Multi-level characterization of human femoral cortices and their underlying osteocyte network reveal trends in quality of young, aged, osteoporotic and antiresorptive-treated bone

Petar Milovanovic a, b, Elizabeth A. Zimmermann a, Christoph Riedel a, Annika vom Scheidt a, Lydia Herzog a, Matthias Krause a, Danijela Djonic b, Marija Djuric b, Klaus Püscher c, Michael Amling a, Robert O. Ritchie d, e, Björn Busse a, e, *

a Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestrasse 59, 22529 Hamburg, Germany
b Laboratory for Anthropology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, Dr Subotica 4/2, 11000 Belgrade, Serbia
c Department of Forensic Medicine, University Medical Center Hamburg-Eppendorf, Butenfeld 34, 22529 Hamburg, Germany
d Department of Materials Science and Engineering, University of California, Berkeley, USA
e Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley CA 94720, USA

Article Info
Article history:
Received 1 September 2014
Accepted 20 December 2014
Available online

Keywords:
Mechanical properties
Fracture mechanism
Biomineralization
Microstructure
Osteoporosis
Bone

Abstract
Characterization of bone's hierarchical structure in aging, disease and treatment conditions is imperative to understand the architectural and compositional modifications to the material and its mechanical integrity. Here, cortical bone sections from 30 female proximal femurs—a frequent fracture site—were rigorously assessed to characterize the osteocyte lacunar network, osteon density and patterns of bone matrix mineralization by backscatter-electron imaging and Fourier-transform infrared spectroscopy in relation to mechanical properties obtained by reference-point indentation. We show that young, healthy bone revealed the highest resistance to mechanical loading (indentation) along with higher mineralization and preserved osteocyte-lacunar characteristics. In contrast, aging and osteoporosis significantly alter bone material properties, where impairment of the osteocyte-lacunar network was evident through accumulation of hypermineralized osteocyte lacunae with aging and even more in osteoporosis, highlighting increased osteocyte apoptosis and reduced mechanical competence. But antiresorptive treatment led to fewer mineralized lacunae and fewer but larger osteons signifying rejuvenated bone. In summary, multiple structural and compositional changes to the bone material were identified leading to decay or maintenance of bone quality in disease, health and treatment conditions. Clearly, antiresorptive treatment reflected favorable effects on the multifunctional osteocytic cells that are a prerequisite for bone's structural, metabolic and mechanosensory integrity.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Bone is a complex hierarchically organized material consisting of osseous cells and a nano-composite structure composed of collagen and mineral [1,2]. Osteocytes are the most frequent occurring osseous cell type in the skeleton, which are strategically distributed throughout the entire mineralized bone. Therefore, they play a key role in the mechanosensitive behavior of bone [3] by detecting mechanical stimulation and orchestrating signal transmission between bone cells involved in bone repair and renewal. Such chemically and/or mechanically triggered responses through either intracellular calcium transients [4] or the release of nitric oxide and prostaglandin E2 [3,5–7] are critical to bone health and bone remodeling. Osteocytes reside in special cavities within the bone matrix called osteocyte lacunae and are separated from direct contact with the mineralized bone matrix through a thin layer of unmineralized tissue [8,9]. Although much of the relationship between the cell and the lacunar space is still unknown, osteocytes are believed to actively modify their surrounding environment [10,11], and cellular viability is essential for maintaining the lacunar space [12,13]. The osteocytes’ characteristics are thought to...
describe the bone's matrix potential mechanosensory abilities, adaptive capacity and possibly the quality of the perilacunar tissue [2,12,14–18]. However, the death of an osteocyte within the lacuna is associated with a phenomenon termed ‘micropetrosis’, where the lacuna becomes completely mineralized [19]. Mineralized lacunae are thought to represent osteocytes’ “fossils” as the apoptotic remnants of osteocytes have been found within the mineralized material [13]. Due to the possible negative impact of mineralized lacunae on bone health [12,20], we hypothesize that the occurrence of mineralized lacunae serves as a marker for bone quality. Bone quality is a critical aspect in maintaining bone mechanical competence as it describes the totality of features and characteristics that influence a bone's ability to resist fractures [21]. Specifically, bone quality encompasses both the composition and structure of bone through the degree of mineralization, the type of cross-linking, collagen characteristics, the presence of microdamage and non-collagenous proteins, as well as architecture/geometry patterns [1,22,23].

Previous studies have observed that the mineralization of osteocyte lacunae can be attributed to aging and the existence of skeletal diseases [12,20,24]. Thus, changes in the mineralization of osteocyte lacunae may indeed reflect bone quality and the risk of fracture in humans. However, the trends in the number and degree of mineralized lacunae and the corresponding effect on bone remodeling have not been comprehensively studied. In particular, it is of interest if age- and disease-dependent mineral occlusions of osteocyte lacunae may be prevented by bisphosphonate (BP) treatment. Indeed, anti-resorptive treatment was found to increase areal bone mineral density and decrease fracture risk [25–28]. However, associated side effects in the form of new atypical fractures related to bisphosphonate-treatment are reported as well [29,30]. Although in vitro and animal model studies suggested that bisphosphonates promote osteoblasts viability and express anti-apoptotic effects on osteocytes [31–33], histological findings on dogs' ribs rather showed decreased osteocyte lacunar density following long-term alendronate treatment [34]. Therefore, bisphosphonates' specific species- and site-related modes of action deserve additional attention to unravel corresponding wide-ranging effects taking place on several bone tissue hierarchical levels.

In the present study, we quantify the density and distribution of mineralized lacunae within the femoral cortical bone in young, aged, osteoporotic and alendronate-treated individuals. In addition to a rigorous assessment of osteocyte lacunar characteristics, we analyzed the bone matrix's composition and its mechanical competence in the four groups to provide a better understanding of the bone quality and osteocytes' contribution to bone health with special regard to bone remodeling characteristics in health, disease and bisphosphonate-treatment stage. The bone's composition and mechanical properties are important to understand the mechanisms that lead to fracture in human bone, teeth and other biological materials, and for providing insights on the prerequisites for designing and using new bone replacement materials and/or pharmacologic treatment options to cure bone-related diseases.

2. Materials and methods

The bone specimens used in this study were acquired during autopsy at the Department of Forensic Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany, from 30 female individuals. Based on autopsy reports and clinical histories, the individuals were divided into four study groups:

1. Young female individuals without skeletal diseases/fractures (age 31.4 ± 9.5 years, n = 5)
2. Aged female individuals without skeletal diseases/fractures (age 83.7 ± 5.9 years, n = 7)
3. Female individuals with untreated osteoporosis (age 82.5 ± 5.5 years, n = 9)
4. Female individuals with osteoporosis who received bisphosphonate treatment (age 80.5 ± 7.2 years, n = 9).

These individuals did not suffer from cancer, renal diseases, primary hyperparathyroidism, or Paget’s disease and did not show any other signs or symptoms of bone diseases apart from postmenopausal osteoporosis in the appropriate groups. The treated osteoporosis group received the third-generation bisphosphonate alendronate at either 10 mg per day or 70 mg per week during 6 ± 18 years. The study was approved by the Ethics Committee of the Hamburg Chamber of Physicians (PV3846).

2.1. Specimen preparation

A complete horizontal cross-section of the proximal diaphysis of each femur (from all four groups of patients), as well as cross-sections of distal radial, iliac crest and the 15 vertebral body (from osteoporosis and alendronate-treated patients) were cut using a diamond belt saw (Exakt, Norderstedt, Germany) and fixed in formalin (3.5%), as reported previously [35]. The slice thickness in all specimens was 4 mm. The undecalciﬁed specimens were dehydrated by means of an ascending ethanol series (70%, 80%, 2 × 96%, 3 × 100%) and further infiltrated with a plastic embedding medium (Technovit 7200; Heraeus/Kulzer, Wehrheim/Ts, Germany). The inﬁltration was performed in steps with the following volumetric ethanol/Technovit-ratios: 70:30, 50:50, 30:70 (v:v). Technovit with imidophenoxide was used to continue the inﬁltration process for another 10 days. Ground tissue specimens were made based on Donath’s grinding technique [35,36]. After the grinding and polishing processes, the specimens were carbon coated and prepared for scanning electron microscopy.

2.2. Scanning electron microscopy (SEM): evaluation of osteocyte lacunae

The femur specimens were mounted in a scanning electron microscope (LEO 435 VP; LEO Electron Microscopy Ltd., Cambridge, England) with a backscattered electron detector (Type 202, E.E. Developments Ltd., Cambridge, England).

The microscope was operated in backscattered electron mode at 20 keV and a constant working distance, while the images were acquired with 100x magnification. The following parameters were evaluated in the femur samples: number of mineralized lacunae per bone area and total number of lacunae per bone area. Mineralized lacunae were deﬁned following the criteria from backscattered electron imaging [12,20]. The bone area was evaluated with ImageJ software (ImageJ, v.1.45s, National Institutes of Health, USA — imagej.nih.gov/ij/) using the BoneJ plugin for bone volume fraction [37].

To assess the spatial distribution of osteocyte lacunae, the femoral cortical cross-section was divided into four regions (i.e., medial, lateral, ventral, and dorsal), and each region was then subdivided into periosteal and endosteal compartments, as in previous studies [12,28]. In each of the four regions of the femoral cross-sections (i.e., medial, lateral, ventral and dorsal), a minimum of two representative images per compartment (each approximately 1 mm²) were analyzed.

The number of Hauserian systems per bone area was evaluated on the same images that were used to quantify the osteocyte lacunae. Thus, the density of osteons provides an overview (history) of the number of remodeling events [38].

2.3. Bone mineral density distribution analysis (BMDD) using quantitative backscattered electron imaging (qBEI)

We performed quantitative backscattered electron imaging (qBEI) to evaluate the bone mineral density distribution (BMDD) in cross-sections from the femora, radius, iliac crests and vertebral 15 bodies in accordance with previous studies [2,29–43]. The scanning electron microscope was operated in backscatterer mode at 20 keV and 680 pA with a constant working distance of 20 mm. The beam current was controlled by use of a Faraday cup (MAC Consultants Ltd., England), and all parameters were maintained stable during imaging. The gray level was calibrated with a standard of known density, as explained in more details in previous studies, such that gray level had a linear relationship with the calcium concentration [41]. The qBEI measurements were performed on images with 50x magnification. Using a custom Matlab routine, the following parameters were automatically evaluated: mean calcium concentration (mean Ca, wt%), most frequent calcium concentration (peak Ca, wt%), standard deviation of the calcium distribution curve showing the degree of heterogeneity of BMDD distribution (width Ca, wt%), percentage of bone area that is mineralized below the 5th percentile of the reference range of the young group (Ca low, % bone area) and percentage of bone area containing Ca concentration above the 95th percentile of the reference range of the young group (Ca high, % bone area). In each individual, two images per compartment per region (each approximately 4 mm² in size) were considered for the qBEI evaluations.

2.4. Fourier transform infrared spectroscopy (FTIR)

To assess the quality of the bone matrix, Fourier transform infrared (FTIR) spectroscopy was performed within the medial, lateral, ventral, and dorsal regions of each femur sample. The FTIR spectra were acquired with a Universal ATR sampling accessory connected to a Frontier FTIR spectrometer (Perkin Elmer, Waltham, MA, USA). Spectra were acquired over a spectral range of 570–4000 cm⁻¹ at a spectral
resolution of 4 cm\(^{-1}\) and 128 scans. Spectra were analyzed using a custom program in Matlab (MathWorks, Natick, MA, USA), where each sample was baseline corrected from 1850 to 1950 cm\(^{-1}\). The mineral to matrix ratio was calculated by taking the area ratio of the phosphate peak at 890–1180 cm\(^{-1}\) to the amide I peak at 1600–1710 cm\(^{-1}\). The carbonate to phosphate ratio was calculated by taking the area ratio of the carbonate peak at 850–890 cm\(^{-1}\) to the phosphate peak at 890–1180 cm\(^{-1}\).

2.5. **Reference point indentation (RPI)**

The polished femoral cross-sections were mounted on BioDent Hfc instrument for reference point indentation (Active Life Scientific Inc., Santa Barbara, CA, USA). Reference point indentation (RPI) is a microindentation method used for mechanical probing of mineralized tissues [44], which has potential for clinical application [45,46]. Here, the RPI measurements were performed using a probe (BP2 probe: Active Life Scientific Inc., Santa Barbara, CA, USA) consisting of a reference probe that rests on the bone surface (initial touchdown) and a test probe which indents the bone when the load is applied [44]. The test probe is 90\(^{\circ}\) conospherical with less than 5 \(\mu\)m radius point. Basically, the RPI technique encompasses successive indentation cycles, where with each cycle the test probe progresses deeper into the bone tissue. Unlike some previous studies that performed RPI on periosteal bone surfaces [45–47], in this study the indents were made on femoral cross-sections in order to correlate the mechanical characteristics with simultaneously acquired structural and compositional properties. In each individual, a minimum of three measurements per compartment per region were acquired. All the indents were retrospectively imaged via electron microscopy to ensure that only the bone matrix was subject to indentation, rather than voids, pores or bone marrow regions. Here, the RPI was performed with an indentation frequency of 2 Hz, an applied force of 6 N and 10 successive indentations (indentation cycles) per measurement. Based on the load–displacement curves recorded by the Biodent software, the following parameters were measured: first cycle indentation distance (ID, \(\mu\)m) — the indentation depth after the first indentation cycle (i.e., the distance between the reference probe and test probe after the first indentation cycle); total indentation distance (TID, \(\mu\)m) — the distance between the reference probe and test probe after the last indentation cycle (i.e., maximum indentation distance after the last cycle), indentation distance increase (ID, \(\mu\)m) which is the increase in indentation distance between the first and last cycle, and average energy dissipated (ED, \(\mu\)J) representing the average area under the load–displacement curve. Although precise mechanical meaning of all RPI parameters is not yet fully understood, recent studies showed strong correlation between RPI and traditional mechanical testing methods; in this context, first cycle indentation distance is usually regarded as an inverse estimate of microhardness, while dissipated energy and indentation distance increase may reflect bone material’s toughness [46,48,49].

2.6. **Statistical analysis**

The normal distribution of data was tested using the Kolmogorov–Smirnov test. To address whether the investigated bone properties differ between the

![Fig. 1. Osteocyte lacunar characteristics of the femoral cortical bone. The analyses refer to specimens from young, aged, untreated osteoporosis (OP) and bisphosphonate-treated (BP) women. (A) Backscattered electron images reveal osteocyte lacunar characteristics. Note differential occurrence of hypermineralized osteocyte lacunae, especially in interstitial bone (encircled by yellow lines) (Scale bar 100 \(\mu\)m). (B) Inter-group differences in lacunar number per bone area. (C) Inter-group differences in mineralized lacunae number per bone area. (* - p < 0.05). Error bars represent SD. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)](image-url)
groups, as well as among various regions, the analysis of variance (ANOVA) for repeated measurements was performed. As the difference between regions belonging to the same individual was evaluated, the region was defined as “within-subject factor”, while differences between the groups were analyzed after setting the group as “between-subject factor”. Interaction of group and region was also chosen to check whether the evaluated parameters showed similar or different region-dependence among different groups. The post-hoc procedures to assess the differences in evaluated parameters between individual groups, as well as regions, were conducted under Bonferroni correction for multiple comparisons. Pearson’s correlation coefficient was used to test the relationship between various parameters.

All analyses were performed using Statistical Package for the Social Sciences (SPSS) version 15.0, and the level of significance considered to be statistically significant was 0.05.

3. Results

3.1. Inter-group differences in osteocyte lacunar numbers in the femoral cortex

Backscattered electron imaging allowed us to evaluate the number and distribution of osteocyte lacunae, as well as their composition in the femoral cortical bone. Two different types of lacunae were observed: lacunae that appear black and those that are filled with a bright contrast. The black lacunae most likely signify the presence of a living osteocyte, while the filled or partially filled lacunae mostly observed in interstitial bone regions.

![Fig. 2. Bone mineral density distribution as revealed by quantitative backscattered-electron imaging of the femoral cortical bone. (A) Representative backscattered electron images from young, aged, untreated osteoporosis (OP) and bisphosphonate-treated (BP) women (Scale bar 200 μm). (B) Schematic representation of the quantitative parameters obtained by the qBEI method. (C) Inter-group differences in mean Ca content, (D) peak Ca content, (E) homogeneity of mineralization distribution, i.e. Ca width, (F) low Ca and (G) high Ca values. (*) p < 0.05. Error bars indicate SD.](image-url)
(Fig. 1A) contain calcium phosphate deposits. Overall, the total lacunar number per bone area was not significantly different between the study groups (Fig. 1B). However, trends in the number of mineralized lacunae were apparent with the young cortex having the lowest number of hypermineralized lacunae per bone area and the osteoporotic cortex containing a significantly higher occurrence of micropetrotic occlusions in comparison to young, healthy aged and bisphosphonate-treated osteoporotic cases (Fig. 1A, C).

3.2. Bone matrix mineralization in the femoral cortex via qBEI and FTIR

Quantitative backscattered electron imaging was also used to evaluate the bone mineral density distribution in the study groups (Fig. 2A–G). QBEI imaging of the femoral cortical bone revealed significant inter-group differences in Ca mean and Ca peak (p < 0.001) (Fig. 2C,D). Post-hoc tests showed that bisphosphonate-treated cases had a significantly lower mineral density distribution as measured through the Ca mean and Ca peak than the young and aged cases, while the young cases had a higher mineral density distribution than osteoporotic cases. Similarly, Ca low was significantly dependent on the group with the bisphosphonate-treated individuals showing significantly higher Ca low values than the young and aged individuals (Fig. 2F). Ca high was significantly lower in osteoporosis and bisphosphonate-treated cortices than in the young group (Fig. 2G). Thus, high spatial resolution qBEI measurements indicate an overall trend towards a higher femoral mineral density distribution in young cases and a lower mineral density distribution in osteoporosis and bisphosphonate-treated cases.

The FTIR results (Fig. 3A, B) support the qBEI data, where the mineral-to-matrix ratio correlated with the qBEI-derived Ca mean (r = 0.585, p = 0.001) and Ca peak values (r = 0.492, p = 0.008). ANOVA showed significant inter-group differences in the mineral-to-matrix ratio (Fig. 3A), with the highest values observed in young femoral cortices and the lowest in bisphosphonate-treated cases. Post-hoc tests revealed that the young cortices showed a significantly higher mineral-to-matrix ratio than the osteoporosis and bisphosphonate-treated groups. Although not significant, the carbonate-to-phosphate ratio (Fig. 3B) showed a trend of lower values in osteoporosis and bisphosphonate-treated cases and correlated positively with Ca mean (r = 0.493, p = 0.008) and Ca peak (r = 0.479, p = 0.01), as well as with mineral-to-matrix ratio (r = 0.486, p = 0.009).

3.3. Inter-site differences in the degree of mineralization

In addition to the femoral diaphysis, we have analyzed the qBEI parameters in distal radius, iliac crest and lumbar vertebra between the treatment-naive osteoporosis and bisphosphonate-treated groups (Table 1). Different skeletal sites significantly differed in mean calcium content and peak calcium content (p < 0.001) (Table 1). We found no significant differences between osteoporosis and bisphosphonate groups; however, mineralization of long bones seemed to have different tendencies following bisphosphonate-treatment when compared to spine and iliac crest (Table 1). There were significant differences in Ca width among various skeletal sites and bony compartments (p < 0.001), and the osteoporosis group showed significantly more heterogeneous mineralization distribution compared to bisphosphonate group (p = 0.008) (Table 1).
3.6. Relationship between matrix composition and indentation properties

The first cycle indentation distance (ID 1) and total indentation distance (TID) inversely correlated with the Ca mean value measured through qBEI on the femoral cortex (r = −0.385, p = 0.039; r = −0.399, p = 0.032; respectively). Additionally, the first cycle indentation distance (ID 1), total indentation distance (TID) and indentation distance increase (IDI) negatively correlated with the mineral-to-matrix ratio measured through FTIR (r = −0.537, p = 0.003; r = −0.582, p = 0.001; r = −0.481, p = 0.01; respectively).

3.7. Compartment-specific dependence of structure and mineralization indices

The obtained data on the bone structure and the mineralization shows that periosteal and endosteal cortical bone compartments differ from each other. The statistical evaluation of compartment-specificity can be found as Supplementary data.

4. Discussion

Osteoporosis is the most common bone disease in the world associated with bone loss, fractures and decreased quality of life [50]; a common treatment option is a class of drugs called bisphosphonates that act predominantly by suppressing bone resorption [26,51]. However, the effects of long-term bisphosphonate treatment on bone quality and the specific consequences for human cortical bone are understudied. Moreover, the characteristics of bone material immanent to several biological or medical conditions (i.e.; aging, disease and pharmacological treatment) require comprehensive analyses to elucidate variability in the bone structure and composition. Here, on a set of samples from young, aged, treatment-naïve osteoporotic and bisphosphonate-treated bone, we look for trends in cortical bone quality by investigating the microstructural morphology (i.e., number of osteons and presence of total and hypermineralized osteocyte lacunae), the mineralization distribution, and the mechanical properties. Overall our goal was to document bone material variability in various conditions, and specifically to determine whether treatment with bisphosphonates has a beneficial effect on cortical bone.

Alendronate is a bisphosphonate best known for its targeted effect on osteoclast bone cells. During treatment, alendronate accumulates in bone tissue, binds to hydroxyapatite and is ingested by osteoclasts [52,53]. In this way, alendronate reduces resorption of bone with initially limited effects on the deposition of bone (i.e., osteoblast activity) [54]. In trabecular bone, bisphosphonates are particularly potent [53,55,56] because the large surface-area-to-volume ratio and higher metabolic activity influence their distribution through bone compartments [53].

The effect of bisphosphonates on cortical bone has been studied much less [51,60]. In cortical bone, the surface-to-volume ratio is about five times lower than in cancellous bone [61], which may reduce the bisphosphonates’ influence on cortical osteoclasts. Yet, here, we see significant changes in the microstructural morphology of the cortex between the young, aged, untreated osteoporotic, and bisphosphonate-treated osteoporotic individuals. One feature that stands out is the differential occurrence of mineralized lacunae (micropetrosis). While the exact mechanism of lacunar mineralization is not yet clear, it is known that osteocytes die with aging.

Table 1

<table>
<thead>
<tr>
<th>Site</th>
<th>Group</th>
<th>Mean</th>
<th>SE</th>
<th>Inter-site</th>
<th>Mean</th>
<th>SE</th>
<th>Inter-site</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertebral</td>
<td>OPO</td>
<td>22.284</td>
<td>0.493</td>
<td>b</td>
<td>22.933</td>
<td>0.455</td>
<td>b</td>
</tr>
<tr>
<td>Trabeculae</td>
<td>BP</td>
<td>23.007</td>
<td>0.441</td>
<td>a</td>
<td>23.520</td>
<td>0.394</td>
<td>a</td>
</tr>
<tr>
<td>Femur</td>
<td>OPO</td>
<td>23.963</td>
<td>0.237</td>
<td>c</td>
<td>24.533</td>
<td>0.259</td>
<td>c</td>
</tr>
<tr>
<td>cortex</td>
<td>BP</td>
<td>23.703</td>
<td>0.195</td>
<td>a</td>
<td>24.160</td>
<td>0.225</td>
<td>a</td>
</tr>
<tr>
<td>Iliac crest</td>
<td>OPO</td>
<td>22.583</td>
<td>0.313</td>
<td>b</td>
<td>23.067</td>
<td>0.316</td>
<td>b</td>
</tr>
<tr>
<td>Iliac crest</td>
<td>BP</td>
<td>22.839</td>
<td>0.271</td>
<td>b</td>
<td>23.300</td>
<td>0.274</td>
<td>b</td>
</tr>
<tr>
<td>Trabeculae</td>
<td>OPO</td>
<td>23.244</td>
<td>0.333</td>
<td>c</td>
<td>23.893</td>
<td>0.330</td>
<td>c</td>
</tr>
<tr>
<td>Trabeculae</td>
<td>BP</td>
<td>24.060</td>
<td>0.289</td>
<td>a,c</td>
<td>24.520</td>
<td>0.286</td>
<td>a,c</td>
</tr>
<tr>
<td>Radius</td>
<td>OPO</td>
<td>24.838</td>
<td>0.449</td>
<td>a,c</td>
<td>25.600</td>
<td>0.475</td>
<td>a,c</td>
</tr>
<tr>
<td>Cortex</td>
<td>BP</td>
<td>24.495</td>
<td>0.389</td>
<td>a,c</td>
<td>25.100</td>
<td>0.411</td>
<td>a,c</td>
</tr>
<tr>
<td>Radius</td>
<td>OPO</td>
<td>25.829</td>
<td>0.506</td>
<td>a,b,c</td>
<td>26.321</td>
<td>0.481</td>
<td>a,b,c</td>
</tr>
<tr>
<td>Trabeculae</td>
<td>BP</td>
<td>24.659</td>
<td>0.438</td>
<td>a,b,c</td>
<td>25.363</td>
<td>0.416</td>
<td>a,b,c</td>
</tr>
</tbody>
</table>

- a – Significantly different from vertebral trabeculae.
- b – Significantly different from femoral cortex.
- c – Significantly different from iliac cortex.
- d – Significantly different from iliac trabeculae.
and mineralized lacunae appear mostly in aged tissue. However, not only do the aged cases have a higher number of mineralized lacunae than young cases, but our findings show that osteoporosis is associated with even more frequent mineralized lacunar occlusions. Nevertheless, after long-term alendronate treatment, the amount of mineralized lacunae significantly drops. The lower amount of mineralized lacunae in bisphosphonate-treated osteoporotic cases supports recent studies that have found bisphosphonates to have a beneficial effect on osteocytes’ and osteoblasts’ viability. In particular, due to the lower surface-to-volume ratio in cortical bone, bisphosphonates cannot have as large of an impact on remodeling by controlling osteoclastic resorption as they do in trabecular bone. However, (depending on their affinity) at the low concentrations found in cortical bone bisphosphonates have been shown to increase the vitality of osteoblasts and osteocytes. Thus, our findings indicate that exposure to low levels of alendronate in cortical bone may keep osteocytes alive by preventing cell death and the subsequent formation of mineralized lacunae.

The beneficial effects of bisphosphonates on osteocytes in cortical bone are also supported by our observations of the osteon density. In comparison to young cases, an increase in the amount of osteons was found in the femoral cortex of the aged and osteoporotic groups, which is consistent with previous studies. The higher number of osteons in aged and osteoporotic cases most likely occurs due to imbalances in bone turnover causing higher amounts of bone resorption. Indeed, in aged and osteoporotic cases, previous studies have found smaller osteon diameters indicating altered osteoclast resorption and smaller wall thicknesses indicating altered osteoblastic deposition of mineralized bone. Contrary to findings in ribs of adult beagle dogs, after bisphosphonate treatment, we have observed a decrease in number of osteons and increase in their size in the femoral cortex, which may be perceived as “restoration” to osteon characteristics in young individuals. Interestingly, the reduced number of osteons in bisphosphonate-treated cortical bone is most likely not a pure result of the bisphosphonates’ ability to regulate osteoclastic resorption as in trabecular bone, because the cortex’s low surface-to-volume ratio leads to lower concentrations of bisphosphonates within complete cortex. In fact, the size and number of osteons might be rebalanced in the cortex after bisphosphonate treatment due to persistent presence of osteoclasts that may stabilize bone turnover on a lower level without complete uncoupling of bone

![Image of Reference Point Indentation](https://example.com/fig4.png)

Fig. 4. Reference Point Indentation of the femoral cortical bone. The analyses refer to specimens from young, aged, untreated osteoporosis (OP) and bisphosphonate-treated (BP) women. (A) Representative backscattered electron images showing the indents made by RPI (Scale bar 20 μm). (B) Inter-group differences in first cycle indentation distance (ID 1), (C) total indentation distance (TID), (D) indentation distance increase (IDI), and (E) average dissipated energy (ED) (p < 0.05). Error bars indicate SD. Note that white columns show osteonal whereas black columns represent interstitial bone properties. (ID 1 and TID are significantly higher in osteonal than interstitial cortical bone, p < 0.05 - ANOVA for repeated measurements).
remodeling cells [56] and due to the beneficial effects of the low levels of bisphosphonates on the osteocytes and osteoblasts. Indeed, we have shown that after bisphosphonate treatment there are fewer mineralized lacunae. The mineralization of lacunae has implications for bone matrix quality because partial or full occlusion of the lacunae would decrease the cell's ability to sense and transduce normal skeletal loading through fluid flow and consequently hamper bone's adaptive response [20,68]. Clearly, if the vitality of the osteocytes is stimulated [31,33] and the communication between cells is maintained [2], remodeling will progress much more effectively than after widespread microtropitis, i.e., cell death and mineralization of lacunae. Therefore, the beneficial effects of low levels of bisphosphonates on the osteocytes in cortical bone appear to preserve the osteocytes' vitality, maintain communication between cells, prevent the accumulation of mineralized lacunae, and foster normal remodeling to produce a size and number of osteons similar to young bone. As osteocytes are major orchestrators of bone remodeling and as such contribute to tissue age and matrix quality, their impact on human bone should be discussed as an important aspect when designing the next generation of bio-inspired, bio-active materials for bone replacement. Specifically, the absence or damage to the osteocyte-lacunar system in bone grafts may be a major contributor to the adverse effects on bone remodeling [69,70], failures and reduced biomechanical properties during the application of graft material.

In terms of the mineralization of the femoral cortical compartment, we observed a steadily decreasing degree of mineralization from young to treatment-naïve and bisphosphonate-treated cases. The lower bone mineralization in osteoporotic tissue compared to healthy age-matched controls supports some previous qBEI results [71] and may be due to the changed bone remodeling activity, which would create more undermineralized bone packets with a lower mineral content in cortical bone. However, caution is necessary as the reports on increased mineralization levels in fragility fracture patients are frequent and the complex trends may depend on the skeletal site, compartment or population [39,47,72]. Here the observed trend in mineralization of the cortical bone does vary from some trends previously published for trabecular regions and/or other skeletal sites; however, inter-site and bone compartment differences in the mineralization pattern seem to be a characteristic feature in the human skeleton which may be even enhanced by bisphosphonate treatment. Even in normal conditions, subtrochanteric and iliac bone differ in terms of mineralization level [73]. We found that after bisphosphonate treatment only the vertebral and iliac crest trabecular bone showed a tendency towards an increased bone mineralization distribution, which supports previous studies [51,60,74–77]. Conversely, in the femur and radius, the bisphosphonate treatment was even associated with a tendency to lower mineralization distribution, which is in line with previously observed inter-site differences in densitometric and histomorphometric properties [78–80]. As the femur, radius, vertebrae and iliac crest are subject to differential remodeling rates [81,82], it is possible that the effect of the bisphosphonates may depend on the pre-treatment remodeling rates, perfusion and metabolism in these skeletal sites [53,78,83] as well as different structure and load patterns [84]. Moreover, our results showed that trabecular bone sites show more differences in mineralization between untreated and bisphosphonate-treated osteoporotic cases than the cortical sites (Table 1), which is compatible with previous hypotheses about different dose–response behaviors of cancellous vs. cortical compartments, due to higher bisphosphonates incorporation in trabeculae [78]. Moreover, the degree of alendronate's affinity for bone matrix and its depth of penetration would influence differential distribution between the compartments [53].

In regard to mechanical properties, it is, however, likely that both too low and too high mineralization patterns may render bone fragile [39,47,71] by reducing strength or work-to-fracture, respectively, as shown on vertebral bone [85]. Here, our reference point indentation measurements showed that the indentation distances of the aged, untreated osteoporotic and bisphosphonate-treated osteoporotic cases were all higher than of the young bone. The indentation distances correlated inversely with the mineralization level, supporting the previous observations that the resistance to indentation (i.e., hardness) of a material depends on its mineral content [49,86,87]. However, the osteon distribution could be another indicator of fracture toughness. Higher densities of osteons generally have lower toughness, whereas lower densities have higher toughness. The low density cases have a single crack deflection, whereas the high density has many small deflections, which ends up looking like a large, straight crack [88,89].

5. Conclusions

Here, we investigate changes in bone quality in cortical bone from the femoral diaphysis and show that multiple structural and compositional changes of bone material reflect differential biological/mechanical characteristics in aging, osteoporosis and alendronate-treatment states. In particular, bisphosphonates have a strong effect on this cortical site even though many of the trends are contradictory to the known effects of bisphosphonates on trabecular bone. An important aspect of bisphosphonate-treatment in cortical bone is the renewed quality of the osteocytes (i.e., fewer mineralized osteocyte lacunae) and perhaps the ability to restore normal bone remodeling (i.e., fewer and larger osteons). Our specific conclusions are the following:

1. Significantly higher amounts of mineralized osteocyte lacunae were found in the femoral cortex with aging and osteoporosis, which is attributed to increased osteocyte apoptosis.
2. Bisphosphonates may improve the vitality of cortical bone osteocytes, resulting in less cellular apoptosis as observed through the lower amount of mineralized lacunae, which has an important effect on bone mechanical integrity.
3. Additionally, the improved vitality of the osteocytes and osteoblasts in the femoral cortex due to bisphosphonate treatment as well as the lower amount of mineralized lacunae creates an environment that promotes cellular communication and normal remodeling conditions. Thus, the amount of osteons and their size in bisphosphonate-treated cases may be more characteristic of young bone.
4. The mineral distribution in the femoral osteoporotic cortical bone was lower in comparison to young cases, which may reflect increased surface area undergoing remodeling and insufficient secondary mineralization associated with osteoporosis.
5. The indentation distances measured via reference point indentation on the femoral cortices indicate that the young cases have the highest resistance to deformation. These results follow the overall trends in the degree of mineralization measured via quantitative backscattered electron imaging and FTIR.
6. Bisphosphonates clearly have varying effects on different skeletal sites, which may be partly the result of the surface-to-volume ratio of the tissue. Here, quantitative backscattered electron imaging of the bone mineral density distribution indicates that trabecular regions, specifically in the iliac crest and lumbar vertebra, tend to have a higher mineralization after bisphosphonate treatment, while the primarily cortical regions, specifically the distal radius and femoral diaphysis, have slightly decreased mineralization level.
Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.biomaterials.2014.12.015.

References

