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Indentation
Anti-resorptive and anabolic agents are often prescribed for the treatment of osteoporosis continuously or
sequentially for many years. However their impact on cortical bone quality and bone strength is not clear.
Methods: Six-month old female rats were either sham operated or ovariectomized (OVX). OVX rats were left
untreated for two months and then were treated with vehicle (Veh), hPTH (1–34) (PTH), alendronate (Aln),
or raloxifene (Ral) sequentially for three month intervals, for a total of three periods. Mid-tibial cortical bone
architecture, mass, mineralization, and strengthweremeasured on necropsy samples obtained after each period.
Bone indentation properties were measured on proximal femur necropsy samples.
Results: Eight or more months of estrogen deficiency in rats resulted in decreased cortical bone area and thick-
ness. Treatment with PTH for 3 months caused the deposition of endocortical lamellar bone that increased cor-
tical bone area, thickness, and strength. These improvements were lost when PTH was withdrawn without
followup treatment, but were maintained for themaximum times tested, six months with Ral and threemonths
with Aln. Pre-treatment with anti-resorptives was also somewhat successful in ultimately preserving the addi-
tional endocortical lamellar bone formed under PTH treatment. These treatments did not affect bone indentation
properties.
Summary: Sequential therapy that involved both PTH and anti-resorptive agents was required to achieve lasting
improvements in cortical area, thickness, and strength in OVX rats. Anti-resorptive therapy, either prior to or
following PTH, was required to preserve gains attributable to an anabolic agent.
Aln, alendronate (Sigma, Cat#
; DBM, degree of bone mineral-
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SA).
(NIH) Grant #s R01 AR043052
orted by the National Center
hrough Grant #UL1 TR000002.
stitutes of Health (NIH/NIDCR)
ational Laboratory (LBNL).
Medicine and Rheumatology,
enue, Suite 1002, Sacramento,
© 2014 Elsevier Inc. All rights reserved.
Introduction

Musculoskeletal diseases including osteoporosis are the second
greatest cause of disability worldwide. Their overall impact on death
and disability has increased 45% over the past 20 years [1,2]. Treatments
for osteoporosis now focus on two major medication classes, anti-
resorptive and anabolic agents. All the approved anti-resorptive agents
for the treatment of osteoporosis, that include selective estrogen recep-
tor modulators (SERMs), an inhibitor of RANKL, and bisphosphonates,
preserve bone mass and strength by suppressing bone turnover. Most
preclinical studies with these bone active agents only evaluate their
effects on trabecular bone [3–5,75]. All preserve trabecular bone mass,
microarchitecture and bone strength. Numerous clinical trials have dem-
onstrated that these agents reduce the risk of vertebral fractures in
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women with established osteoporosis [6–14]. Alendronate, denosumab,
and zoledronic acid also reduce incident hip fracture risk [15,16].
PTH (1–34), the sole approved anabolic agent, stimulates bone formation,
increases bone mass and bone strength, and improves trabecular
microarchitecture in preclinical studies [17–19]. It also decreases the
risk of both vertebral and non-vertebral fragility fractures in osteoporotic
humans [20–23].

The effects of anti-resorptive agents and PTH (1–34) on trabecular
bone in animal models and osteoporotic patients are well-known [24].
One short duration study in intact rats not only reported that PTH had
greater effects on cancellous bone than cortical bone, but also suggested
that itmight bemore efficacious in intact rats than in ratswith low bone
mass [25]. This intriguing finding deserves longer-term followup.
Preclinical data suggest that PTHmay either decrease or increase the de-
gree of bonemineralization (DBM) of cortical bone [22,26]. Results from
clinical study samples found that PTH decreases DBM [27]. Similarly,
raloxifene, a selective estrogen receptor modulator, reduces vertebral
fracture risk in postmenopausal osteoporotic women despite verymod-
est bone turnover suppression and gain in lumbar spine bone mineral
density (BMD) [6,28]. On the other hand, bisphosphonates decrease
fracture risk, increase BMD, reduce activation frequency, increase DBM
[29–36], and may be associated with improved bone balance at the
BMU level [37].

Cortical bone is important because it representsmore than 80% of the
bone mineral in the human body. It is also difficult to study, because
either 3D imaging or histologic techniques must be employed to sepa-
rate it from the trabecular bone that it surrounds.Moreover, both clinical
and pre-clinical data suggest that osteoporosis treatment medications
influence cortical bone. Bisphosphonates reduce endocortical bone
formation [38,39], Haversian remodeling [39,40] and cortical porosity
[35,41–46]; mildly increase cortical thickness [47,48] and increase corti-
cal area [49]; improve cortical bone strength [47]; and have no effect on
periosteal bone formation [50]. Bisphosphonates also reduce incident
fractures in the proximal femur, a region composed primarily of cortical
bone [16,29–36,38]. They may reduce cortical bone fracture risk by
changing bone material properties independently of BMD or bone
micro- or macroarchitecture [6,31,35,51–54]. Previously we reported
that bisphosphonates increase DBM and reduce the heterogeneity of
the trabecular bone matrix [54,55]. However, it is not known if the
increase in DBM with bisphosphonates is associated with improved
cortical bone strength. On the other hand, PTH increases endocortical
bone formation [56–61] and cortical porosity [57,58,62,63]; increases
cortical area and thickness [19,56,58,61,64–67]; decreases cortical
bone strength [62]; increases the rate of Haversian remodeling [58,60,
62,65]; and stimulates periosteal bone formation [55,58,59]. The oppo-
site effects of bisphosphonates and PTH on cortical bone endpoints
such as cortical porosity and endocortical bone formation rate suggest
that combining them in strategic sequences could produce better thera-
peutic results than can be achieved by any monotherapy.

Osteoporosis patients now routinely cycle through bone active
medications [68–72]. It is extremely difficult to do direct studies of frac-
ture risk associatedwith such sequential treatments in humans, because
of the large sample sizes required. Pre-clinical data addressing how
these sequential osteoporosis therapies affect cortical bone strength
and its surrogate measures could be very helpful. The goal of this
study is to determine the effects of sequential treatmentswith currently
approved osteoporosis medications that act through complementary
tissue level mechanisms of action, on cortical bone strength and its
surrogate measures. We evaluated cortical bone strength, architecture,
indentation properties, and estimated strength, in adult ovariectomized
(OVX) rats with low bone mass, given various sequences of anti-
resorptive and anabolic therapy that have already been or could
be applied clinically. We hypothesized that sequential treatment by
traditional osteoporosis therapies with complementary tissue level
mechanisms of action would improve cortical bone strength in OVX
rats.
Methods

Animals and experimental procedures

Six-month-old virgin female Sprague–Dawley rats were purchased
fromHarlan Laboratories (Livermore, CA, USA). They were either ovari-
ectomized (OVX) or sham-OVXd at the vendor and shipped to our lab-
oratory two weeks post-surgery. They were individually-housed and
maintained on rodent chow (Rodent Diet, Cat# 2918, Teklad; Madison,
WI, USA) at 21 °C with a 12-hour light/dark cycle. Pair-feeding of OVX
to Sham rats was initiated immediately upon arrival. A Sham–OVX
(n= 12) and an OVX (n=10) groupwere necropsied at twomonths
post-surgery (Period 0) (Table 1). All remaining OVX rats were
then randomized by body weight into ten groups (Table 1) that repre-
sented currently-applied and potential sequences of anti-osteoporosis
medications.

The groups of OVX rats were treated for three months (Period 1)
with Veh (1 ml/kg/dose, 3×/wk by subcutaneous (SC) injection);
PTH (25 μg/kg/dose, 5×/wk SC); Aln (25 μg/kg/dose, 2×/wk SC); or
Ral (5 mg/kg/dose 3×/wk by oral gavage (Table 1)). No Ral vehicle
oral dosingwas done. The PTH dosewas based on previous publications
[25,73,74]; the justification for doses of all drugs is discussed in more
detail elsewhere [75]. Each rat was given dual fluorochrome labeling
before necropsy by subcutaneous injection. The sequence was calcein
(10 mg/kg) on Day 14 followed by alizarin red (20 mg/kg) on Day 4
before necropsy. The study protocol was approved by the University
of California Davis Institutional Animal Care and Use Committee.

After 90 days (Period 1), 6–12 animalswere randomly-selected from
each group and necropsied (Table 1), while the remaining animals were
switched to their Period 2 treatment regimen. After 180 days (Period 2),
another 10–12 animals from each group were necropsied (Table 1),
while the remaining animals were switched to their Period 3 treatment
regimen. After 270 days (Period 3), all remaining rats were necropsied
(n = 7–15/group) (Table 1). During the study, nine rats, randomly-
disbursed over the ten groups, died, leaving 383 that reached necropsy
as scheduled.

At necropsy, the rats were euthanized by CO2 inhalation. The uterus
was inspected visually to confirm OVX efficacy. Uteri with markedly
shrunken horns, including decreased vascularity, yellow/beige color,
and reduced diameter and length, were a sign of successful OVX. Both
tibiae and femurs and lumbar vertebrae (LV) 5–6 were excised and
cleaned. LV5 and LV6 were separated from one another. The right
femur, right tibia, and LV5 were placed in 10% formalin for 24 h, then
transferred to 70% ethanol for longer-term storage. LV6, the left femur,
and the left tibia were wrapped in saline-soaked gauze and frozen at
−20 °C until analysis. The data from LV5 and LV6 are reported else-
where [75].

Biomechanical testing (left tibia)

Testingwas performed after 5 mmof the end of each bone had been
removed with a low speed sawwith a wafering blade 60-20090 (Allied
High Tech Products, Rancho Dominguez, CA), to decrease the possibility
of buckling during the testing. The tibial test specimens were soaked in
37 °C HBSS (Hanks' Balanced Salt Solution; Sigma) for 12 h prior to test-
ing. Each specimen was subjected to a three-point bending test, with a
major loading span of 14.5mm; the bonewas loaded such that the pos-
terior surface was under tension and the anterior surface was under
compression, using an EnduraTEC Electro Force 3200 Testing System
(Bose Corp., Eden Prairie, MN). Each tibia was loaded to failure at a dis-
placement rate of 0.01 mm/s, and the load and displacementmeasured,
the former using a calibrated 225 N load cell. After testing, a two-point
average of the diameter and a six-point average of the cortical shell
thickness were measured at the fracture site of each tibia using digital
calipers with a 0.01 mm readout. The peak load (N) was recorded
from the maximum load in each test. The corresponding yield and



Table 1
Experimental groups.

Treatment group Period 0
(Days [−60]–0)

Period 1
(Days 1–90)

Period 2
(Days 91–180)

Period 3
(Days 181–270)

Sham No treatment (12) No treatment (12) No treatment (12) No treatment (7)
OVX

Veh–Veh–Veh No treatment (10) Vehicle (10) Vehicle (10) Vehicle (10)
Aln–Aln–Aln Alendronate (12) Alendronate (12) Alendronate (12)
Ral–Ral–Ral Raloxifene (11) Raloxifene (11) Raloxifene (12)
Aln–Veh–Aln Alendronate (12) Vehicle (12) Alendronate (15)
PTH–Veh–Veh hPTH (1–34) (12) Vehicle (11) Vehicle (12)
PTH–Aln–Veh hPTH (1–34) (12) Alendronate (12) Vehicle (11)
PTH–Ral–Ral hPTH (1–34) (6) Raloxifene (12) Raloxifene (12)
Aln–PTH–Veh Alendronate (12) hPTH (1–34) (12) Vehicle (12)
Aln–PTH–Aln Alendronate (11) hPTH (1–34) (12) Alendronate (10)
Ral–PTH–Ral – hPTH (1–34) (11) Raloxifene (11)

Day −60 = day of ovariectomy (OVX). Day 1 = first day of dosing. Period 0 (Day −60 to Day 0) allowed establishment of mild-moderate estrogen-deficiency-related low bone mass.
The number of rats necropsied at the end of each period from each group is shown (#). Since Ral treatment during Period 1 was common to the Ral–Ral–Ral and Ral–PTH–Ral groups, no
Ral–PTH–Ral rats were necropsied at the end of Period 1.
The treatment regimenswere: Vehicle (Veh) subcutaneously (SC) at 1 ml/kg/dose 3×/wk; parathyroid hormone [hPTH (1–34)] (PTH) SC@ 25 μg/kg/dose 5×/wk; alendronate (Aln) SC@
25 μg/kg/dose 2×/wk; and Raloxifene (Ral) by oral gavage @ 5 mg/kg/dose 3×/wk. No group was orally gavaged to match the Ral groups.

259S.K. Amugongo et al. / Bone 67 (2014) 257–268
ultimate strengths of the central tibiae (σ) were calculated, in units of
Pa, from the standard equation for a beam in three-point bending:

σ ¼ PLy
4I

where respectively, P is the load at yielding (i.e., at the onset of inelastic
deformation) or the maximum load reached during the bending test;
L is the major span between the loading support pins; y is the distance
from the center of mass; and I is the moment of inertia of the cross-
section. In addition, toughness (work to failure) was calculated from
the load–displacement curve as the work to fracture (energy absorp-
tion), and Wf, defined (in units of kJ/m2) as the area under the
load–displacement curve divided by twice the projected area of the
fracture surface [76–78]. All tests were done blinded.

Bone histomorphometric measurements

Bone histomorphometric measures were obtained from the right
tibial shaft. Nomenclature was applied according to established stan-
dards [79]. A 5 mm long specimen that began 1 mm distal to the tibi-
al–fibular junction (TFJ) and extended 4 mm proximal to the TFJ was
prepared from each right tibia with an Isomet Saw 1000 (Buehler;
Lake Bluff, IL). Each 5 mm specimen was dehydrated and embedded
undecalcified in methylmethacrylate and then cross-sectioned using a
SP1600 microtome (Leica; Buffalo Grove, IL) into 40 μm sections. The
section located 2mmproximal to the TFJwas analyzedwith fluorescent
microscopy using image analysis software (Bioquant Image Analysis
Corporation; Nashville, TN) for single- and double-labeled perimeters
(sL.Pm and dL.Pm) and bone perimeter (B.Pm) at the endocortical sur-
face. Mineralizing surface (Md.Pm/B.Pm) was calculated as (dL.Pm +
(sL.Pm / 2)) / B.Pm. Cortical area (Ct.Ar) and the area of lamellar bone
applied to the endocortical surface (Ec.Lm.B.Ar) were measured using
Osteomeasure (v2, Atlanta, GA, USA). Ec.Lm.B.Ar was expressed both
as an absolute value and as a percentage of Ct.Ar. A qualitative evalua-
tion of the periosteal surface for labeling was carried out at the same
time.

Cortical bone architecture and degree of mineralization (DBM)

Ex vivo microCT scans were obtained from the central right femur.
The scan region began 3 mm proximal to the mid-point of the bone
and ended 3 mm distal to its mid-point. The region was scanned at 70
kVp and 85 μA, with a voxel size of 10.5 μm in all three spatial dimen-
sions. 95 consecutive slices at the mid-point were used to evaluate
total area (Tt.Ar), cortical area (Ct.Ar), marrow area (Ma.Ar), cortical
thickness (Ct.Th), and DBM [22,55].

Surface reference point indentation

Surface reference point indentationmeasurementsweremade ex vivo
on blind-coded, randomizedwhole right femurs, using established proto-
cols [80–84]modified as noted below. The bonewas soaked in normal sa-
line at room temperature for at least 30 min. A 2 mm wide sampling
region located 9–18mmdistal to the proximal-most aspect of the greater
trochanter and centered on the anterior periosteal surface of the femur,
was selected. The periosteum was gently removed with a scalpel. The
femur was next oriented anterior surface up, with the center rod of the
Ex-Vivo Bone Stage (Biodent™; Active Life Science, Inc.; Santa Barbara,
CA), perpendicular to the long axis of the bone. The first test site was
10 mm distal to the proximal-most aspect of the greater trochanter. At
each test site, the probe tip was first lowered until it rested on the bone
surface. Then, ten load-controlled indents were applied with a 5 N
force. Data as listed below were recorded from each site. Several drops
of normal saline were applied to the sampling region every 5min during
testing. Up to seven additional test sites located 1mm apart and 1–7mm
distal to the first site were interrogated as necessary, to achieve five suc-
cessful measured sites. Only sites in which all ten measurements
displayed a touchdown distance of 70–90 μm, and an indentation force
of 4.9–5.1 N were accepted. The number of rejected test sites per bone
ranged from zero to three. The endpoints measured at successful sites
were first cycle indentation distance (IDI) (μm) and AED (average energy
dissipation (J)) [80–84]. Both IDI and AEDwere the average of the values
measured at the five separate successful measurement sites.

Finite element modeling (LV5)

We used a μCT-based finite-element model (FEM) to estimate both
the maximum load of the whole LV5 and the separate maximum loads
of both the cortical shell and the trabecular core. The model simulated
uniaxial vertebral compression loading with the cranial and caudal
ends fixed between two loading planes. Cortical and trabecular bone
regions were segmented by manually tracing the endocortical surface
of the cortex for every 15 slices from each scan of 2.2 mm obtained
from the central vertebral body, where trabecular bone mass and
architectural parameters were evaluated [75]. 3D μCT images of LV5
(10.5 μm voxel resolution) were incorporated into the model [85]. All
3D image voxels were converted to elements. Each FEM mesh had
~9–18million elements. Each element segmented as bonewas assigned
a Young's modulus of 18 GPa and a Poisson ratio of 0.3 [86]. Details of
the numerical method have been published [87,88]. The boundary
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conditions that defined the load platen–specimen interface were as-
sumed to be frictionless. Total strength and the load-carrying capacity
of the vertebral trabecular bone were calculated from finite-element
analyses, as previously [54,72,89].

Statistics

Primary analysis for key measures of bone strength, bone histomor-
phometry, bone architecture andmineralization, referencepoint indenta-
tion, and LV5 finite element analysis assessed differences among groups
after the full course of treatment (Period 3). Values more than 2.5 stan-
dard deviations away from themean of each groupwere removed as out-
liers. Analysis of variance (ANOVA) was performed separately for each
endpoint. If the global test for a difference among groups was significant
(P b 0.001, more strict due to multiple comparisons), post-hoc pairwise
comparisons were made between the Veh–Veh–Veh and the nine treat-
ment groups (all pairwise comparisons including between treatment
groups) using Tukey's Honestly Significant Difference approach tomulti-
ple comparison adjustment. A separate comparison was made between
Sham and Veh–Veh–Veh. Only differences that remained significant
after themultiple comparison adjustment are reported. Secondary analy-
ses used the same approach on the Period 0 (comparing Sham and OVX),
Period 1, and Period 2 values, separately at each time point for these
endpoints.

Predictors of maximum load for all central tibiae from all time pe-
riods were studied by multiple regression analysis of cortical thickness,
cortical area, and degree of mineralization. Bone strength estimated by
FEA was correlated to whole bone strength measured in LV6 by linear
regression [75].

For a subset of five key endpoints, a trajectory analysis was per-
formed using linear regression models and all data from all groups and
periods. This analysis assumed that the values in the Sham rats did not
change over time (which was checked and supported by the data),
but that OVX rats may experience change over time. The models then
assessed three key questions: 1) does active treatment modify the tra-
jectory anddoes it vary by treatment type; 2) does switching fromanac-
tive treatment to vehicle contribute to themeasurements and does that
differ by active treatment; and 3) is there a “salvage” effect by switching
from vehicle back to active treatment. The model further assumed that
the order of the therapy did not matter, so that the average measure-
ment at a given time point was a cumulative impact of the therapeutic
experience up to that time. Variables for each group and each period
where then constructed to reflect time on a specific active treatment,
time on vehicle after being on a specific active treatment, and time
back on treatment after being on vehicle. For example, at Period 2, ani-
mals in the PTH–Aln–Veh group would have a contribution of PTH for
threemonths and a contribution of Aln for threemonths, while at Period
3, rats in that group would have a contribution of PTH for three months,
Aln for three months, and switching from Aln to vehicle and therefore
being off Aln for three months. Results describe the average impact of
being on a particular treatment, switching from a specific treatment to
no treatment, or switching from no treatment to a treatment. In the tra-
jectory analyses, a P-value b 0.05was considered statistically significant.

All analyses were performed using SAS v9.2 (Cary, NC, USA).

Results

At necropsy, all rats that underwent OVX surgery displayed uterine
atrophy, indicating successful OVX. Similarly, no uteri of Sham-OVX
rats showed signs of atrophy.

Bone strength

Period 3
Central tibia maximum load (Table 2) was affected by neither estro-

gen status, nor traditional osteoporosismonotherapy, as represented by
Aln–Aln–Aln, Ral–Ral–Ral, and PTH–Veh–Veh. Maximum load was sig-
nificantly better in Aln–Veh–Aln than in Veh–Veh–Veh rats. Maximum
load was also significantly better than Veh–Veh–Veh in all groups that
received both PTH and Aln at some time during the experiment
(Table 2). In contrast, maximum stress was affected by neither estrogen
status, nor any applied treatment. Work to failure was not affected by
estrogen status and was significantly different from Veh–Veh–Veh
only in the Aln–Veh–Aln and Ral–PTH–Ral groups.

Other times
At the end of Period 0, no bone strength endpoints were affected by

estrogen status (Supplementary Table 1).
At the end of Period 1, maximum load was lower in Sham than in

Veh–Veh–Veh rats and lower in Ral–Ral–Ral rats than in all other groups
except Aln–Aln–Aln. Neither maximum stress nor work to failure was
affected by estrogen status or any treatment (Supplementary Table 2).

At the end of Period 2, maximum load was not affected by estrogen
deficiency and was significantly higher in Aln–Veh–Aln, PTH–Aln–Veh,
PTH–Ral–Ral, Aln–PTH–Veh, and Aln–PTH–Aln rats than in Veh–Veh–
Veh and Ral–Ral–Ral. Neither maximum stress nor work to failure was
affected by estrogen status or any treatment (Supplementary Table 3).

Predictors of bone strength
Cortical area accounted for the largest percentage of the variability in

central tibia maximum load (R2 = 0.4521, P b .0001). When cortical
thickness was added to the model, it accounted for an additional
3.06% of the variability. Together they accounted for nearly half the var-
iation in bone strength (R2= 0.4827, P b .0001). Degree of boneminer-
alization was not associated with central tibia maximum load.

Bone histomorphometry

Qualitative examination of the periosteal surfaces for fluorochrome
label revealed little label and no trends of any sort.

Period 3
Ec.Md.Pm/B.Pm. was higher in PTH–Veh–Veh than in Aln–Aln–Aln,

PTH–Aln–Veh, PTH–Ral–Ral, and Aln–PTH–Aln. PTH–Ral–Ral was sig-
nificantly lower than Veh–Veh–Veh, while all others displayed no sig-
nificant difference from Veh–Veh–Veh (Table 2).

About 1% of cortical bone was composed of endocortical lamellar
bone in Veh–Veh–Veh rats. Therewas no significant difference between
PTH–Veh–Veh and Veh–Veh–Veh rats. However, all rats treated with
PTH at one time and anti-resorptive therapy at another time, except
for PTH–Ral–Ral, had significantly more endocortical lamellar bone
than either Veh–Veh–Veh or PTH–Veh–Veh (Table 2).

Other times
At the end of Period 0, therewere no significant differences between

Veh–Veh–Veh and Sham rats (Supplementary Table 1).
At the end of Period 1, Ec.Md.Pm/B.Pm. was not affected by estrogen

status and no groups differed from Veh–Veh–Veh. However, Aln–Veh–
Aln rats had significantly lower Ec.Md.Pm/B.Pm. than all groups besides
Aln–Aln–Aln and Ral–Ral–Ral. Aln–Aln–Aln rats were also significantly
lower than PTH–Veh–Veh and Aln–PTH–Aln. About 1% of cortical bone
was composed of endocortical lamellar bone in Veh–Veh–Veh rats.
PTH–Veh–Veh and PTH–Aln–Veh had approximately five times as
much endocortical lamellar bone as Veh–Veh–Veh rats (Supplementary
Table 2).

At the end of Period 2, Ec.Md.Pm/B.Pm. was higher in Veh–Veh–Veh
than in Sham rats. It was lower in Aln–Aln–Aln, PTH–Veh–Veh, PTH–
Aln–Veh rats than in Veh–Veh–Veh rats and higher in Aln–PTH–Aln
rats than in Veh–Veh–Veh rats (Supplementary Table 3).

At the end of Period 2, about 0.6% of cortical bone was composed of
endocortical lamellar bone in Veh–Veh–Veh rats. PTH–Veh–Veh and
PTH–Ral–Ral had the same amount of endocortical lamellar bone as



Table 2
Values at close of Period 3 (Day 270 — end of experiment).

Endpoint Units Sham (s) Veh–Veh–Veh
(o)

Aln–Aln–Aln
(a)

Ral–Ral–Ral
(b)

Aln–Veh–Aln
(c)

PTH–Veh–Veh
(d)

PTH–Aln–Veh
(e)

PTH–Ral–Ral
(f)

Aln–PTH–Veh
(g)

Aln–PTH–Aln
(h)

Ral–PTH–Ral
(i)

Central tibia
Max load N 104.8 ± 23.5 92.3 ± 9.5 104.8 ± 13.0c 102.7 ± 8.2c 119.1 ± 9.1d,f,o 103.4 ± 11.6c 110.4 ± 10.5o 105.9 ± 8.7o 115.0 ± 6.3o 115.6 ± 9.0o 114.8 ± 10.2o

Max stress N/mm2 156.5 ± 36.0 137.7 ± 23.4 147.2 ± 27.3 150.9 ± 16.8 154.4 ± 17.5 140.1 ± 24.0 150.5 ± 34.2 140.4 ± 16.9 153.5 ± 12.0 157.7 ± 23.7 164.6 ± 21.6
Work to failure kJ/mm2 2.13 ± 0.97 1.65 ± 0.35 2.07 ± 0.84 2.35 ± 0.56 2.75 ± 0.53d,f,o 1.82 ± 0.66 2.18 ± 0.62 2.07 ± 0.35 2.42 ± 0.45 2.34 ± 0.51 2.50 ± 0.49o

Ec.Md.Pm/B.Pm % 0.66 ± 0.30 0.67 ± 0.29 0.31 ± 0.16d 0.64 ± 0.30f 0.70 ± 0.26f 0.98 ± 0.42e,f,h 0.29 ± 0.24 0.19 ± 0.14o 0.56 ± 0.37 0.39 ± 0.19 0.51 ± 0.50
Ec.Lm.B.Ar mm2 – 0.024 ± 0.029 – – – 0.034 ± 0.050e,g,h,i 0.146 ± 0.078o 0.095 ± 0.062i 0.161 ± 0.098o 0.194 ± 0.045o 0.206 ± 0.094o

Lamellar (as % of Ct.Ar) % – 1.01 ± 1.19 – – – 0.67 ± 0.77e,g,h,i 4.02 ± 2.01o 2.64 ± 1.63i 4.92 ± 3.05o 5.37 ± 1.10o 5.42 ± 2.39o

Tt.Ar mm2 10.48 ± 0.61 10.48 ± 0.50 11.18 ± 0.80 10.77 ± 0.70 11.31 ± 0.64 10.89 ± 0.66 10.68 ± 0.64 10.54 ± 0.40 10.89 ± 0.73 10.94 ± 0.69 10.87 ± 0.99
Ct.Ar mm2 7.00 ± 0.39o 6.19 ± 0.44 7.72 ± 0.32b,d,o 6.37 ± 0.50c,e,f,g,h,i 7.75 ± 0.49d,o 6.59 ± 0.50e,g,h,i 7.65 ± 0.56o 7.14 ± 0.44h,o 7.59 ± 0.45o 8.03 ± 0.52o 7.75 ± 0.79o

Ma.Ar mm2 3.42 ± 0.47o 3.01 ± 0.38 3.19 ± 0.38b,d,e 4.21 ± 0.36c,f,g,h,i,o 3.52 ± 0.25d,e 4.31 ± 0.44f,g,h,i,o 4.11 ± 0.63f,g,h,i,o 3.44 ± 0.22 3.45 ± 0.49 3.36 ± 0.39 2.93 ± 0.45
Ct.Th mm 0.733 ± 0.048o 0.648 ± 0.057 0.717 ± 0.047 0.705 ± 0.024c 0.779 ± 0.067d,o 0.662 ± 0.067e,f,h,i 0.739 ± 0.042o 0.754 ± 0.048o 0.744 ± 0.026o 0.779 ± 0.032o 0.798 ± 0.048o

DBM 1121 ± 25.7 1122 ± 18.6 1143 ± 16.5b 1116 ± 13.1e,f,g,i 1131 ± 13.8 1128 ± 23.9 1141 ± 15.9 1142 ± 11.0 1139 ± 12.0 1135 ± 18.3 1140 ± 15.2

Proximal femur
IDI 10.29 ± 1.28 10.59 ± 1.99 9.31 ± 2.41 9.43 ± 1.26 8.87 ± 2.37 10.25 ± 3.10 9.88 ± 1.86 9.98 ± 1.51 8.91 ± 1.75 10.56 ± 3.20 10.27 ± 2.38
AED 29.92 ± 4.59 25.96 ± 5.71 24.22 ± 4.42 22.82 ± 4.06 21.30 ± 2.70 21.95 ± 4.32 20.94 ± 2.87 24.98 ± 7.26 25.22 ± 3.86 26.86 ± 7.66 25.23 ± 5.37

Vertebral body
Estimated failure load N 162 ± 24o 99 ± 17 148 ± 14b,d,e,h,o 122 ± 16c,d,e,g,h,i 162 ± 20d,f,h,o 97 ± 12e,f,g,h,i 176 ± 15d,f,o 138 ± 19g,h,o 163 ± 12h,o 202 ± 25i,o 153 ± 19o

%load carried by Ct bone % 47.6 ± 16.1 60.4 ± 9.1 52.6 ± 9.5 45.5 ± 12.9o 54.3 ± 12.6 52.6 ± 12.5 40.8 ± 11.6o 48.4 ± 9.8 51.1 ± 7.9 51.5 ± 8.6 45.5 ± 6.1

Mean ± SD.
Groups are identified by letters a–i and o; superscripts denote differences from groups to right. All groups are labeled “o” when different from Veh–Veh–Veh.
Ec.Lm.B.Ar = endocortical lamellar bone area.
Ec.Md.Pm/B.Pm = endocortical mineralizing surface.
A total of 8 observations were identified as outliers and excluded from the analyses: 1) one from the PTH–Ral–Ral group in the analysis of Ec.MS/BS; 2) one from the PTH–Veh–Veh group in the analysis of lamellar (as % of Ct.Ar); 3) one
from the Aln–Aln–Aln group in the analysis of Ct.Ar; 4) one from the PTH–Aln–Veh group in the analysis of Ct.Th; 5) one from the Aln–Aln–Aln group in the analysis of AED; 6) one from the Ral–PTH–Ral in the analysis of estimated failure
load; 7) one from the Aln–Veh–Aln in the analysis of estimated failure load; 8) one from the Aln–Veh–Aln group in the analysis of %load carried by Ct bone.
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Veh–Veh–Veh rats. However, PTH–Aln–Veh, Aln–PTH–Veh, Aln–PTH–
Aln, and Ral–PTH–Ral had significantly more endocortical lamellar
bone than Veh–Veh–Veh rats, showing 5.6–6.7% of Ct.Ar as endocortical
lamellar bone (Supplementary Table 3).
Bone architecture and mineralization

Period 3
Total area was not influenced by estrogen status or any treatment.

Cortical area was significantly higher in Sham, Aln–Aln–Aln, and Aln–
Veh–Aln rats than in Veh–Veh–Veh rats. Cortical area was also signifi-
cantly higher in rats that received both anti-resorptive and formation
stimulation therapies at some point, and was significantly higher in
those groups, except for PTH–Ral–Ral, than in Ral–Ral–Ral and PTH–

Veh–Veh (Table 2). Marrow area was significantly higher in Ral–Ral–
Ral, PTH–Veh–Veh, and PTH–Aln–Veh rats than in Veh–Veh–Veh rats
(Table 2).

Cortical thickness was significantly greater in Sham, Aln–Veh–Aln,
and PTH–Ral–Ral than in Veh–Veh–Veh. Neither Ral–Ral–Ral nor PTH–
Veh–Veh differed significantly from Veh–Veh–Veh. Cortical thickness
was significantly better in all groups that received both PTH and Aln at
some time during the experiment than in Veh–Veh–Veh rats. Interpos-
ing PTH treatment in the midst of either Aln or Ral treatment caused a
significant improvement in cortical thickness (Table 2).

DBM was not influenced by estrogen status, but was significantly
higher in groups that received both anti-resorptive and formation stim-
ulation therapies than in Ral–Ral–Ral (Table 2).
Other times
At the end of Period 0, marrow area was significantly higher in Veh–

Veh–Veh than in Sham rats. However, cortical thickness and DBMwere
the same in Veh–Veh–Veh and Sham rats (Supplementary Table 1).

At the end of Period 1, total area did not differ with estrogen defi-
ciency or among the treatment groups. Cortical area was significantly
higher in PTH–Veh–Veh, PTH–Aln–Veh, Aln–PTH–Veh, and Aln–PTH–
Aln rats than in Veh–Veh–Veh and Ral–Ral–Ral rats. Marrow area was
significantly lower in Aln–Aln–Aln, Aln–Veh–Aln, and PTH–Aln–Veh,
rats than in Veh–Veh–Veh rats. Cortical thickness was the same as
Veh–Veh–Veh in all groups except PTH–Veh–Veh. DBMwas significant-
ly higher in Sham, Aln–PTH–Veh, and Aln–PTH–Aln than in Veh–Veh–
Veh rats (Supplementary Table 2).

At the end of Period 2, total area did not differ among the groups.
Cortical area was significantly higher in all other groups than in Veh–
Veh–Veh and Ral–Ral–Ral. Marrow area was significantly higher than
Veh–Veh–Veh in all groups except Aln–Aln–Aln, and Aln–PTH–Aln. Cor-
tical thickness was significantly higher than Veh–Veh–Veh in Sham,
Aln–Veh–Aln, Aln–PTH–Veh, Aln–PTH–Aln, and Ral–PTH–Ral rats.
DBM was significantly higher than Veh–Veh–Veh in all groups, except
Ral–Ral–Ral and PTH–Veh–Veh (Supplementary Table 3).
Reference point indentation

There was no significant effect of estrogen deficiency or any
treatment on either IDI or AED at any time (Table 2, Supplementary
Tables 1–3).
Finite element analysis of LV5

Estimated failure load in LV5 was well-correlated to actual maxi-
mum load in LV6 (R = 0.709, P b .001), according to the following
equation: Estimated Failure Load = 0.265 ∗ Maximum Load + 86.5.
The slope, significantly less than 1.00 (P b .001), indicated that the
current FEM underestimates the strength of stronger bones.
Period 3
Estimated failure load was significantly higher in all groups except

Ral–Ral–Ral and PTH–Veh–Veh, than in Veh–Veh–Veh. The highest
value occurred in Aln–PTH–Aln, that was significantly greater than all
other groups except PTH–Aln–Veh. The percentage of load carried by
cortical bone in the vertebral body was 20–25% higher (P N .05) in
Veh–Veh–Veh than in Sham rats. This shift to cortical bone tended to
be reversed with all treatments, significantly so with Ral–Ral–Ral and
PTH–Aln–Veh (Table 2).

Other times
At the end of Period 0, estimated failure load was the same in Veh–

Veh–Veh and Sham rats. The percentage of load carried by cortical
bone in the vertebral body did not differ between the groups (Supple-
mentary Table 1).

At the end of Period 1, estimated failure loadwas significantly higher
in Sham, Aln–Veh–Aln, PTH–Veh–Veh, PTH–Aln–Veh, PTH–Ral–Ral,
than in Veh–Veh–Veh. The percentage of load carried by cortical bone
in the vertebral body was 25% lower in Aln–Aln–Aln than in Veh–
Veh–Veh rats (Supplementary Table 2).

At the end of Period 2, estimated failure loadwas significantly higher
than Veh–Veh–Veh in Sham and all treatment groups except PTH–Veh–
Veh. The highest values occurred in PTH–Aln–Veh, Aln–PTH–Veh, Aln–
PTH–Aln, and Ral–PTH–Ral, which were significantly higher than Ral–
Ral–Ral and PTH–Ral–Ral. The percentage of load carried by cortical
bone was the same in all groups (Supplementary Table 3).

Trajectory analyses

Maximum load
Maximum load decreased in Veh–Veh–Veh rats (P = 0.04). Aln

increased 1.8 N/month (P b 0.001), PTH increased maximum load
4.3 N/month (P b 0.001), and Ral does not affectmaximum load relative
to Veh–Veh–Veh (P = 0.17). Maximum load continued to increase
when switching from Aln to vehicle (P = 0.002), while switching
from PTH to vehicle causes maximum load to decrease at the same
rate as Veh–Veh–Veh rats. Switching back to Aln from vehicle results
in a trend toward increased maximum load (P = 0.06).

Work-to-failure (toughness)
Work-to-failure decreased significantly in Veh–Veh–Veh rats (P =

0.01). Aln or Ral treatment slows the decline in work-to-failure (P =
0.03 or P = 0.005, respectively), relative to Veh–Veh–Veh. Treat-
ment with PTH has a greater impact (P b 0.001) than either Aln or
Ral, relative to Veh–Veh–Veh, showing a slight monthly increase.
Switching from Aln to vehicle resulted in an overall increase in work-
to failure (P b 0.001), but switching from PTH to vehicle causes work-
to-failure to decline (P = 0.76) at the same rate as Veh–Veh–Veh rats.
Returning to Aln from vehicle maintains the work-to-fail change rate
at the same level as continuous Aln treatment (P = 0.14).

Cortical thickness
Cortical thickness decreased in Veh–Veh–Veh rats (P b 0.001). In

rats treated with Aln or Ral, cortical thickness decreased more slowly
(both P b .001) than in Veh–Veh–Veh rats. PTH has a greater impact
(P b 0.001) relative to Veh–Veh–Veh than either Aln or Ral, resulting
in a slight increase. Switching from Aln to vehicle is still superior
to Veh–Veh–Veh (P = 0.01), resulting in stable cortical thickness.
Switching from PTH to vehicle results in a trend for a greater decrease
over time than Veh–Veh–Veh (P = 0.06). Switching from vehicle back
to Aln further slows the rate of loss of cortical thickness compared to
Veh–Veh–Veh (P = 0.05).

Cortical area
Cortical area decreased in Veh–Veh–Veh rats (P b 0.001). Treatment

with Aln (P b 0.001) or PTH (P b 0.001) results in an increase in cortical



Fig. 1. a. Maximum load by group throughout the study. Treatment with Aln or PTH
increased maximum load. Switching from PTH to vehicle results in the same maximum
load by the end of the study, as in OVX rats that receive no treatment. Note that OVX
and Sham referent groups are depicted by thickened solid or dashed lines, respectively.
b. Maximum load at end of study. Boxes are defined by the 25th and 75th percentiles,
with the median marked by a solid line inside the box. “Whiskers” of the boxplots extend
to the last observation within 1.5× the length of the box (interquartile range) from the
edges of the box. Any observed points beyond the whiskers are show as an open circle.
Boxes marked with an asterisk are significantly different from the Veh–Veh–Veh group
after a Tukey adjustment for multiple comparisons. Except for the Aln “holiday” group,
only groups that received both PTH and some combination of pre-PTH or post-PTH anti-
resorptive treatment had greater maximum load at the end of the study. Traditional
monotherapies produced no significant changes.
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area with time. Cortical area also decreased less during Ral treatment
thanwith Veh–Veh–Veh (P= 0.02). Switching fromAln to vehicle con-
tinues to cause increased cortical area (P = 0.001), but switching from
PTH to vehicle resulted in a rate of decline similar to that in Veh–Veh–
Veh rats (P = 0.16). Switching from vehicle back to Aln (P = 0.41)
did not change the rate of change, still being superior to Veh–Veh–
Veh rats.

Endocortical lamellar bone area
Endocortical lamellar bone area is constant in Veh–Veh–Veh rats

(P = 0.88). Treatment with Aln (P = 0.30) or Ral (P = 0.34) had no
impact on endocortical lamellar bone area. However, treatment with
PTH increased endocortical lamellar bone area over time (P b 0.001).
Switching from PTH to vehicle results in a greater decrease in
endocortical lamellar bone area than in Veh–Veh–Veh rats (P = 0.002).
Switching from Aln to vehicle tends to result in a greater decrease
(P = 0.09) than in Veh–Veh–Veh rats.

Discussion

We studied cortical bone in adult OVX rats given both traditional
monotherapy and sequential therapies with approved agents for
human osteoporosis that operate through complementary tissue level
mechanisms of action.We administered them during three consecutive
three month treatment periods during ages 8–17 months, beginning
with OVX rats that had already lost bone and were still losing bone.
We measured bone strength and several surrogate measures for bone
strength in the central tibia on necropsy samples. For the most part, se-
quential therapy that involved an anabolic agent showed the best corti-
cal bone strength. We also found that anti-resorptive therapy, either
preceding or following PTH, was required to maintain gains caused by
PTH (Figs. 2–5).

No traditional monotherapy for osteoporosis had a long-term posi-
tive effect on maximum load. For the most part, achieving significant
improvement, in the range of 15–29%, compared to untreated OVX
rats required sequential treatment with both anti-resorptive and ana-
bolic agents. The only exception was the alendronate “holiday” group
(Aln–Veh–Aln), that had better bone strength after six–nine months.
Toughness (work-to-failure) was either maintained or occasionally im-
proved,while bonematerial properties, as reflected bymaximumstress,
were always maintained. No detrimental effect on either endpoint was
ever observed.

PTH stimulated the appearance of an easily-discernible “packet” of
endocortical lamellar bone in the central tibia, as previously seen with
twice the dose [61,64,66,90,91]. The amount was approximately the
same regardless of whether PTH treatment had been preceded by
anti-resorptive therapy. When anti-resorptive therapy was applied ei-
ther before or after PTH treatment, this endocortical lamellar bone
was completely maintained by continuous anti-resorptive therapy and
partially maintained by intermittent anti-resorptive therapy. When no
anti-resorptive therapy was ever applied, the endocortical lamellar
bone disappeared within 3–6 months of PTH cessation. The groups in
which this lamellar bone was present [61,64,91,92], or partially or
fully-maintained, were those in which bone strength was better [61].
It can be deduced by approximation that the average thickness of this
lamellar bone was ~30 μm or 3–4% of total cortical thickness in this re-
gion. Humans appear to experience such cortical thickening in response
to PTH treatment [56,59,93–98]. If a proportional response occurs in
cortical bone of humans given PTH, instrumentation such as XTremeCT
(high resolution pQCT) with its voxel resolution of 82 μm might have
sufficient resolution to detect it [100–102]. The treatment groups that
retained this lamellar bone had better maximum load. It is well
known that adult rat cortical bone, unlike adult human cortical bone,
has no intrinsic Haversian remodeling activity that can be stimulated
by this amount of PTH [103]. Our data may also suggest that cortical
bone in PTH-treated humans could be temporarily “protected” from
activation of Haversian remodeling by prior or concomitant anti-
resorptive therapy, making it functionally like rat cortical bone that
lacks Haversian remodeling [104]. Therefore, with temporary anti-
resorptive protection that prevents the usual increase in cortical porosity,
improvement in cortical bone strength in humans might be achieved by
PTH treatment that stimulates the deposition of new lamellar bone at
the endocortical surface.

Endocortical mineralizing surface (eMd.Pm/B.Pm) in the central
tibia was very low, never greater than 1.42%, at the conclusion of PTH
treatment. Endocortical Md.Pm/B.Pm (eMd.Pm/B.Pm) was occasionally
significantly lower in anti-resorptive treated groups than in untreated



Fig. 2. a. Cortical thickness by group throughout study. Treatment with PTH increases
cortical thickness. Note complete loss of PTH-related cortical thickness increase after
PTH discontinuation without followup anti-resorptive treatment. The Aln “holiday”
group showed improved cortical thickness. b. Cortical thickness at end of study. Boxes
are as described in Fig. 1b. Cortical thinning was observed in OVX rats by the end of the
study. Except for the Aln “holiday” group, only groups that received both PTH and some
combinaton of pre-PTH or post-PTH anti-resorptive treatment had greater cortical thick-
ness than untreated rats at the end of study.

Fig. 3. a. Cortical area by group throughout study. OVX rats experienced a modest decline
in cortical area during the study period. Treatmentwith Aln or PTH increases cortical area,
but switching from PTH to vehicle results in a decline similar to rats that never receive
treatment. b. Cortical area at end of study. Boxes are as described in Fig. 1b. Reduced cor-
tical area was observed in OVX rats by the end of the study. Except for the Aln “holiday”
group, only groups that received both PTH and either pre- or post-PTH anti-resorptive
treatment had greater cortical area than untreated rats by the end of study.
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rats. It is known that PTH treatment stimulates this endpoint in both
rats [61,64,66] and humans [56,58,93–98]. However, it is also known
that by 15 wks of treatment, the effect of PTH on eMd.Pm/B.Pm has
begun to wane [61]. We suspect that with the relatively modest dose
of PTH used in this study and only having data from the 15 wk treat-
ment, we probably have missed the peak PTH stimulation of eMd.Pm/
B.Pm that most likely occurred earlier. The presence of endocortical la-
mellar bone in all PTH-treated rats demonstrates the consistency of
the endocortical effect, despite the low values for eMd.Pm/B.Pm. Our
qualitative examination of the periosteal surfaces of these animals sug-
gests that any PTH effect on periosteal bone formation that ever oc-
curred was no longer evident. The use of a ten day fluorochrome
interlabel time period that is more appropriate for studying the cancel-
lous and endocortical surfaces than theperiosteal surface,may also have
limited the ability to properly study periosteal bone formation [99].
Cortical area and thickness declined by six–nine months after
OVX [105]. Both cortical area and thickness were better with anti-
resorptive monotherapy [106] and, particularly, with treatments that
combined PTH [64,90–92] with anti-resorptives, no matter the order
of administration. Total area was not affected at any time, perhaps pro-
viding further evidence of a stable periosteum. Therefore, one can imply
that the greater cortical area and thicknesswere due to extra bone at the
endocortical surface, whether through anti-resorptive activity or PTH-
stimulated deposition of lamellar bone. Cortical area and thickness,
that are only indirectmeasures of the endocortical lamellar bone depos-
ited during PTH therapy, were also influenced by inter-animal variation
and to a smaller extent by variation in the location of the specific sec-
tions analyzed, accounting for their greater variability than the direct
measurement of the endocortical lamellar bone itself. Greater cortical
bone area and thicknesswere associatedwith better bone strength [60].



Fig. 4. Endocortical lamellar bone area at end of study. Boxes are as described in Fig. 1b.
Increased lamellar bone area was observed only in groups that received both PTH and
either pre- or post-PTH anti-resorptive treatment. Without such treatment, by the
end of study, endocortical lamellar bone disappeared completely after PTH cessation.
Three months without anti-resorptive treatment allowed some loss. Measurements
were only obtained for the groups that received PTH at some point during the course
of treatment and the Veh–Veh–Veh group. No data were collected (and no bars are
shown) for the Sham, Aln–Aln–Aln, Ral–Ral–Ral, or Aln–Veh–Aln group.
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Traditional monotherapies, such as continuous alendronate, contin-
uous raloxifene, and fifteen weeks of PTH followed by no additional
treatment, had little or no effect on cortical bone, despite the fact that
they had a positive effect on trabecular bone in the same rats [75].
This strongly indicates that cortical bone in rats is less sensitive to tradi-
tional monotherapy than trabecular bone. It may also indicate that, in
humans, when sites that are predominantly cortical, such as the proxi-
mal femur “respond” to traditional monotherapy, trabecular bone in
the measurement field may be responsible for most of the response.
We also found that only sequential polytherapy involving agents of
complementary tissue level mechanisms of action caused a cortical
bone response. This may indicate that sequential polytherapies are like-
ly to be more effective than traditional monotherapy on bone sites in
humans that are composed mainly of cortical bone.
Fig. 5. Estimated failure load at end of study. Boxes are as described in Fig. 1b. Reduced
estimated failure load was observed in OVX rats by the end of study. All groups except
PTH–Veh–Veh and Ral–Ral–Ral, had better estimated failure load than OVX rats. These
values were in the range of Sham rats.
The Aln “holiday” group (Aln–Veh–Aln) was generally among the
best performing for maximum load, cortical thickness, and cortical area
by the end of the experiment. These data may indicate that intermittent
bisphosphonate therapy, that contains short “holidays” in which a rela-
tively small amount of time is allowed for the effect of bone-retained
bisphosphonate to abate before treatment resumes, could be as effective
as continuous treatment for cortical bone. However, this positive
finding may also be limited to the cortical bone of rats that has minimal
Haversian remodeling, as lumbar vertebral body compression strength is
lower, despite the persistence of higher BMD, in these same rats [75].
Discontinuation of Aln in humans is associated with increases in remod-
eling rate anddeclines in hip BMD that are apparentwithin 6–12 months
of stopping treatment [107].

The degree of bone mineralization (DBM) [108] was significantly
better in most treated groups than in untreated OVX rats, particularly
those evaluated closer to the end of study. This probably indicates the
success of anti-resorptive therapy that slows the turnover rate, resulting
in an increase in the mean age of bone [109,110] without affecting
secondary mineralization rate [111]. However, in a multiple regression
analysis that also incorporated cortical area and cortical thickness, DBM
was not an independent predictor of bone strength. Our FEM model,
that did not consider DBM, “under-predicted” bone strength in the stron-
gest bones that received both anti-resorptive and anabolic treatments.
We conclude that a bone quality parameter other than DBM, that is not
included in the FEM, may be responsible for the under-prediction.

Treatment did not affect IDI, an endpoint that assesses the resistance
of bone tissue to directly applied force in tiny areas [112]. Furthermore,
neither IDI nor AED values were correlated to maximum load. When
used in live humans, this technique has had some success at identifying
osteoporotic persons [80]. In animal studies, these endpoints appear to
correlate to mechanical properties of bone [81–84,113]. We conclude
that indentation properties of proximal femoral cortical bone were not
affected by any treatment sequences applied here.

In this study, both pre-PTH and post-PTH anti-resorptive therapy re-
duced the rate of removal of PTH-induced endocortical lamellar bone.
We used alendronate, a bisphosphonate, as our anti-resorptive. Bisphos-
phonates, unlike RANK Ligand antibodies, are retained in mineralized
bone tissue with a multi-year half-life [114]. The release of retained
bisphosphonate principally from trabecular bone tissue by osteoclastic
resorption results in a gradual [16], rather than an abrupt [115], loss of
anti-resorptive efficacy following treatment discontinuation. It seems
likely that using a RANK Ligand antibody as an anti-resorptive during se-
quential therapy would be efficacious for preserving endocortical lamel-
lar bone only during post-PTH treatment.

This pre-clinical study of rat cortical bone had multiple strengths.
We studied clinical treatment sequences of bone active agents, measur-
ing both non-destructive surrogate measures of cortical bone strength
and bone strength itself. We used ninety-day treatment periods, ap-
proximately two remodeling periods inmature adult rats, thatmay rep-
resent up to 18 months in humans [104]. We evaluated treatments,
such as monotherapy with a bisphosphonate, raloxifene, and PTH, for
which clinical fracture risk reduction data exist.Wemeasured surrogate
bone strength endpoints in both the approved monotherapies, and
other sequences of treatment for which clinical fracture risk data have
not yet been collected, to enable predictions aboutwhich could offer im-
proved fracture risk reduction compared to traditional monotherapy.

However, there were also a number of weaknesses. Rats, unlike
humans, lack ambient Haversian remodeling of cortical bone [104],
meaning that any changes in bone strength likely reflect changes in
bone formation and resorption at the endocortical surface with a small
contribution from the periosteal surface that might not reflect what
would happen in humans. Since we began treatment at eight weeks
post-OVX, a time when OVX-related bone loss was still ongoing, the
findings may be best applied to women who are still losing bone after
menopause. Thedosing regimen of raloxifene that showed good efficacy
in past work [22,55] was less frequent than that known to produce the
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maximum possible effect of raloxifene on prevention of OVX-induced
bone loss [3].
Conclusions

We studied cortical bone in both traditional monotherapy and
sequential therapies with approved agents for human osteoporosis
that operate through complementary tissue levelmechanisms of action,
during three consecutive threemonth treatment periods.Wemeasured
bone strength and several surrogate measures for bone strength in the
central tibia on necropsy samples. Sequential therapy that involved an
anabolic agent showed the best improvements in cortical bone strength.
Anti-resorptive therapy, either preceding or following the anabolic
agent, was required to maintain gains attributable to an anabolic agent.
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