tip, geometry
insensitive SSY toughness measurements analyzable
within the context of LEFM are expected when
r, < rg. For sandwich samples, two limiting condi-
tions can be envisaged for interface fracture when
the interlayer is more ductile. First, if the plastic
zone is embedded within the interfacial K-dominant
region and is much smaller than the. sandwiched
layer thickness, so as to be largely unconstrained by
the opposite interface, then the SSY interface tough-
ness can be derived. This requires that r, << (rg,
hgna) L€ that:

r;;/hsand < (rK/hsand’ 1) * l (10)

The condition for this can be seen graphically by
renormalizing the plot for ry, Fig. 9, to the inter-
layer heights as shown in Fig. 10 where 7 /h 4 18
plotted against A, ,/h. This SSY interface fracture
region can be visualized as a region in an analogous
plot of 7,/ hgupq VEISUS Ay, /h. The acceptable range
is under the pertinent r/h,,,, curve (the lower part
of Fig. 10), satisfying both conditions unless E,/E,
~ 1; in this case, r ~ r¢ and the region of 5 /A ,ng
> 1 is inappropriate. As emphasized earlier, the
computation of G and ¥ " can be accomplished
from published analyses if the layer is thin enough to
be in the asymptotic limit, i.e. 7F/h . > 1, requir-
ing hg,,./h << 0.005 (the left side of Fig. 10). Then,
in addition, the reference plastic phase angle, &,
follows directly from Eq. (7). For thicker interlayers,
this SSY condition can be met, but G, ¥* and ¢
must be computed explicitly to avoid errors similar
to those depicted in Fig. 8.

The second limiting condition occurs when the
entire thickness of interlayer becomes plastic in a
region near the crack-tip. Then it is widely expected
(Reimanis et al., 1991; Wang and Gerberich, 1993)
that G, will scale with A4, but these toughness
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ized sandwiched interlayer height, 4,4, on which conditions are
delineated for two different types of small scale yielding. The
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values can be used in various other geometries if the
interlayer is entirely within the homogeneous K-
dominant region. An approximate condition for this
is:

H
1<<rp/hsand <<rK/hsand (11)

The resulting toughness can be termed the con-
strained layer SSY interface toughness. Thus, the
plastic deformation has eliminated the elastic inter-
face K-dominant region, but the interlayer is within
the homogeneous K-field. This region is located
graphically by a small triangular area in the upper
left of Fig. 10.

Unfortunately, computing the extent of the plastic
zone in this sample is complicated by the highly
constrained state of the sandwiched interlayer. It is
clear that for r; > hg,,,, the plastic zone will be
limited to a distance &4 perpendicular to the crack
plane, although there will be no such restriction in
the direction ahead of the crack tip. Plastic-zone size
calculations for a mode-I crack in a constrained

ductile layer (Varias et al., 1991) show a reduction in
r, by a factor of 5 for large plastic zones, o> Pang
when compared to estimates for a similar crack in an
unconstrained metal, where r; = K:/ 27ray2. An
analysis of the effect of such constraint on a mixed-
mode interface crack has not been performed for
plastic-zone sizes on the order of the sandwiched
layer thickness, although it is reasonable to infer that
a similar reduction in the amount of plasticity will
occur.

In the constrained layer SSY regime, the calcula-
tion of G using the asymptotic elastic approximation
is quite good regardless of layer compliance, analo-
gous to the limit in Fig. 8a. Although no convention
for associating the phase angle with the thickness
dependent toughness has yet been widely adopted,
the use of the elastic ¥ * and Eq. (7) would yield an
unambiguous value of the reference plastic phase
angle, £, that pertains near the elastic—plastic bound-
ary ahead of the crack. This allows for the investiga-
tion of thickness dependent interface toughnesses for
various phase angles.

Perhaps more than as a bilayer specimen, the
MMDB test geometry has been widely used with a
sandwiched interlayer in fracture and crack-growth
studies (Reimanis et al., 1991, 1993; Wang and
Gerberich, 1993; Shaw et al., 1994; Ritter et al.,
1994). To assess whether the LEFM crack-tip field
solutions were valid for such use, it is again neces-
sary to compare the extent of K-dominance with the
plastic-zone sizes as is done for several ceramic-metal
interfaces (Table 1). The calculations in Shih (1991)
of the plastic-zone size, r; in Eq. (6), for a mixed-
mode loading of a crack between two infinite bodies
were used presently to assess the applicability of the
sandwiched specimen geometry, with the comment
that for plastic-zone sizes on the order of A4, the
actual amount of plasticity will be less than repre-
sented here.

Although some experiments contained interlayers
that were embedded within a homogeneous K-field
(i.e. hyuy/h <0.003), it is clear that none meet the
bimaterial SSY criteria, r, Krg~ A4/ 10. Indeed,

sand

only the data using the thinnest layers in the sap-
phire /Au, sapphire /Cu and Al,O,/Ti studies can
be interpreted as a constrained layer SSY interface
toughness, while no work cited measured the SSY
interface toughness. In addition, each of the studies
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cited utilized a range of interlayer heights that ex-
ceeded the constrained layer SSY criteria, A4 <<
r,?. Clearly, a reevaluation of the role of the sand-
wiched MMDB sample, analyzed using LEFM, is
required for future studies of bimaterial interfaces
and layered materials.

5.3. Concluding remarks

It is apparent that the region of K-dominance in
the MMDB specimen is far smaller than that found
for other commonly used fracture-mechanics test
geometries (Fig. 2). This evidently arises from the
thin membered geometry in which the xx-stress is
the only non-zero, far-field stress component to be
converted into the singular K-field. In addition, it
should be remarked that the analyses leading to these
conclusions are based largely on discrepancies in
o,,- The o,, values are erroneous at much smaller
dimensions, and using the next order term, the ‘T-
stresses’, would only be of limited help. However,
the reasonable convergence of G and especially ¥ *
to asymptotic values when kg, <r}, Fig. 8, sug-
gests that basing 7, on the yy-stresses is useful for
many issues.

Similar problems of very small regions of K-
dominance can be expected to apply to two other
well-studied interfacial fracture geometries for which
simple analytic solutions for G can be derived from
beam theory. One is the thin double-cantilever beam
(DCB) sample, which has been used extensively for
interfacial fracture resistance measurements e.g., Oh
et al. (1987) and Cannon et al. (1991). Here, similar
limitations as those indicated in Figs. 5~9 on the size
of the r, and the magnitude of corrections for the G
and ¥ * may be expected to apply. Indeed, although
values of rg (and therefore the critical Ag,,/h for
the asymptotic analysis to apply) computed for &, /A
= 0.5 would be more nearly pertinent for the sym-
metrical DCB samples, Fig. 5b shows that r is
little different than rf for k,/h=0.3, the spacing
used to study the sandwiched MMDB geometry. A
second relevant geometry involves several of the thin
film cracking and delamination problems which have
been analyzed, e.g., Hutchinson and Suo (1992),
where again the results in Fig. 5 for small 4, should
apply directly for the case of delaminating films
under residual tension; this would imply that r, =
hﬁlm/ 50.

6. Summary

The results of linear-elastic finite element calcula-
tions on the bilayer mixed-mode delaminating beam
(MMDB or ‘UCSB’) geometry were found to con-
firm the steady-state interface stress intensity,
strain-energy release rate and phase angle solutions
derived previously. However, the present analysis
shows that the size of the region of K-dominance
near the crack tip, rg, in the bilayer version of this
geometry only extends over radial distances from the
tip of 1/100 to 1 /1000 of the total specimen height.
Moreover, for the sandwiched interlayer version, the
value of r, is even smaller; for an interlayer 1/20
of the beam height, r is of the order of 1/10 of the
interlayer height. Accordingly, for a linear-elastic
fracture mechanics analysis to be valid for the bima-
terial specimen geometry, any extent of local plastic-
ity must be much smaller than ~ 1/200.0f the beam
height. For the sandwich geometries, the plastic zone
should be much less than 1,/200 of the beam height
to satisfy the constrained layer small scale yielding
limit, and much less that 1/10 of the interlayer
height to satisfy the more stringent SSY interface
toughness limit. It is found that for the majority of
common metal /ceramic systems reported in the lit-
erature that have been analyzed using MMDB speci-
mens, the extent of plastic-zone readily exceeds these
regions of K-dominance; thus the utility of LEFM-
based analysis with this sample for measuring geo-
metrically insensitive toughnesses becomes highly
questionable.
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Appendix A
The equation for the stresses around an interface

crack (Eq. (2)) include functions of & and 0, ji
and 3} (Rice et al., 1990). For § =0 to m:
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S -

cosh(me)
e e (g 6
— ——sin| = || 1 +cos?| =
cosh(me) sm( 2 ) ( €08 ( 2 )

—asin(e))

—cosh[ e(7— 9)]sin(%6)

I _
269 -

cosh(me)
_ Cic;%sin(g)(smz(g) +e sin(e))

3
cosh[ &(m— 0)]cos(—-6)
P/ i} 2
ré

cosh(7re)

() - o)

For 8= 7 to O, replace w with — 7.
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