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This paper describes a micromechanical analysis of the uniaxial response of composites

comprising elastic platelets (bricks) bonded together with thin elastic perfectly plastic

layers (mortar). The model yields closed-form results for the spatial variation of

displacements in the bricks as a function of constituent properties, which can be used

to calculate the effective properties of the composite, including elastic modulus,

strength and work-to-failure. Regime maps are presented which indicate critical

stresses for failure of the bricks and mortar as a function of constituent properties

and brick architecture. The solution illustrates trade-offs between elastic modulus,

strength and dissipated work that are a result of transitions between various failure

mechanisms associated with brick rupture and rupture of the interfaces. Detailed

scaling relationships are presented with the goal of providing material developers with

a straightforward means to identify synthesis targets that balance competing mechan-

ical behaviors and optimize material response. Ashby maps are presented to compare

potential brick and mortar composites with existing materials, and identify future

directions for material development.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The surprising strength and ductility of nacre (in light of its largely inorganic composition Jackson et al., 1988) can be
attributed to its unique microstructure, which consists of precisely aligned ceramic platelets (bricks) bonded together with
an extremely thin organic layer (mortar). Though the microstructure and associated deformation mechanisms involve
many intricacies (see review in Espinosa et al., 2009), the underlying composites concept is arguably straightforward (e.g.
Jackson et al., 1988; Espinosa et al., 2009; Jager and Fratzl, 2000; Currey et al., 2001; Evans et al., 2001; Gao et al., 2003; Ji
and Gao, 2004a,b; Barthelat et al., 2006; Tang et al., 2007; Rabiei et al., 2010; Wang and Boyce, 2010; Zhang et al., 2010,
2011): (i) high composite stiffness is maintained by severely limiting the volume fraction of the compliant ductile phase
(on the order of several percent or less), (ii) high composite strength is achieved by utilization of small volumes of the
ceramic phase (i.e. strong bricks), combined with thin mortar sections and an interlocking brick architecture to efficiently
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y).

www.elsevier.com/locate/jmps
www.elsevier.com/locate/jmps
dx.doi.org/10.1016/j.jmps.2012.03.002
mailto:begley@engr.ucsb.edu
dx.doi.org/10.1016/j.jmps.2012.03.002


M.R. Begley et al. / J. Mech. Phys. Solids 60 (2012) 1545–15601546
concentrate loads onto the bricks via shear transfer, and (iii) ductility is promoted by brick pull-out, which can
alternatively be thought of as micro-cracking in the composite that diffuses damage.

While this underlying composite concept may be straightforward, it is also clear that there are competing deformation
mechanisms that lead to trade-offs in macroscopic composite performance (e.g. Ji and Gao, 2004a; Rabiei et al., 2010;
Wilbrink et al., 2010). For instance, an increase in the peak shear stress that can be carried by the mortar (or sliding
interfaces) can produce an increase in the composite strength, but can also lead to a decrease in composite ductility (by
preventing sliding prior to brick failure) (Ji and Gao, 2004a; Wilbrink et al., 2010). The transition between these two
mechanisms (mortar failure vs. brick failure) depends not only on the peak shear stress carried by the mortar, but also on
the brick size (which dictates brick stress) and mortar thickness (which dictates mortar strain for a given composite
strain). Ji and Gao (2004a) and Wilbrink et al. (2010): this implies there is an optimal yield stress for a given geometry, or
conversely, an optimal geometry for a given mortar yield stress.

In the development of synthetic ‘brick and mortar’ materials (Munch et al., 2008; Tang et al., 2003; Launey et al., 2009;
Ekiz et al., 2009; Kakisawa et al., 2010; Launey et al., 2010; Posiadlo et al., 2007; Bonderer et al., 2008, 2010a,b), such
considerations are tantamount to the criteria that define effective processing pathways. The selection of constituent
materials determines the desired geometry that serves as a target for process refinement. Alternatively, the limits of a
given processing route should inform materials selection (provided, of course, the processing route allows for alternatives).
Quantitative connections between constituent properties, brick architecture and macroscopic composite response are thus
critical to synthetic materials development. Given the currently uncertain limits on microstructures accessible through
synthesis techniques under development (Munch et al., 2008; Tang et al., 2003; Ekiz et al., 2009; Kakisawa et al., 2010;
Posiadlo et al., 2007; Bonderer et al., 2010a), and the desirability of utilizing a wide range of materials, analytical models
that make such connections are highly desirable, since they neatly side-step the need for a cumbersome numerical study
that covers a broad parameter space.

This is the focus of the present work, rather than an explicit treatment of nacre or an attempt to quantify deformation
mechanisms in natural materials. (It is worth noting that the mechanisms at work in natural materials may be far more
complex than synthetics (e.g. Jackson et al., 1988; Espinosa et al., 2009; Jager and Fratzl, 2000; Currey et al., 2001; Evans
et al., 2001; Gao et al., 2003; Ji and Gao, 2004a,b; Barthelat et al., 2006; Tang et al., 2007; Rabiei et al., 2010; Wang and
Boyce, 2010), and exploit additional beneficial microstuctural features such as hierarchy at multiple scales Zhang et al.,
2011.) The present analytical models describe the macroscopic modulus, strength and ductility of an idealized composite
(see Fig. 1), with elastic bricks arranged in a staggered pattern that are bonded with elastic–perfectly plastic mortar.
Synthetic brick and mortar materials use glassy polymers or ductile metals as mortar (Munch et al., 2008; Kakisawa et al.,
2010; Launey et al., 2010; Bonderer et al., 2008, 2010a); both are well-represented by an elastic–perfectly plastic solid. (In
addition, this type of approximation is fairly general and may accurately reflect behaviors for a variety of mechanisms such
as frictional sliding Evans et al., 2001.) To illustrate the implications of materials selection and processing limits, new
mechanism maps are presented which illustrate trade-offs in macroscopic properties that are triggered by a transition in
failure mechanisms, e.g. brick failure, vertical interface failure and horizontal interface failure. To evaluate the validity of
the models, they are used to make comparisons with previous measurements on a PMMA=Al2O3 synthetic composite
(Munch et al., 2008). The model is then used to estimate the range of improvements that are possible (i.e. fabrication
targets) for synthetic materials.
Fig. 1. Schematic illustrations of the idealized composite and unit cell used to derive composite tensile properties: (A) variables defining the geometry,

(B) original and deformed unit cells for asymmetric layout analyzed for modulus and strength, and (C) symmetric unit cell analyzed for elastic–plastic

behavior.
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As with any analysis of an idealized unit cell (see Fig. 1), the model cannot capture localized damage: damage is
necessarily assumed to be widespread and approximately uniform. In real materials, the distribution of damage may not
be diffuse, particularly for those events that immediately precede macroscopic rupture. Micrographs of failure surfaces in
both nacre and synthetic ‘brick and mortar’ microstructures show such localized damage, manifested as ‘brick pull-out’, i.e.
relative sliding of adjacent bricks (e.g. see review in Espinosa et al., 2009 and micrographs in Munch et al., 2008). These
micrographs cannot be representative of diffuse damage in the bricks, for the simple reason that failure strains in these
materials are on the order of � 123% and moreover, the composites ultimately rupture abruptly with a sharp drop in load.
(A possible exception is the synthetic material described in Munch et al., 2008: still, although the composite gradually
loses load-bearing capacity after peak stress, failure strains are still � 123%.) If large-scale sliding corresponding to brick
pull-out were widely activated, failure strains would be much larger and one would likely observe concomitant softening
behavior. Moreover, characterization techniques that produce broader fields-of-view do show wide-spread damage, such
as the micro-crack distributions seen in x-ray tomography scans (Launey et al., 2009). Such damage events more than
likely precede the emergence of dominant flaw that would dramatically reduces the average stress for a given level of
macroscopic strain. Hence, it is reasonable to believe that the essential elements of the stress–strain behavior can be
rationalized with a diffuse damage model, provided the model’s predictions for macroscopic failure strain, are in
agreement with observations. As will be illustrated, even if rupture strains in the mortar are large (say � 100%), the
present models still predict failure strains in the 1–3% range.

The models presented here draw inspiration from many previous works, which have utilized a similar idealized
geometry and analysis approach, such as Jager and Fratzl (2000), Evans et al. (2001), Ji and Gao (2004a,b), and Wilbrink
et al. (2010). Similarly, they build upon previous numerical studies of nacre that have analyzed a more limited parameter
space (e.g. Ji and Gao, 2004b; Tang et al., 2007; Barthelat et al., 2007). In addition, the models (though not the motivating
microstructures) naturally bear resemblance to shear-lag models developed for short-fiber composites (e.g. see Tucker and
Liang, 1999; Nairn, 1997 and references therein) and for thin films (Hu and Evans, 1989), which are often geared towards
capturing shear transfer between adjacent whiskers/films. The important distinction from previous purely analytical
models (as opposed to numerical results) is that the present models include all of the following: (i) bricks are perfectly
aligned yet can have an arbitrary off-set from row to row, (ii) very small volume fractions of mortar that exhibit elastic
behavior up to a critical stress, (iii) the vertical interfaces carry load up to a specified rupture strain, and (iv) the relative
slip between bricks and brick displacements varies spatially in the loading direction. With regard to the latter effect, the
model in Zhang et al. (2010) comes closest, but does not consider the effect of bonding between brick ends. This will be
demonstrated to be critical for proper calculation of the composite modulus and failure of vertical interfaces. Further, we
demonstrate that even for an elastic–perfectly plastic mortar, geometric hardening occurs such that it takes increasing
load to propagate the plastic zone in the horizontal mortar sections. While some of these effects have been treated in
previous studies, all are needed together for a single model to paint a complete picture of composite response.

For example, without including the effect of load-bearing vertical interfaces and elasticity in the bricks, the stress
distribution in the bricks and hence the composite failure stress cannot be calculated in this regime. Whether or not the
brick ends remain bonded is a critical question in materials development, as debonding at these interfaces prior to brick
failure is critical to achieve toughness (e.g. Espinosa et al., 2009; Ji and Gao, 2004a,b; Barthelat et al., 2006; Zhang et al.,
2010). Previous experiments with synthetic materials have demonstrated that increases in material interface strength can
improve aspects of mechanical performance (e.g. Tang et al., 2003). However, for some material systems there is likely an
upper limit on interface strength that still ensures ductility, which can be identified with the present models. Thus, for
design and synthesis purposes (as opposed to analysis of existing materials), a model is required that spans the full range
of composite behavior, such that trade-offs between the effective modulus, strength and ductility can be explicitly
quantified. The explicit inclusion of all the effects described above enable the construction of failure mechanism maps that
indicate regimes of composite behavior as a function of constituent properties, which are not possible with previous
models.
2. Elastic modulus and strength for brittle materials

The idealized composite geometry is shown in Fig. 1. The wallpaper symmetry group is pmm, with two bricks per unit
cell, which are separated by one brick height vertically, and shifted by s horizontally. For s¼w=2, the symmetry increases
to cmm. The mortar thickness is assumed to be small in comparison to the brick dimensions: t1 is the thickness of the
vertical mortar sections (z2y and x2y planes), and t2 is the thickness of the horizontal mortar sections (x2z plane). It
assumed that the components deform only in the x-direction: as such, the arrangement of the bricks in the through-
thickness direction (i.e. whether or not they overlap in adjacent x2z planes) does not factor into the response. Assuming
approximately square bricks in the x2z plane of dimension w, and small mortar thickness such that t1,t25w,h, the volume
fraction of the mortar phase is given by

f ¼
t1

w
þ

t2

h
þ

t1

w
¼ t

2aþw

w

� �
ð1Þ
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where t ¼ t2=h, w ¼w=h are the aspect ratio of the bricks, and a¼ t1=t2 is the ratio of thickness of vertical and horizontal
mortar sections. For uniform mortar thickness f ¼ tð2þwÞ=w, while for very large aspect ratios f � t since horizontal
interfaces are dominant.

Small plane strain deformations are assumed with zero strain in the z-direction, and zero stress in the y-direction.
Under uniaxial deformation, the horizontal interfaces experience pure shear according to the relative displacements
between adjacent bricks in different rows, while the vertical interfaces experience pure tension according to the relative
displacements between adjacent bricks in the same row. The mortar is presumed to be thin enough such that horizontal
mortar layers experience uniform shear strains. The bricks are assumed to be perfectly elastic, while the mortar is
considered to be elastic–perfectly plastic and characterized by the uniaxial yield strength sY .

In this section, results are presented for fully elastic response of both constituents, with the yield strength of the mortar
used to define the elastic limit. It is assumed that interface rupture occurs immediately after yielding, such that brick
failure or horizontal failures correspond to composite failure. In contrast, the composite may or may not still carry load
after failure of the vertical interfaces. Ductile (post-yielding) behavior is considered in Section 3.
2.1. Governing equations for asymmetric overlap

The bricks are numbered as shown in Fig. 1B. Two solutions are needed for displacements in brick #1, since the relative
displacements will be different on either side of the origin: here, the displacement of brick #1 for x40 is denoted as u1a½x�,
while the displacements for xo0 is denoted as u1b½x�. Continuity dictates u1a½0� ¼ u1b½0�. The macroscopic strain in the
composite, Ec , is dictated by the displacements of the ends of bricks #2 and #3 relative to the width of the unit cell: that is,
w � Ec ¼ u2½s��u3½�ðw�sÞ�. In the following, the position is normalized by the brick width, x ¼ x=w while the displacements
are normalized according to u ¼ u=ðwEf

bÞ, where Ef
b is the failure strain in the bricks. This notation leads to the following

complete set of governing equations:

u 001a ¼ 2k2
2ðu2�u1aÞ, 0oxos

u 001b ¼�2k2
2ðu3�u1bÞ, �ð1�sÞoxo0 ð2Þ

u 002 ¼�2k2
2ðu2�u1aÞ, 0oxos

u 003 ¼ 2k2
2ðu3�u1bÞ, �ð1�sÞoxo0 ð3Þ

where s ¼ s=w (i.e. the normalized shift in alignment from row to row), and k2 is a dimensionless parameter that describes
the strength of shear transfer in the horizontal mortar sections, given by

k2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�vmÞEmw2

2Ebt2h

s
ð4Þ

where Em ¼ Em=ð1�v2
mÞ is the plane-strain modulus of the mortar (with Em as the elastic modulus of the mortar, and vm is

Poisson’s ratio of the mortar), Eb ¼ Eb=ð1�v2
bÞ is the plane strain modulus of the mortar (with Eb as the elastic modulus of

the bricks and vb is Poisson’s ratio of the bricks). The corresponding boundary (and symmetry) conditions are given by:

u1a½0� ¼ u1b½0� ¼ 0, u2½s� ¼D, u2½s��u3½�ð1�sÞ� ¼ Ec

u 03½0� ¼ u 02½0� ¼ k1ðu2½0��u3½0�Þ, u 01a½s� ¼ u 01b½�ð1�sÞ�, u 01½0� ¼ u 02½s� ¼ u03½�ð1�sÞ� ð5Þ

where Ec ¼ Ec=Ef
b represents the total strain imposed on the unit cell normalized by the brick failure strain, and k1 is a

dimensionless parameter that describes the strength of direct stress transfer in the vertical mortar sections, and is given by:

k1 ¼
Emw

Ebt1

ð6Þ

The displacement D ¼D=ðwEf
bÞ represents the dimensionless displacement of the symmetry boundary of brick #2: this

unknown constant can be determined by adding D
0
½x� ¼ 0 to the list of equations. Thus, in total, there are four coupled

second order differential equations and one first order differential equation, requiring the nine boundary conditions, given
as Eq. (5). Note that the horizontal and vertical interface behaviors are decoupled in the sense that different constitutive
laws could be used for each one. This includes the limit where the vertical interfaces carry no load (e.g. are pre-cracked), in
which case k1 ¼ 0.

Once the solution is obtained, the maximum stress in the bricks, the maximum shear stress in the horizontal interface,
and the stress in the vertical interfaces is found via:

sb �
sb

sf
b

¼ u 01½0�, ti �
t
sf

b

¼ 2k2
2

h

w

� �
u2½0�, s i �

si

sf
b

¼ u 02½0� ð7Þ
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where sf
b ¼ EbE

f
b is the failure stress of the bricks. The composite stress is given by the average of the peak stress in the

bricks and the stress in the vertical interfaces:

sc �
sc

sf
b

¼
1

2
ðu 01½0�þu 02½0�Þ ð8Þ

Note that the shear stress depends on the parameter h/w in addition to k1;2, whereas the composite modulus, brick stress
and vertical interface stress depend only on k1;2.

2.2. Purely elastic solutions

The full solutions to the equations outlined above are cumbersome, but can be trivially recovered using Mathematica or
the like. The displacement results will scale linearly with the strain applied to the unit cell as required. The effective
modulus of the elastic composite is defined according to sc ¼ Ec � Ec , and is given by

Ec ¼
Ec

Eb

¼
2ðsinh½k2�k1�2 sinh½ð�1þsÞk2�sinh½sk2�k2Þ

2 sinh½k2�ð1þk1Þþðcosh½k2��cosh½ð�1þ2sÞk2�Þk2
ð9Þ

The peak stresses in the constituents are given by

sb ¼
2ðsinh½k2�k1�2 sinh½ð�1þsÞk2�sinh½sk2�k2Þ

2 sinh½k2�ð1þk1Þþðcosh½k2��cosh½ð�1þ2sÞk2�Þk2
� Ec ð10Þ

ti ¼�
4 cosh½sk2�sinh½ð�1þsÞk2�k2

2

2 sinh½k2�ð1þk1Þþðcosh½k2��cosh½ð�1þ2sÞk2�Þk2
�

h

w
� Ec ð11Þ

s i ¼
2 sinh½k2�k1

2 sinh½k2�ð1þk1Þþðcosh½k2��cosh½ð�1þ2sÞk2�Þk2
� Ec ð12Þ

Again, note that the peak shear stress in the bricks involves a fundamentally different scaling than the modulus and direct
stresses (which depend only on k1;2) through the factor h/w. Also, these results are valid when k1 ¼ 0. This limit represents
the composite response after rupture of the vertical sections (or a layered composite with a regular periodic array of
cracks). For a purely elastic system, the stress in the composite after vertical cracking is simply sc ¼ Ecðk1 ¼ 0Þ � E. Hence,
the stress drop upon vertical cracking is Dsc ¼ ðEc�Ecðk1 ¼ 0ÞÞEc , where the composite strain Ec is taken to be the
composite strain at which the vertical interface fails.

2.3. Composite elastic modulus

With regard to purely elastic behavior, there are several other asymptotic limits that are of interest. As a check of the
validity of Eq. (9), consider the limits that s-0 or k2-0: in these limits shear transfer between the bricks is zero and one
should recover the stiffness of two linear springs in series (i.e. bricks separated by thin vertical sections of mortar)
thickness. These asymptotic limits yield:

Ec �
k1

1þk1
¼

Emw

Ebt1þEmw
ð13Þ

which is indeed the correct form assuming that there are two springs in series. The other two limits pertain to small or
large values of k1 and k2

2. For k151 and k2
251, an asymptotic expansion of Eq. (9) yields the following approximation:

Ec � k1þ2k2
2 � ðs�s2

Þ ð14Þ

Immediately one observes that the maximum stiffness corresponds to brick overlap of one-half their width, s ¼ 1=2. Since
the k values are presumed small, this equation is only valid in the limit that the observed composite modulus is much
lower than that of the bricks, i.e. when Ec=Eb51.

This is not the case for the synthetic composites pursued elsewhere, nor for natural nacre. To see this, recast the k
values as follows:

k1 ¼
Em

f Eb

�
2aþw

a

k2
2 ¼

Em

f Eb

�
ð1�vmÞ

2
�wð2aþwÞ ð15Þ

where f is the volume fraction of the mortar phase. Consider, for example, a mortar to brick modulus ratio of Em=Eb � 10�3,
volume fractions of f � 0:01, brick sizes of w ¼ 5, vm � 1=3 and uniform mortar (a¼ 1): then, k1 � 0:7 and k2

2 � 1. Clearly,
these are not negligible compared to unity, and moreover, k1 and k2

2 are comparable. Even for relatively long bricks, the
normal stiffness still plays a significant role. Simply put, the limit of small mortar volume fraction corresponds to large
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values of k. To obtain a simplified expression for large values of k, note that sinh½x� � cosh½x� � ð1=2Þex in the limit of large
x. Then, for large k and s ¼ 1=2, Eq. (9) reduces to

Ec �
2k1þk2

2ð1þk1Þþk2
, k1;2Z1 ð16Þ

This scaling implies that this is the proper approximation when Ec � Eb, i.e. when the composite modulus is close to that of
just the bricks.

A key insight from the above equations is that it is difficult to anticipate effective composite behavior for materials with
extreme modulus mismatch and small volume fractions, since the volume fraction and modulus mismatch have off-setting
effects. This implies that when considering a range of brick sizes, say 2owo15 (as in Fig. 2), the k will span both limits!
Hence, the asymptotic expansions may be of limited utility, except in extreme limits of very low composite modulus or
that close to the bricks themselves. Put another way, both the mortar deformation and brick deformation are important,
regardless of the fact that the mortar has far smaller volume fraction and far smaller stiffness. This has critical implications
for predicting the initial damage events in the composite (which occur at the limit of elasticity in the components), as it
implies that deformation in both constituents must be properly addressed.

The elastic modulus of the composite, normalized by the brick modulus, is shown in Fig. 2 as a function of brick aspect
ratio (for fixed volume fraction) and as a function of volume fraction (for fixed brick aspect ratio). The symmetric case
s ¼ 1=2 is shown. The solid lines correspond to moduli with intact vertical interfaces, the dashed line corresponds to
moduli with cracked vertical interfaces. To generate the plot, the definitions in Eq. (15) are used for k1;2. As expected,
increasing the brick aspect ratio increases the composite modulus, as does decreasing the volume fraction of the mortar: in
the limits of zero volume fraction recovers the elastic modulus of the bricks.

In the limit of infinite brick size, one again recovers the elastic modulus of the bricks: this is a consequence of the
assumption that the mortar experiences pure shear. For extremely long bricks and intact vertical interfaces – i.e. the
lamellar limit – the mortar will actually stretch axially with the bricks and carry load in proportion to its volume fraction.
This effect is not recovered in the present model, and thus the model does not recover the expected results for lamellae in
that limit. However, the discrepancy between the present limit and the rule-of-mixtures lamellae limit is on the order of
fEm=Eb, presumably a very small fraction for compliant mortar and/or small volume fractions.

It is worth emphasizing that even with extreme modulus mismatch, small volume fractions, and very long bricks, the
vertical interfaces play a significant role in the composite modulus. Cracking of vertical interfaces leads to dramatic
reduction in stiffness. Though not shown, the effect is even more dramatic when the layout is not symmetric.

2.4. Brittle composite strength

The composite strength can be evaluated by using the elastic results to predict the stress required to trigger various
failure sequences. For brittle materials, brick failure or horizontal shear failure corresponds to material rupture. The
composite can still carry load after vertical failure, such that the strength is dictated by the stress required to subsequently
yield the horizontal interface, or break the bricks.

A summary of the possible failure sequences is shown schematically in Fig. 3. The stress required for a specific failure
event is found by equating the associated stress with the material strength and solving for the composite strain Ec required
for that event. The composite stress is then the critical strain multiplied by the relevant composite modulus (e.g. Ecðk1-0Þ
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Fig. 3. Schematic illustration of the possible failure sequences in brick and mortar composites: the desired path is highlighted in green, which

corresponds to strong, stiff, ductile materials. (For interpretation of the references to color in this figure legend, the reader is referred to the web version

of this article.)
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if the vertical interfaces have failed). The peak stress can be calculated using the following algorithm:
�
 Calculate the composite stresses corresponding to brick failure sBF
c , horizontal interface failure, sHF

c , and vertical
interface failure sVF

c . If either of the first two are the minimum, this represents the composite strength.

�
 If the vertical interfaces fail at the minimum stress, set k1-0 and calculate the composite stress required for horizontal

interface failure (with the vertical interfaces removed), sVFHF . If sVFHF
Z1=2, brick failure occurs prior to horizontal

interface yielding, since the stress on the bricks is 2sc; hence, the second failure event occurs at Min½sVFHF ,1=2�.

�
 Check to see if the second failure event occurs at a higher stress than the first (i.e. vertical interface failure): if not,

either the bricks fail or the horizontal interface yields immediately upon vertical interface failure, such that vertical
interface failure represents the peak allowable stress.

Strictly speaking, when the interfaces are ductile, the composite stress required for failure of the horizontal interfaces
(assuming vertical interface failure has occurred) is dictated by the pull-out stress, given by sc ¼ tY w=ð4hÞ, where tY is the
shear yield stress of the mortar. (Once the vertical interfaces have failed, the composite stress depends only on the stress in
the bricks at the origin (see Fig. 1), which is dictated by uniform shear stress along its length: the mortar volume fraction
will influence the strain at which horizontal interface yielding occurs, but not the stress.) However, as will be shown in the
next section, the stress associated with the onset of yielding (as predicted by the elastic analysis in this section) is a fair
approximation to the peak stress in the composite. In essence, the increase in stress required to propagate the plastic zone
is rather modest, such that the elastic limit is often very close to the pull-out stress. This is demonstrated in Section 3.

Fig. 4A shows contours of the composite strength (determined via the above algorithm), as a function of the critical
failure stresses of the horizontal and vertical interfaces. In order to separate the roles of brick aspect ratio, mortar volume
fraction and relative thickness of the interfaces, the dimensionless stiffness parameters are recast according to Eq. (15).
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Here, vm ¼ 1=3 is assumed. The boundaries in Fig. 4 illustrate the failure mechanism controlling strength. In region A, the
mortar shear strength is insufficient to prevent horizontal rupture as the initial event, and this mechanism controls
composite strength. In region B, the vertical interfaces fail first at a stress that is higher than that required to crack the
bricks or yield the horizontal interfaces: i.e. vertical failure yields immediately to composite failure. In region C, the vertical
interfaces fail first, followed by delayed shear failure of the horizontal interface (at a stress higher than that required for
the initial cracking of vertical interfaces). In region D, the vertical interfaces fail first, then the bricks: the composite
strength is the maximum possible with failed vertical interfaces, i.e. one-half the brick strength. In region E, the mortar is
strong enough to fail the bricks as the initial event, and as such, the composite strength is constant and independent of the
mortar strength.

Fig. 4B shows contours of composite strength as a function of mortar strength and brick aspect ratio, assuming interface
failure stresses given by tf

i ¼ s
f
i =

ffiffiffi
3
p

(as consistent with a Von Mises yield criterion). Here, the vertical mortar sections are
set to have one-tenth the thickness of the horizontal mortar sections, i.e. a¼ 0:1, in order to ensure that the most of the
same regimes seen in Fig. 4A also appear in Fig. 4B. Though not shown, for equal mortar thickness in the horizontal and
vertical interfaces, vertical interfaces always fail first provided sf

i o3:7tf
i . This implies vertical interface failure is always

the initial damage event (in particular for Von Mises plasticity), barring unusual differences between the strength of the
mortar sections.

Fig. 5 shows the relationships between composite modulus and composite strength, for a fixed interface strength,
sf

i ¼ t
f
i ¼ 0:15sf

b, and modulus ratio, Em=Eb ¼ 1=75. Along a given curve in Fig. 5A, the brick sizes are held fixed to
w=h¼ 4;8,12;16, while the volume fraction is varied from f¼0.02 to f¼0.2 in steps of Df ¼ 0:02. In Fig. 5B, the volume
fraction is held fixed to f ¼ 0:02,0:04,0:08,0:16 while the brick sizes are varied from w=h¼ 5 to w=h¼ 50 in steps of
Dðw=hÞ ¼ 5. For fixed brick size, decreasing the volume fraction corresponds to making the mortar sections thinner: this
has the effect of making them stiffer, but also subject to higher stresses: hence, strength drops while modulus increases.
Conversely, for fixed volume fraction, increasing the aspect ratio of the bricks corresponds to thicker mortar sections.
Importantly, both modulus and strength increase with brick size for fixed volume fraction: this is because (a) the mortar
sections are getting thicker, increasing the applied strain required to cause them to fail, while (b) shear transfer between
bricks is more efficient. These results emphasize the importance of simultaneously controlling volume fraction and brick
aspect ratio: without such control, gains due to increase in aspect ratio can be off-set by losses due to higher volume
fractions.

3. Ductility: elastic–plastic response with cracked vertical interfaces

For simplicity’s sake, results are presented for a symmetric brick layout (s ¼ 1=2) with failed vertical interfaces. This
implies symmetric plastic zones that extend from the edges of the bricks inwards. (The elastic solution presented earlier
can be used to verify that peak shear stresses occur at the edges of the bricks.) The model consists of one-half of the bottom
brick (#1), which is fixed at x¼0, with one-half of the top brick (#2), which displaces laterally. The brick is divided into
three geometric zones: two zones with yielded interfaces and one zone with an elastic interface, as shown in Fig. 1C.

3.1. Governing equations

As before, let x ¼ x=w, such that the domain is 0oxo 1
2; this avoids confusion later when expressing the results in

terms of the brick aspect ratio, w ¼w=h. The size of the plastic zone ‘p is normalized according to ‘p ¼ ‘p=w, such that its
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maximum value is 1
4. Normalize displacements as ui ¼ ui=ðw � Ef

bÞ, where Ef
b is the failure strain of the bricks: this dictates

that the strains in the problem are normalized by the brick failure strain, and the stresses are normalized by the brick
failure stress. The problem statement becomes

u 001ðxÞ ¼ �2k2
2 � ðu2ðxÞ�u1ðxÞÞ, ‘poxo1

2�‘p ð17Þ

u 002ðxÞ ¼ 2k2
2 � ðu2ðxÞ�u1ðxÞÞ, ‘poxo1

2�‘p ð18Þ

where k2 is given by Eq. (4), as before. The boundary conditions are given by

u1ð0Þ ¼ 0, u2ð
1
2�‘pÞ ¼D ð19Þ

u 02ð‘pÞ ¼SY � ‘p, u 01ð
1
2�‘pÞ ¼SY � ‘p ð20Þ

where the normalized shear yield stress of the mortar is given by

SY �
tY w

sf
bh

ð21Þ

The boundary conditions on displacement gradients arise from force balance at the edges of the plastic zone (the left edge
on brick #2, the right edge of brick #1), where the brick stress is given by sb ¼ tY � ‘p.

The variable D represents the displacement at the elastic–plastic boundary on the right, and is a variable to be
determined from the solution. D can be related to the macroscopic strain applied to the composite by the relationship:

Ec ¼ 2u2ð
1
2 Þ ¼ 2u2ð

1
2�‘pÞþ2dp

¼ 2Dþ4sc � ‘p�SY‘
2
p ð22Þ

where dp represents the displacement of the right end of the brick relative to the position x ¼ 1=2�‘p. dp can be determined
from a shear lag analysis of the yielded region.

The edge of the plastic zone is determined from the condition that the shear strain at the elastic–plastic boundary is
equal to the shear yield strain, gY . In terms of dimensionless variables, this implies:

u2ð‘pÞ�u1ð‘pÞ ¼
gY � t

Ef
b �w

¼ gY ¼
SY

2k2
ð23Þ

The parametric identity listed last in the above equation is particularly important, since it illustrates the scaling of the
normalized shear yield strain. The composite stress is given by

sc ¼
1
2 ðu

0
2ð

1
2�‘pÞþSY � ‘pÞ ð24Þ

Finally, the maximum shear strain in the mortar is given by

gmax �
gmaxt

Ef
bw
¼ u2ð‘pÞ�

1

2
SY‘

2
p ð25Þ

These equations (with the displacement solutions to the differential equations stated above) provide the basis to eliminate
‘p and D from the analysis. Solving the above problem with ‘p ¼ 0 yields the full elastic solution: in this case, D¼wEc=2,
where Ec is the macroscopic strain applied to the material. To predict the proper failure mechanism in the composite, one
must check (at all loading increments) to ensure that the brick stress, sb ¼ 2sc is less than the brick failure stress, sf

b.
Further, mortar rupture occurs when the peak shear strain in the mortar is equal to the rupture shear strain.

3.2. Elastic response: brick failure and the onset of yielding

The elastic behavior (prior to yielding) can be found by solving the above equations with ‘p ¼ 0: the results are identical
to the elastic analysis given in Section 2 for s ¼ 1=2 and k1 ¼ 0. The elastic modulus of the composite, defined by sc ¼ EcEc ,
is given by

Ec ¼
k2

k2þ2 coth
k2

2

ð26Þ

The maximum brick stress is given by sb ¼ sb=s
f
b ¼ 2sc. Again, the maximum possible composite strength for a

material with cracked vertical interfaces is given by sc ¼ 1=2. Thus, the composite stress and strain associated with brick
failure in the elastic regime is given by

½Ec ,sc�
e
bf ¼

1

2
þ

coth
k2

2
k2

,
1

2

2
64

3
75 ð27Þ



M.R. Begley et al. / J. Mech. Phys. Solids 60 (2012) 1545–15601554
The maximum shear strain in the mortar in the elastic regime is given by

ðgmaxÞe ¼
1

1þk2 sinh
k2

2

ð28Þ

Solving this equation with gmax ¼ gY predicts the composite strain associated with the onset of yielding, Eiy. The composite
stress and strain associated with the onset of mortar yielding is given by

½Ec ,sc�iy ¼
SY

2k2
2

2þk2 tanh
k2

2

� �
,
SY

2k � tanh
k2

2

" #
ð29Þ

Thus, in order for mortar yielding to be relevant, the composite stress/strain associated with yielding must be smaller than
that associated with brick failure. This condition is dictated by

SY

2k2
� tanh

k2

2
r

1

2
ð30Þ

3.3. Propagation of the plastic zone

To determine the stress–strain response in the transition regime and avoid numerical root finding, one can proceed as
follows: first, one finds the solution for u1ðSY ,D,‘pÞ and u2ðSY ,D,‘pÞ. Eq. (20) can be used to solve for the analytic function
DðSY ,GY ,‘pÞ. One can then generate the stress–strain curve using ‘p as an implicit parameter. That is, one can specify ‘p,
compute D and s via Eq. (25), and compute the strain associated with that ‘p via Eq. (24).

The stress–strain state at the completion of yielding is simply ‘p-1=4. The composite stress and strain at the
completion of full yielding is given by

½Ec ,sc�fy ¼
SY

2k2
2

1

2
þ

5k2

8
þcosh

k2

2

� �
,
SY

4

" #
ð31Þ

This result confirms the elementary equilibrium result for the composite stress if the interface has experienced complete
yielding. Finally, one can show that the composite stress for initial yielding is always smaller than that at complete
yielding: this means that the propagation of the plastic zone implies strain hardening of the material, or stable propagation
of the plastic zone with increasing applied strain. This is a purely geometry effect, as opposed to a fundamental physical
mechanism in either constituent material. The plastic zone initiates at the brick corners and propagates inwards: the
plastic zone in effect shields the inner elastic core, such that higher loads are required to continue to propagate the
plastic zone.

The peak shear strain at the edge of the plastic zone at the completion of yielding is given by

ðgmaxÞfy ¼
SY

2k2
2

1

2
þ
k2

2

16
þ

1

2
cosh

k2

2

h i� �
ð32Þ

If this value is less than the shear rupture strain for the mortar, one can neglect the possibility of mortar rupture during
propagation of the plastic zone. Again, note that the normalized shear yield strain is given by gY ¼SY=ð2k2

2Þ, such that
ðgmaxÞfy value is always greater than gY for any value of k2. This means that the shear strain at the edge of the plastic zone
always increases during propagation of the plastic zone.

3.4. Composite rupture via shear failure

After complete yielding, the stress is fixed to be constant, i.e. sc ¼SY=4, and one must solve for the composite strain
associated with rupture of the horizontal interface. After complete yielding, an increment in applied strain, dEc , results in a
rigid-body translation of the top brick, dur ¼w � dEc=2. This causes an increment in the total shear strain (along the entire
interface) of dg¼ dur=t. Thus, the increment in shear strain is dg ¼ dEc=2. Using the state at the completion of yielding as a
reference, the total shear strain is given by

gmax ¼ ðgmaxÞfyþ
1
2ðEc�ðEcÞfyÞ ð33Þ

Equating this to the shear rupture strain of the mortar yields the following for the critical composite strain associated with
failure. Here, we define the rupture strain of the mortar as gR � gY ð1þrÞ, where r reflects the amount of plastic shear strain
(that beyond the initial yield strain) required for rupture, normalized by the initial yield strain. Thus, the final state of the
material is given by

½Ec ,sc�R ¼
SY

k2
2

1þrþ
1

4
k2

2

� �
,
SY

4

" #
ð34Þ

Note that this equation is only to be applied provided that r is large enough to ensure that failure does not occur during
propagation of the plastic zone.
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3.5. Examples of elastic–plastic stress–strain response and work of failure

Fig. 6 illustrates the composite stress–strain response that corresponds to the above predictions, for a representative
polymeric mortar with the properties listed in the caption. (In these simulations, the vertical interfaces are assumed to carry
no load.) The results illustrate the effect of brick aspect ratio (left) and mortar yield strength (right), with all other constituent
properties fixed as indicated. The data points correspond to the numerical solution for the partial yield regime. It is clear that
for small aspect ratios and low mortar yield strength, the applied strain range associated with propagation with the plastic
zone is quite small. In these simulations, the rupture strain in the mortar is fixed to be gR ¼ gYþ0:005, which dictates that
the increment in composite strain required to rupture the composite is independent of the chosen yield stress.

Given that the transition from initial yielding to complete yielding of the horizontal interfaces occurs over very small
strain increments, an accurate closed-form expression for the work of fracture (i.e. the area under the stress–strain curve)
can be easily derived by defining the elastic limit as the intersection of the elastic response and the pull-out response. Here
it is assumed that the bricks do not fail, such that Eq. (34) is satisfied: in this case, the work of fracture is given by

W f ¼
2EbWf

ðsf
bÞ

2
¼SY � GR�

S2
Y

8

1

Ec

�1

� �
ð35Þ

where GR ¼ gRt=ðEf
bwÞ. For simplicity’s sake, assume that the rupture strain of the mortar is such that the first term

dominates. In terms of constituent properties, the composite work of failure is given by

W f ¼
EbtY

ðsf
bÞ

2
�

t

h
¼

EbtY

ðsf
bÞ

2
�

f �w

2þw
ð36Þ

Thus, for fixed brick properties and fixed mortar volume fraction, the relative work to failure increases with increasing
aspect ratio of the bricks—provided brick failure does not occur. This is simply because raising the aspect ratio of the bricks
raises the pull-out stress, increasing the work to failure. Eventually, as the aspect ratio of the brick is increased for fixed
mortar yield strength, the bricks will break, such that the above does not apply and the work to failure drops abruptly.
Note also that, prior to brick failure, the work to failure is independent of the brick size for fixed mortar thickness: the
small deviations from a constant value seen in Fig. 6 (prior to brick failure) are a result of the changing modulus, i.e. the
terms neglected in Eq. (35).

4. Discussion

4.1. Brittle vertical interfaces and ductile horizontal interfaces

Fig. 7 summarizes the material response, assuming brittle vertical interfaces are governed by the failure strength
sf

i ¼
ffiffiffi
3
p

tY , where tY is the yield stress of the horizontal interfaces. Fig. 7A illustrates the stress–strain predictions for
several brick sizes and fixed interface strength: for short bricks, failure of the vertical interface controls strength, as the
stress required for pull-out is beneath the stress required to break the vertical interfaces. However, as the bricks increase in
size, the pull-out stress governs strength. If the bricks are too long (w¼ 40 mm in this case), the pull-out stress is higher
than the stress required to break the bricks, such that the composite fails before pull-out. The key characteristics of the
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stress–strain curve – work to failure, peak stress and modulus – are shown in Figs. 7B and C. The features of these curves
can be understood in terms of the stress–strain response shown in Fig. 7A, and the failure sequence(s) outlined in Fig. 3.

For example, note the kink in the strength vs. brick size plot shown in Fig. 7C, which occurs near w¼ 20 mm; for smaller brick
sizes, the vertical interface strength controls the peak stress (see result for w¼ 10 mm in Fig. 7A), while for large brick sizes, the
pull-out stress controls peak stress (see result for w¼ 25 mm in Fig. 7A). After the kink, where pull-out stress controls the peak
stress, the slope of the strength vs. brick sizes is proportional to the shear yield stress, as expected. The second kink, evidenced
most clearly in the result for tY ¼ 75 MPa in Fig. 7C, corresponds to brick failure: for bricks longer than � 37 mm, brick failure
occurs prior to pull-out. This leads to an abrupt drop in failure work at this same critical brick size, as evidenced by the result in
Fig. 7C. Note that for the strongest mortar, there is a very narrow range of brick sizes for which the pull-out stress governs peak
stress and ductile behavior results, i.e. the small steep strain line just before the ‘‘ledge’’ in Fig. 7B. For the stiff mortar above brick
sizes of � 29 mm, vertical interface failure again controls the composite strength, but the bricks fail immediately upon vertical
interface rupture, such that the high strength region is associated with very brittle composite response.

Fig. 7A and d illustrates that vertical interfaces can have a profound effect on strength and modulus for small brick
sizes, as expected. However, even for large aspect ratios, the vertical interface can play a critical role. For example, consider
the case of w=h¼ 10: in all cases, the vertical strength is dictated by the vertical interfaces, and the modulus drops by a
factor of two upon vertical cracking.
4.2. Optimal solutions

To simplify the discussion, consider the case of pre-cracked vertical interfaces. The optimal combination of mortar
strength and brick geometry that maximizes strength is given by

tY w

4sf
bh
¼ 1 ð37Þ
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Very strong bricks relative to the mortar require large aspect ratios to optimize strength, while for very strong mortar,
smaller aspect ratio bricks are required. Suppose that the mortar and brick strength are fixed, and the aspect ratio of the
bricks is adjusted to maximize strength: in this case, and assuming the mortar is much weaker than the bricks, the
composite work to failure is given by

W f ¼ 4f �
gR

Ef
b

�
tY

sf
b

ð38Þ

Conversely, suppose the brick aspect ratio, w, is fixed by the synthesis pathway, and the yield stress can be adjusted to
maximize strength. The optimal work to failure is given by

W f ¼ 4f �
gR

Ef
b

�
2þw

w2
ð39Þ

In this case, small aspect ratio bricks are desired, assuming that one can increase the yield stress of the mortar to be close
to that of bricks. This limit is not particularly meaningful, because it simply says that if you have ductile mortar that is of
comparable strength to the bricks, one should simply make a material out of the mortar itself. Nevertheless, it does
emphasize the fact that increases in mortar strength should be met with concomitant decreases in brick aspect ratio.

4.3. Materials comparison and implications for developments of synthetics

The present models create the opportunity to VET various potential brick and mortar composites by comparing their
performance to existing materials. Clearly, the comparison should be made in the context of specific properties (i.e.
properties divided by the density), as metals will generally be far stronger and more ductile in terms of raw properties, and
typically much stiffer. Fig. 8 illustrates Ashby maps for modulus vs. failure work and failure work vs. strength, with all
properties scaled by the density. Naturally, different applications require different scaling exponents, and the range of
possible material properties is quite broad: however, the materials chosen in Fig. 8 are arguably representative of each
class of material (ceramics, metals, polymers). Note that the log scale implies that a unit change in the figure corresponds
to an order of magnitude, or a change of 0.3 corresponds to a factor of 2.

For reference, model predictions can be explicitly compared to measured properties of natural nacre and the nacre-
inspired synthetic Al2O3=PMMA composite of Munch et al. (2008). Using the properties from Table 2 for Alumina and
PMMA, and the pertinent composite details from Munch et al. (2008) (f ¼ 0:2, h¼ 8 mm, w¼ 50 mm), Eq. (9) predicts a
composite modulus of 122 GPa, very close to the measured value of 115 GPa (Munch et al., 2008). Using reasonable values
for nacre (Em ¼ 100 MPa, Eb ¼ 100 GPa, f ¼ 0:025, h¼ 0:2 mm and w¼ 2 mm, Jackson et al., 1988; Ji and Gao, 2004a), Eq. (9)
predicts a modulus of 50 GPa, again very close to the measured value of 60 GPa (Jackson et al., 1988). For comparison, the
model of Ji et al. predicts composite moduli of 30 GPa and 29 GPa for the synthetic composite and nacre, respectively (Ji and
Gao, 2004a, Eq. (5)). The difference can be attributed to the effect of intact vertical interfaces, and highlights the importance
of including such features when modeling this class of materials. Comparisons to other synthetic brick and mortar materials
(e.g. Tang et al., 2003; Ekiz et al., 2009; Posiadlo et al., 2007; Bonderer et al., 2008, 2010a,b) are not appropriate here, since
these materials have mortar volume fractions b40%. For such large volume fractions of mortar, the assumption of uniform
mortar shear strain inherent to the present model is not valid and accurate predictions are not expected.
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Fig. 8. Ashby property maps comparing the projected performance of various synthetic materials with ceramics, metals, polymers and cermets, with the
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The map in Fig. 8 illustrates that natural nacre is a factor of 2–3 more ductile than engineered ceramics with a modulus
that is 2–3 times smaller, yet slightly higher than metals. Nacre‘s specific strength compares favorably to pure heavy
metals, but is almost an order of magnitude less strong than lightweight alloys. Interestingly, nacre has a comparable
specific strength compared to plastics such as PS and PMMA, though it is more than 25 times stiffer. Nacre is clearly
inspiring for its ability to achieve high ductility despite the fact it has a vanishing small fraction of ductile phase: in its raw
form, however, it is not even close to being competitive with metals.

Interestingly, natural nacre has comparable (though not quite as good) specific work to failure, strength and modulus as
engineered cermets such as TiC/Ni and WC/Co. This is noteworthy and inspiring, considering that the individual
constituent properties of nacre are arguably not as impressive as these engineered metal/ceramics. Clearly, this benefit is

derived from a highly ordered microstructure. The synthetic composite of Munch et al. provides an additional interesting
comparison. It has � 50% the stiffness of natural nacre (due to a comparatively large polymeric volume fraction), but
exhibits 50–100% more ductility, and twice the strength. The strength and ductility of the current ceramic/polymer
synthetic outperforms cermets, with the exception of a lower modulus.

The potential of various ceramic/polymer and ceramic/metal synthetics is illustrated in Fig. 8 by showing results for
various materials and varying brick size. First, consider a composite of identical composition to the aforementioned
Al2O3=PMMA material; using the properties given in Table 1, one predicts modulus, strength and ductility that is
comparable to measurements in Espinosa et al. (2009) and Munch et al. (2008). Here, it assumed that the vertical
interfaces are fully bonded, and experience rupture at

ffiffiffi
3
p

tY , which is consistent with Von Mises plasticity. Further, the
assumed brick strength and ductility of the PMMA mortar are likely significantly higher than reality; while brick strengths
of 1.5 GPa are possible for small volume ceramics, they are at the upper ends of high quality ceramics. Similarly, the
rupture strain of 150% is probably three times higher than conventional PMMA; one possible explanation is that friction
remains high even after mortar rupture. The effect of increasing the brick length (while holding the brick thickness and
mortar thickness fixed) is shown by the data points near the synthetic measurements. While the stiffness is considerably
improved by increasing the brick size, the specific strength and work to failure actually decrease: this is a consequence of
the decreasing volume fraction of mortar, which has a much lower density than the ceramic (about a factor of three). That
is, the raw strength and work to failure go up for longer bricks, but the penalty associated increasing density is larger than
the benefit. Note that for the range of constituent properties considered here, no transitions in failure mechanism are
observed for brick lengths in the range of 5250 mm.

Ceramic/polymer brick and mortar structures can be considerably improved if the yield stress of the polymer mortar
can be increased by 50% (to � 150 MPa), as indicated by the lines labeled ‘‘improved composite’’. Basically, increasing the
Table 1
Properties chosen for existing materials.

Material Modulus (GPa) Yield stress/strength (MPa) Failure strain (–) Density (g/cm3)

Ceramics

SiC 400 500 0.0013 3.2

Al2O3 370 600 (bulk) 0.0016 3.9

BC 450 530 0.0012 2.5

Metals

Ni 200 100 0.5 8.9

Al 70 100 0.2 2.7

Mg alloy 45 400 0.14 1.9

Ti6Al4V 110 830 0.11 4.4

Cermets

TiC/Ni 445 1500 0.0031 6.0

WC/Co 580 3500 0.0052 14.4

Polymers

PS 2 30 0.55 1.0

PMMA 2 50 0.6 1.2

Table 2
Properties chosen for candidate composites.

Material Modulus (GPa) Yield stress (MPa) Failure strain (–) Density (g/cm3) Thickness (mm)

Al2O3 bricks 370 1500 (small vol.) 0.004 3.9 2 for Ni, 5 for others

PMMA mortar 2.5 100 or 150 1.5 1.2 1

Ni mortar 200 100 0.5 8.9 1

Al mortar 70 150 0.2 2.7 1



M.R. Begley et al. / J. Mech. Phys. Solids 60 (2012) 1545–1560 1559
yield strength allows for more efficient transfer of loads to the bricks, driving up the modulus, strength and work to failure.
Though such composites would not be competitive with metals (based on just this comparison), such materials would be
an order of magnitude stronger and more ductile than ceramics, yet have comparable modulus. In order to realize this
gain, the critical challenge that must be addressed is a synthesis pathway for making strong, long bricks measuring roughly
five by fifty microns. Smaller bricks with thinner mortar sections would serve just as well, but would likely create
significant synthesis challenges: merely decreasing the mortar thickness serves no purpose, as the mortar volume fraction
decreases as well, limiting ductility (as indicated by Eq. (41)).

Arguably the greatest opportunity for new high-performance materials is the exploitation of ductile metal mortar.
Theoretical material responses are shown in Fig. 8 for pure nickel and pure aluminum mortar, with rupture strains of 0.5
and 0.2, respectively. Properties for these materials are widely variable, and values were specifically chosen to be
reasonable while leading to very different predictions. The abrupt shift in the curves is associated with the transition to
brick failure: eventually as the brick size is increased, bricks fail prior to pull-out and the work-to-failure drops abruptly.
The critical brick size for the aluminum mortar associated with failure is 42 mm, while that for the nickel mortar is 24 mm.
This difference is attributable to the difference in elastic modulus. A comparison of the nickel and aluminum mortar
predictions illustrates the role of the mortar modulus, and bonding of the vertical interfaces: the nickel predictions assume
that the vertical interface strength is tY=10, while the aluminum predictions assume vertical interface strengths of

ffiffiffi
3
p

tY :
these assumptions are motivated by the presumption that alumina/aluminum bonding will be stronger than that of
alumina/nickel. Clearly, much more detailed study is needed with the present model to understand trade-offs between
mortar modulus, strength and brick size. It is worth noting that the concept of metallic mortar is currently under
development (Launey et al., 2010), but as of yet, the metallic mortar volume fraction is too high to realize the gains seen in
Fig. 8.
5. Conclusions
�
 For synthetic materials with strong mortar/brick bonding, the vertical interfaces play an important role in contributing
to the overall composite stiffness; for short bricks, the vertical interfaces also play a significant role in raising the peak
strength of the composite.

�
 The peak strength, stiffness and work-to-failure of the material are optimized when the geometry is tuned to an

optimal brick size for a given mortar yield strength, or vice versa: increasing the mortar yield strength decreases the
optimal brick size.

�
 The principle gain of these materials over existing alloys is to maintain the stiffness of a ceramic while dramatically

increasing the work-to-failure over ceramics. Existing polymer/ceramic synthetics are competitive with cermets with
regard to modulus and work to failure, with smaller strengths. Materials optimization to increase mortar strength and
brick size will lead to high strength polymer/ceramic composites that exceed cermets. This is encouraging in the sense
that cemented carbides represent one extreme of the brick-and-mortar design space (i.e. high interface strength and
high mortar strength), with gains resulting from ceramic alignment.

�
 The use of metallic mortar material can dramatically increase the strength and work to failure of the brick and mortar

composites, leading to true outliers that defeat the general trend of decreasing failure work with increasing modulus
exhibited by current materials. The higher strength and stiffness of metallic mortar would also decrease the desired
brick aspect ratio, which would likely mitigate synthesis challenges.

�
 Though not considered here, the role of constrained plasticity in the vertical interfaces and any subsequent ductile

straining of vertical interfaces could lead to even more dramatic improvements in brick and mortar materials.
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