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Why Ductile Fracture Mechanics?1 

Until recently, the engineering application of fracture mechanics has been specific 
to a description of macroscopic fracture behavior in components and structural 
parts which remain nominally elastic under loading. While this approach, termed 
linear elastic fracture mechanics, has been found to be invaluable for the continuum 
analysis of crack growth in brittle and high strength materials, it is clearly inap­
propriate for characterizing failure in lower strength ductile alloys where extensive 
inelastic deformation precedes and accompanies crack initiation and subsequent 
propagation. Accordingly, much effort has been devoted in recent years toward the 
development of nonlinear or ductile fracture mechanics methodology to charac­
terize fracture behavior under elastic/plastic conditions; an effort which has been 
principally motivated by problems in nuclear industry. In this paper, the concepts 
of ductile (elastic/plastic) fracture mechanics are introduced and applied to the 
problem of both stationary and nonstationary cracks. Specifically, the limitations 
inherent in this approach are defined, together with a description of the 
microstructural considerations and applications relevant to the failure of ductile 
materials by fracture, fatigue, and creep. 

Introduction 
Since its earliest origins in the 1950's, the development of 

fracture mechanics has presented both the materials scientist 
and the mechanical engineer with a powerful means to 
quantitatively describe the macroscopic fracture behavior of 
solids. On the one hand, the use of fracture mechanics has 
permitted the materials scientist to perform meaningful 
comparisons between different materials on the role of alloy 
composition, microstructure, stress-state, crack size, etc. in 
influencing such processes as monotonic fracture, fatigue 
crack propagation, and environmentally-affected crack 
growth. In fact, it has provided a continuum-mechanics 
framework for the presentation of laboratory test data in 
order to quantitatively evaluate the fracture properties of 
materials. To the engineer, on the other hand, fracture 
mechanics has provided methodology to utilize such 
laboratory data (which are generally derived from small 
samples) to quantitatively predict the structural integrity of 
larger components in service, and to aid in the analysis of 
service failures. Further, this is achieved without any recourse 
to formulating microstructural models of the complex 
fracture processes involved. The essential premise in this 
approach has been the realization that all materials contain 
defects and incipient flaws, such that the expected life-time of 
a given component can be considered in terms of the time 
required to propagate the largest undetected crack (estimated 
from proof testing or through non-destructive evaluation) to 
some critical size (estimated from the fracture toughness, limit 
load or design requirements). This approach, known as 
defect-tolerant design, is now in widespread use, particularly 
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for safety-critical structures such as are encountered in 
nuclear and aerospace applications. 

To date, the engineering applications of fracture mechanics 
have centered around a description of macroscopic fracture 
behavior in components and structural parts which remain 
nominally elastic. Such linear elastic fracture mechanics, 
however, while proving to be invaluable for the continuum 
analysis of crack growth in brittle and high strength materials, 
becomes inappropriate when applied to the description of 
failure in lower strength ductile materials where extensive 
inelasticity precedes and accompanies fracture. To meet this 
need, much analytical and experimental effort has been 
devoted in recent years toward development of nonlinear or 
ductile fracture mechanics to characterize crack growth where 
fracture initiation and subsequent crack advance occurs under 
elastic/plastic conditions. 

It is the objective of this paper to review the concepts of 
ductile (elastic/plastic) fracture mechanics, as applied to both 
stationary and nonstationary cracks, and to highlight the 
inherent limitations of its use. Furthermore, the 
microstructural considerations and applications of this ap­
proach are described with respect to the failure of ductile 
alloys by fracture, fatigue and creep. 

Linear Elastic Fracture Mechanics 

The essential features of fracture mechanics begin with 
characterizing the stress and deformation fields, local to the 
region at a crack tip. This is achieved principally through the 
use of asymptotic continuum mechanics analyses where the 
functional form of the local singular field is determined 
within a scalar amplitude factor whose magnitude is 
calculated from a complete analysis of the applied loading 
and geometry. The best known example of this approach is 
for the linear elastic behavior of a stationary crack subjected 
to tensile (Mode I) opening (Fig. 1), where the local crack tip 
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Fig. 1 Schematic representation of a half-crack, length a, subjected to 
a Mode I remotely-applied stress o°°, showing the linear elastic 
distribution of the local tensile stress (tryy) directly ahead of the crack 

stresses (<j,y) can be characterized in terms of the K, singular 
field [1,2]: 

<T,j(r,0)~-=k.4(0) as/—0, (1) 
v2irr 

where Kj is the Mode I stress intensity factor, r the distance 
ahead of the crack tip, 6 the polar angle measured from the 
crack plane, and fy a dimensionless function of 6. Similar 
expressions exist for cracks subjected to pure shear (Mode II) 
and anti-plane strain (Mode III). Provided this asymptotic 
field can be considered to "dominate" the local crack tip 
vicinity over a region which is large compared to the scale of 
the microstructural deformation and fracture events involved, 
then the scalar amplitude fa'ctor K, can be considered as a 
single, configuration-independent parameter which uniquely 
and autonomously characterizes the local stress field ahead of 
a linear elastic crack and can be used there as a correlator of 
crack extension. Although undetermined from the asymptotic 
analysis, K, can be computed from the overall geometry and 
applied loading conditions, and solutions for K, applicable to 
a wide variety of situations are now tabulated in handbooks 
[e.g. 3], For example, for the case of an internal crack of 
length 2a in an infinite body subjected to a remotely applied 
tensile stress a°°, K, is simply given by 

K, = o*°yfira. (2) 
Thus for linear elastic conditions, crack tip fields can be 

considered to be unique to within a scalar factor KIt such that 
K, constitutes a single-parameter crack driving force for crack 
advance. For the monotonic loading of stationary cracks, this 
approach has been applied to characterize the onset of brittle 
fracture, where for plane strain conditions Kj=KIC, the 
fracture toughness [4], and to estimate the onset of crack 
instability in plane stress through the use of ^/-resistance 
curves [5]. Furthermore, for sub-critical crack growth, Kt has 
been used to correlate rates of crack growth both for en­
vironmentally-assisted fracture (stress corrosion, hydrogen 
embrittlement, etc.) and in fatigue (through expressions of the 
form da/dN=CAKm[6\. The essence of this approach and in 
fact the reason why it can be successfully applied to such a 
wide range of fracture behavior is that the asymptotic con­
tinuum mechanics characterization does not necessitate 
detailed quantitative microscopic models to be known for the 
individual fracture events. In view of the complexity of these 
processes on the microstructural scale, this must be regarded 
as fortunate, at least, for a macroscopic description of 
fracture [8]. 
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Fig. 2 Idealized geometry showing definition of thickness (8) and 
inplane dimensions of crack length (a) and ligament depth (b = IV-a) 

Naturally, there are limitations inherent in this approach. 
First, equation (1) ignores all but first order terms, such that a 
Ki characterization of crack tip fields is only relevant as r 
tends to zero, i.e., Kj cannot be taken as a correlator of crack 
extension if, for example, the scale of microscopic fracture 
events (the so-called characteristic or microstructurally-
significant dimension) is as large as the crack length. 
However, as r tends to zero, stresses become infinite for the 
linear elastic analysis. In reality, of course, such stresses are 
limited by local crack tip yielding, which occurs over a region 
ahead of the crack tip known as the plastic zone size ry. 
Calculations of the extent of this region vary depending upon 
the mode of applied loading and the geomety of the body [7, 
8] but a rough estimate for ry can be taken as 

where a0 is the yield strength of the material. Thus, although 
the linear elastic stress distribution, characterized by the Kr 
field (equation (1)), is only valid close to the crack tip (i.e., as 
r~0), it is violated there over a dimension of the order of 
(Ki/a0)

2, i.e., the asymptotic solution is most accurate where 
it is least relevant! However, provided the extent of local 
plasticity is small compared with the extent of the A^-field, 
which itself is small compared to overall dimensions of the 
body (including the crack length), the plastic zone can be 
considered as merely a small perturbation in the linear elastic 
field and K, crack tip dominance can be preserved. For an 
idealized geomety (Fig. 2), this situation, known as small-
scale yielding, appears to be met when the plastic zone is of 
the order of 15 times smaller than the in-plane dimensions of 
crack length (a) and ligament depth (b). Additionally, where 
the Kj approach is used to define a single-valued charac­
terization of toughness, i.e., for the onset of brittle fracture at 
KI=KIC, the requirement of plane strain must also be met 
such that the plastic zone must be approximately 15 times 
smaller than the out-of-plane dimension of thickness B. These 
limitations form the basis for the minimum test-piece size 
requirements of the ASTM E-399 Standard for K,c deter­
mination [4], i.e., that 

a,B,b>2.s(— } . (4) 
\ ff0 / 

Such limiting size requirements for the use of linear elastic 
fracture mechanics actually present few practical difficulties 
for most higher strength or brittle materials (Table 1). For 
example, valid KIC measurements can be made for maraging 
steels with test specimens larger than approximately 14 mm, 
and for tungsten carbide with specimens thicker than 0.3 mm. 
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Table 1 Approximate limiting size requirements for characterization by linear elastic 
fracture mechanics in different materials 

Material 

4340, 200°C temper 
Maraging Steel 
A533B-1 
7075-T651 
2024-T351 
Ti-6A1-4V 
Tungsten Carbide 
Polycarbonate 

CT0 

(MPa) 

1700 
1450 
500 • 
515 
370 
850 
900 
70 

K1C 

(MPaVm) 
60 

110 
245 
28 
35 

120 
10 
3 

ry 

(lira) 

200 
920 

4 x l 0 4 

470 
1420 
3170 

20 
290 

Limiting size 

(mm) 

3 ( -0 .1 in.) 
14 ( -0 .5 in.) 

600 ( - 2 ft) 
7 ( -0 .3 in.) 

22 ( ~ l i n . ) 
50 (~2in.) 
0.3 ( - 3 mils) 
5 ( - 0 .2 in.) 

However, characterizing the fracture toughness of a lower-
strength ductile material, such as A533B-1 nuclear pressure 
vessel steel, would necessitate the use of a test-piece 2 foot 
thick containing a similar sized fatigue precrack! While such 
jumbo-sized specimens have been tested in a few instances [9], 
the cost associated with large-scale testing of this type is 
generally totally prohibitive. Further, in the case of nuclear 
materials where the toughness of irradiated samples is 
required, such test-pieces simply could not be utilized. 

The need, therefore, exists for a means to reliably measure 
the fracture toughness of such lower strength ductile materials 
as nuclear pressure vessel steel in laboratory-size test-pieces, 
where fracture is accompanied by extensive deformation 
(large-scale yielding), and to use this information to predict 
failure in the much larger section sizes encountered in service 
(where conditions of small-scale yielding may apply). Ad­
ditionally, an extension of the linear elastic characterization is 
required for the macroscopic fracture analysis of such 
problems as creep crack growth, fatigue crack propagation at 
high stress intensities and the growth of small cracks; all 
instances where the extent of local crack tip plasticity is 
comparable with crack length and overall geometric 
dimensions. Such an extension has been provided by the 
development of ductile (elastic/plastic) fracture mechanics. 

Ductile (Elastic/Plastic) Fracture Mechanics 

As shown above, the restriction of small-scale yielding 
places a severe limitation on the application of linear elastic 
fracture mechanics, a restriction which effectively excludes 
lower strength ductile materials. Whereas several approaches 
have been suggested over the years to extend linear elastic 
fracture mechanics to situations where plastic zones are larger 
(e.g. for plane stress [5]), .f\;-field crack tip solutions in 
general cannot be utilized for large-scale yielding conditions 
and elastic/plastic solutions must be sought. Such solutions 
were first proposed in 1968 by Hutchinson, Rice and 
Rosengren [10, 11] for power-hardening solids (a a e^tic) 
under symmetric opening loads. The HRR singularity, as it 
has become known, yields an asymptotic form of the crack tip 
stress and strain fields which, in the limit as r—0, gives 

/ EJ \ ' " ( " + " 

/ EJ \ 1/("+1> 
ij(8,n), 

(5) 

(6) 

where a0 is the yield or flow strength, n the work hardening 
exponent, E the elastic modulus, and/y and g,y are universal 
functions of their arguments dependent upon whether plane 
strain or plane stress is assumed. The amplitude of the 
asymptotic field / is the so-called /-integral, introduced by 
Rice and Cherepanov [12, 13], which can be defined for any 
closed contour around a crack tip as 

/= Wdy-
dlij 

dx 0) 

Fig. 3 Showing contour r drawn counter-clockwise around crack tip 
in definition of J-integral 

where Tis the traction vector perpendicular to V and Wis the 

Fig. 4 Idealized constitutive behavior, of equivalent stress a as a 
function of equivalent plastic strain i„, for (a) nonlinear elastic material 
conforming to deformation plasticity theory, and (b) incrementally-
plastic material conforming to flow theory of plasticity 

strain energy density, as shown in Fig. 3. It can be shown that 
the /-integral is precisely path-independent for nonlinear 
elastic materials conforming to deformation theory plasticity 
(Fig. 4(a)) and substantially path-independent for numerical 
solutions of incrementally plastic materials conforming to 
flow theory (Fig. 4(b)) [8]. Furthermore, by choosing the 
contour T to fall within the region dominated by the Kr-field 
for small-scale yielding, / can be directly related to the strain 
energy release rate G and hence to the stress intensity Kr for 
linear elastic behavior [7], i.e., 

/ = G=K]IE', (linear elastic) (8) 

where E' = £ f o r plane stress and £7(1 — v2) for plane strain. 
Examination of equations (5) and (6) reveals that in directly 

analogous fashion to the function of Kt in defining the 
amplitude of linear elastic crack tip fields (equation (1)), the 
HRR singularity yields elastic/plastic crack tip singular fields 
which are unique (for a strain hardening material) to within a 
scalar amplitude factor / . Once again, provided /-dominance 
is assured over regions ahead of the crack tip comparable with 
the scale of the microstructural deformation and fracture 
events involved, / , like K,, can be used as a correlator of 
crack extension only now for elastic/plastic conditions. 
Furthermore, by recognizing the equivalence of / and G in 
linear elasticity, values of the stress intensity K, can be 
determined from / for small-scale yielding through the use of 
equation (8). 

At this point it is worth noting that from equations (5) and 
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45_K 

Crack opening 
displacement 

Fig. 5 Definition of the crack tip opening displacement (CTOD), 6t 

(6), the opening of the crack faces varies at /•—0 as r"n"+l). 
This separation can be used to define the crack tip opening 
displacement (CTOD) 8, as the opening where 45 deg lines 
intercept the crack faces (Fig. 5) such that 

8,=d(e0,n)J/a0, (9) 

where d is a proportionality factor dependent upon the yield 
strain e0

 ar*d work hardening exponent n, which varies for 
plane stress as opposed to plane strain. From Shih's 
numerical computations [14], rfhas been found to vary from 1 
for n=\ to 0.4 for « = 0.3 in plane stress and from 0.8 for 
n= 1 to 0.3 for « = 0.3 in plane strain. Similar t o / , 8, can also 
be considered as a measure of the intensity of the 
elastic/plastic crack tip fields, yet unlike / , it perhaps offers 
more physical insight since it can be more readily related to 
the physical crack tip failure processes involved [15]. 

As in linear elastic fracture mechanics, the / or CTOD 
approach has been applied to numerous modes of fracture 
behavior. For stationary cracks under monotonically in­
creasing proportional loading in plane strain, / has been used 
to characterize the initiation of cracking (at / = / / c or at 
5, = 8,), whereas for nonstationary cracks subsequent crack 
growth has been analyzed with /-resistance curves using 
parameters such as dJIda (the slope of the /-resistance curve), 
T (the tearing modulus), and CTOA (the crack tip opening 
angle, d8,/da) [16]. Other applications have been the use of 
A/, the cyclic range of / , for characterizing the rate of 
elastic/plastic fatigue crack propagation, and / o r C*, the 
rate-dependent analogue of / , for creep crack growth rates. 
These applications are described in more detail below. 

There are several factors which must be considered, 
however, before the use of / (or 5,) can be contemplated for 
the above mentioned applications. First, the underlying 
assumption in deriving the HRR solutions (equations (5) and 
(6)) and the energy release rate definition of / (equation (7)) 
are that material behavior conforms to the deformation 
theory of plasticity (i.e., the material is a nonlinear elastic 
solid as in Fig. 4(a)). For a stationary crack subject to a 
monotonically increasing load, where plastic loading will not 
depart radically from proportionality, this is a good ap­
proximation. However, for growing cracks where regions of 
elastic unloading and nonproportional plastic flow will be 
embedded in the /-dominated field, behavior is not properly 
modelled by deformation theory, and this poses certain 
restrictions to the /characterization for large-scale yielding as 
discussed below [17]. Second, for / or 8, to be utilized as a 
single, configuration-independent parameter to characterize 
crack extension, the HRR fields must dominate over a region 
ahead of the crack tip which is large compared to the scale of 
the microstructural deformation and fracture events involved. 
Since this fracture process zone is of the order of the blunted 
crack opening, i.e., the CTOD, the radius of the HRR field 
(i.e., the zone of dominance R) must be large compared to 8,. 
This, like the conditions for Kj-dominance (small-scale 
yielding) and valid KIC measurement in the linear elastic 
analysis, implies that certain specimen size requirements must 
be met for the / analysis to be relevant. Unfortunately, unlike 
the linear elastic case, these size limitations (i.e., the region of 
/-dominance) can vary markedly in different specimen 
geometries. In this regard it is worth remembering that crack 
tip fields for rigid/perfectly plastic bodies under fully yielding 
conditions are not unique, implying that there can be no 

(2 + ir)k 

(l+7T)k 
(o) 

Fig. 6 Fully plastic plane strain slip-line fields for rigid/perfectly 
plastic solids for (a) deep edge-cracked bend and deep double-edge-
cracked tension plates (Prandtl field), and (b) center-cracked tension 
plate, k = shear yield stress = <r0/V3-

unique, configuration-independent parameter (i.e., / or 
anything else) which is a measure of crack tip deformation 
and extension in this limit. As noted by McClintock [18], the 
plane strain slip-line field for a fully-yielded edge-cracked 
plate in bending has a fundamentally different near-tip stress 
and strain field compared to the center-cracked plate in 
tension (Fig. 6). The former case, which is essentially the 
Prandtl field, develops high triaxial and normal stress ahead 
of the tip, with r~' singular shear strains in the fan above and 
below, whereas in the latter case only modest triaxiality occurs 
ahead of the tip, but intense shear strains develop on planes at 
45 deg to the crack. Rationalizing such nonunique fully plastic 
solutions with our originally stated concept of a unique HRR 
field at the crack tip requires that some strain hardening must 
exist for /-controlled crack extension. However, the region of 
relative dominance of the HRR singularity for strain har­
dening materials will correspondingly be significantly smaller 
for the center-cracked plate in tension compared with the 
edge-cracked plate in bending. Finite strain, finite element 
calculations by McMeeking and Parks [19] have quan­
titatively estimated these size limitations for a single 
parameter / characterization, in terms of the ligament 
dimension b, as 

/ 
b >25 — , for edge-cracked bend specimen 

and 

b > 200 — , for center-cracked tension specimen 
ffo 

(10) 

(11) 

for materials of moderately low strain hardening (n = 0.1). It 
is immediately apparent from these calculations that the 
center-cracked plate in tension is subject to much more 
stringent size requirements, which place a severe limitation on 
the applicability of a single parameter fracture charac­
terization to such cracked configurations. 

Applications of Ductile Fracture Mechanics 

A. Crack Initiation (Stationary Cracks). The potential 
application of elastic/plastic fracture mechanics, in particular 
the use of / , to characterize the onset of crack extension in 
ductile materials, i.e., to determine the fracture toughness 
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under large-scale yielding conditions, was first developed by 
Begley and Landes [20, 21]. On the premise that, using the 
HRR singularity, / uniquely and autonomously characterizes 
the crack tip stress and strain fields around a stationary crack 
in a strain hardening material, they proposed that for plane 
strain conditions, at the initiation of crack growth, / would 
exceed some critical value / /C . Thus, by determining Jlc in a 
small-specimen large-scale yielding test, the fracture 
toughness Klc (for small-scale yielding) could then be 
computed using the J-K, equivalence stated in equation (8). 
The advantages of such a test can be readily appreciated by 
comparing the test-piece size requirements with those for­
merly stated for valid K!C measurement (equation (4)). By 
considering again, A533B nuclear pressure vessel steel with a 
compact tension geometry (essentially equivalent to the 
Prandtl field), the valid small-scale yielding K]C test requires a 
2 ft thick specimen, whereas the large-scale yielding J,c test 
merely requires the thickness and ligament depth to exceed 25 
J/c/oo (from equation (10)). Using the values quoted in Table 
1, this means that the fracture toughness can be measured in 
A533B steel with only a 12 mm (1/2 in.) specimen, which is 
clearly a practical size for standard laboratory test 
measurements. It should be noted here, however, that had a 
center-cracked tension specimen been employed, the more 
stringent size limitations [19] of this geometry for / -
dominance (equation (11)) would have necessitated the use of 
a 100 mm specimen (i.e., B,b>200JIC/a0). 

Test methods to determine the fracture toughness with J,c 

measurements have become standardized and involve the 
determination of the value of / at crack initiation using the / -
resistance curve (Fig. 7) [22]. Using a series of identical test-
pieces1 (the multispecimen technique) or a single test-piece1 

with an independent means of monitoring crack growth (i.e., 
using unloading compliance), values of / corresponding to 
different amounts of crack extension (Aa) are plotted to 
construct the resistance curve JR(Aa). The value of J]C at 
crack initiation is then found, by extrapolating the linear 
portion of this curve to the point of zero crack extension, 
characterized by the so-called blunting line defined as 

J=2a0Aa. (12) 

Similar to Kt-solutions, solutions for / in a wide variety of 
loading and cracked configurations can be obtained from 
handbooks [23]. 

Analogous methods for determining the fracture toughness 
under large-scale yielding conditions have also been developed 
using the CTOD concept [24]. Although crack initiation 6, 
values are physically more appealing in terms of the 
relationship of macroscopic toughness parameters to the 
actual microscopic failure events involved, the crack tip 
opening displacement is more difficult to measure and in­
terpret, and is generally not favored in this country. 

B. Crack Growth (Nonstatlonary Cracks). The extension 
of elastic/plastic fracture mechanics to the case of growing 
cracks is considerably less developed in view of the fact that 
near-tip stress and strain fields for the nonstationary flaw are 
far more complex. For example, crack growth will involve 
elastic unloading and nonproportional plastic loading, both 
of which are inadequately described by the deformation 
theory of plasticity on which / is based [16]. However, 
following the analysis of Hutchinson and Paris [17], it is 
apparent that under restricted circumstances, the concept of 
/-controlled growth based on the /,; (Aa) resistance curve can 
be used. Figure 8 shows a schematic representation of the 
near-tip conditions for a growing crack [16]. Regions of 
elastic unloading (comparable with the scale of crack advance 

1 To prevent tunnelling of crack growth at the center of the specimen, such 
test-pieces may be side-grooved to a depth of the order of 20 percent of the 
thickness. 

Crack 
blunting 

CRACK EXTENSION, Aa 

Fig. 7 J/rfAa) resistance curve, showing definition of J/c at initiation of 
crack growth 

Region of elastic 
unloading 

Region of nearly-proportional 
loading, J-field 

Region of 
non-proportional 

plastic loading 

R = radius of HRR field 

Fig. 8 Schematic representation of the near-tip conditions for a non-
stationary crack relevant to the definition of ./controlled growth 

Aa) and nonproportional loading are embedded within the 
HRR /-controlled singularity field of radius R. The argument 
for /-controlled crack extension relies on the fact that 
provided these regions are small compared to the radius of the 
HRR field, then the singularity field can be said to be con­
trolling. This is essentially the same concept used in linear 
elastic analysis where a region of plastic behavior, i.e., the 
plastic zone, is considered to be embedded in, and controlled 
by, the K, singularity field. The two conditions for J-
controlled growth are thus that the region of elastic unloading 
is small, i.e., 

Aa< <R, (13) 

and that / increases sufficiently rapidly with crack extension 
such that the region of non-proportionality is small, which 
can be stated as [17]: 

J,c \ da ) 
> > 1 . (14) 

Numerical calculations by Shih and co-workers [23, 25] in­
terpret these requirements for /-controlled growth as to a 10 
for Prandtl field geometries and a a 100 for center-cracked 
tension geometries. This means that the concept of / -
controlled crack extension of a nonstationary crack in plane 
strain (i.e., B>b) is valid only for crack growth correspond­
ing to 6 percent of the ligament (Aa< 0.06b) in a compact 
tension geometry. Thus, using a typical precracked 25 mm 
thick IT compact specimen, only the first 1.5-2 mm of crack 
extension can be taken as /-controlled. Furthermore, for the 
center-cracked tension configuration, this requirement is even 
more restrictive and corresponds to crack growth over only 1 
percent of the ligament (i.e., Aa<0.0166, which corresponds 
to roughly 0.5 mm for a 25 mm ligament). 
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CflACK GEOMETRY 

Double-edged 
cracked 
(W = IOb) 

Three-point bend 
and compact tension ( 

SLIP-LINE FIELD 

1 t t 

1 I I 

A ) 

Nominal 
Si (^m) J 1 C (k j / m 2 ) 

(HY80 steel) 

9 0 147 

170 190 

Double -edged 
cracked 
(W = 4 b) 

Single 
edge-cracked tension 

Single 
edge-cracked tension 
(center ligament loaded) 

302 338 

450 

900 

504 

570 

Fig, 9 Nominal S; and Jlc values determined for HY80 steel for a 
variety of crack configurations. Data from Hancock and Cowling (1980). 

Despite these stringent size limitations for /-controlled 
crack advance, several criteria have been proposed to 
characterize the toughness and stability of the extending crack 
based or the JR(Aa) resistance curve (Fig. 7). Paris and co­
workers [26], for example, have proposed an analysis of crack 
instability similar to the linear elastic resistance curve concept 
for plane stress crack extension. By characterizing the tearing 
resistance of a material in terms of the nondimensional slope 
of the JR (Ad) resistance curve, i.e., 

T - E dJR 

da 
(15) 

where TR is known as the tearing modulus, crack instability is 
achieved when the tearing force (T= (E/ol) dJ/da) exceeds 
TR. Using a variety of specimen geometries in several widely 
different materials, some success has been achieved in 
correlating crack growth and instability using this concept. 
Analogous procedures have been developed using the slope of 
the CTOD-resistance curve, where dd,/da is equivalent to the 
crack tip opening angle (CTOA)[23, 27]. 

C. Other Applications of Ductile Fracture Mechanics. 
The use of the / concept to characterize crack extension has 
also been applied to the problem of fatigue crack 
propagation, where the parameter utilized to correlate rates of 
crack growth (da/dN) is now taken to be A/, the cyclic range 
of / for each stress reversal [28]. Similar to the case of 
monotonic crack extension of a nonstationary flaw described 
above, this application again appears to violate the basic 
assumption of deformation plasticity theory that stress is 
proportional to current plastic strain. However, by 
recognizing that constitutive laws for cyclic plasticity (i.e., the 
cyclic stress-strain curve) can be considered in terms of stable 
hysteresis loops, and that such loops can be shifted to a 
common origin after each half cycle, the criterion of stress 
proportional to current plastic strain can be effectively 
achieved. Some success has been achieved with this 
elastic/plastic fracture mechanics approach in correlating 
fatigue crack growth rates at high stress intensities [28], for 

small cracks [29] and for crack extension in Mode III (an-
tiplane strain) [30], all instances where the extent of local 
crack tip plasticity (i.e., the plastic zone size) is too large to 
permit a small-scale yielding characterization in terms of AA', 
the cyclic stress intensity range. 

Elastic/plastic fracture mechanics has also been applied to 
the problem of creep crack growth at elevated temperatures, 
where now the asymptotic crack tip fields can be scaled in 
terms of C*, the rate-dependent or viscous analogue of J [31]. 
Fundamentally, interpretation is far more complex in this case 
as the strength and region of dominance of the local HRR 
fields are continuously changing with time, and further such 
fields must be matched with additional Kr and time-
dependent creep deformation fields [8, 31, 32]. However, 
recent numerical and experimental studies have shown that 
provided due attention is given to determining the dominant 
field specific to a given instant in time, such elastic/plastic 
fracture mechanics analysis can provide a useful macroscopic 
characterization of crack extension in a power-law creeping 
solid [31, 32]. 

Relationship to Microscopic Fracture Modelling 

One of the main advantages of fracture mechanics analysis 
is that it effectively correlates the macroscopic aspects of 
crack initiation and growth without recourse to developing 
microscopic models for the local fracture processes which 
themselves must depend upon the nature of the microstructure 
and the local crack tip stress and deformation histories. 
However, for a complete understanding of fracture such 
microstructural initiation and growth criteria must be defined 
and related to the macroscopic continuum analyses. In a few 
simplified cases, this has been achieved. For example, for slip-
initiated transgranular cleavage fracture in ferritic steels, 
Ritchie, Knott and Rice [33] have shown that the onset of 
brittle crack propagation at A",=Ar

/c is consistent with the 
local tensile opening stress (ayy), directly ahead of the crack, 
exceeding a local fracture stress {of) over a microstructurally-
significant characteristic distance. In mild steels, this distance 
appeared to be of the order of two grain diameters, although 
other size-scales have been found when the analysis is applied 
to other materials [34]. Similarly, a stress-modified critical 
strain criterion has been found for crack initiation by 
microvoid coalescence where, at J=J,C, the local equivalent 
plastic strain must exceed some critical fracture strain or 
ductility (specific to the relevant stress-state) over a 
characteristic distance comparable with the spacing of the 
void-initiating particles [35]. Crack extension in Mode III for 
elastic/perfectly plastic materials has been similarly analyzed 
in terms of a total shear strain being exceeded over the extent 
of the plastic zone size [36], whereas the more complex 
calculations for Mode I crack extension require a critical 
crack opening displacement to be reached at some fixed 
microstructural distance behind the growing crack tip [37], 
Modelling studies such as these represent the very heart of the 
understanding of fracture in that they seek to unify 
microscopic failure mechanisms and the role of 
microstructure with the continuum asymptotic crack tip stress 
and strain fields and the macroscopic fracture criteria 
[33-39]. It is only by such a complete understanding that one 
can fully proceed from the fundamental alloy design of 
materials with superior fracture resistance to the engineering 
predictions of when such materials will fail in service. 

Concluding Remarks 

In this paper, an attempt has been made to briefly review 
the extension of linear elastic fracture mechanics to the 
analysis of failure under elastic/plastic and fully plastic 
conditions. In view of the very restrictive size requirements 
for linear elastic fracture characterization in lower strength, 
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ductile materials, the use of such nonlinear (elastic/plastic) 
fracture mechanics for these alloys can clearly provide a 
significant practical payoff. In the nuclear industry, for 
example, the ability to reliably measure the fracture toughness 
of pressure vessel steels in laboratory-sized samples, instead 
of testing 2^ft thick specimens, has saved substantial sums of 
money, has provided a basis for surveillance specimens, and 
has enabled a j proper characterization of the role of neutron 
irradiation to be determined. Furthermore, the extension of 
the analysis fdr nonstationary cracks may allow future 
fracture design to be somewhat less conservative in that some 
amount of stable crack growth can be tolerated. Similar 
analyses of crack extension by fatigue and creep appear 
equally promising. 

However, although one can feel comfortable about 
measuring the fracture toughness and subsequent stable crack 
advance in laboratory compact samples in terms of / , the 
application of this information to cracked-configurations in 
service requires far more care than with linear elastic analysis. 
First, Jlc and /-controlled crack growth data pertain 
specifically to crack advance in plane strain under large-scale 
yielding conditions. Application of such data, to say, fusion 
first wall structures where size-scales are small, i.e., in the 
~2-10 mm range for lower strength ferritic or austenitic 
stainless steels, may not be appropriate [30]. In this instance, 
an appreciation of plastic collapse loads and plane stress 
analyses may be far more relevant. Second, the application of 
/ analysis to be problems of shallow or part-through cracks 
[41] and to noncoplanar cracks [8] is still largely undeveloped, 
and yet such configurations are regularly encountered in 
service. Third, there is the problem of the differing size 
requirements for /-dominance between various crack 
geometries and the fact that in the limit of fully plastic failure 
in nonhardening materials, crack tip stress and deformation 
fields are simply not unique. In this regard, it is pertinent to 
note the recent experimental results of Hancock and Cowling 
[42] on quenched and tempered steels similar to HY80. Using 
six different cracked configurations of varying degrees of 
constraint, they found nominal JIC values for crack initiation 
ranging from ~ 147 to 570 kJ/m2, despite their claim that the 
generally accepted size requirements had been met (Fig. 9). 
Clearly, the size limitations for elastic/plastic fracture 
mechanics analysis in non-Prandtl field geometries are of 
extreme importance, and may mean that, for certain con­
figurations, the requirements of size for /-field analysis may 
be no less restrictive than for the ^-field solutions. This is 
particularly relevant for materials of very low strain har­
dening, a situation which is often the case for highly 
irradiated alloys. It is clear that for such applications, the use 
of a single, configuration-independent parameter, such as / , 
to characterize fracture initiation and crack growth must be 
viewed with some caution. 
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