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A system H with a Hagedorn-like mass spectrum can
sustain only the unique temperature TH encoded in the
spectrum itself. H imposes the same temperature to all
emitted particles. This may explain the recurring tem-
perature observed in several experiments.

Hagedorn noted that the hadronic mass spectrum
(level density) has the asymptotic (m→∞) form

ρH(m) ≈ exp (m/TH) , (1)

m is the mass of the hadron and TH is the parameter
(temperature) controlling the the mass spectrum [1, 2].

The MIT bag model [3] produces the same behavior
via a constant pressure B of the containing bag [4, 5]. In
vacuum the bag pressure B forces a constant temperature
TB and enthalpy density ε, thus the entropy is

S = εV /TB = m/TB , (2)

V and m are the volume and mass of the bag respectively.
This leads to a bag mass spectrum identical to Eq. (1)
[4, 5]. This implies the lack of any bag surface energy.

Many experiments with high energy elementary par-
ticle collisions on different systems indicate a constant
temperature characterizing both chemical and physical
equilibrium [6–8]. We explore the connection of these
empirical temperatures with the Hagedorn temperature
TH and the bag temperature TB .

A system H possessing a Hagedorn-like spectrum,
characterized by an entropy of the form (2), not only
has a unique microcanonical temperature TH

TH = (dS/dE)−1 = TB , (3)

but also imparts this same temperature to any other sys-
tem to which H is coupled. H is a perfect thermostat
with the constant temperature TH.

To demonstrate this we couple H to a one dimensional
harmonic oscillator and use a microcanonical treatment.
The unnormalized probability P (ε) for finding an exci-
tation energy ε in the harmonic oscillator out of the sys-
tem’s total energy E is

P (ε) ∼ ρH(E − ε) ρosc(ε)

= exp
(

E − ε

TH

)
= ρH(E) exp

(
− ε

TH

)
. (4)

For a one dimensional harmonic oscillator ρosc is a con-
stant. The energy spectrum of the oscillator is canonical
up to the upper limit εmax = E with an inverse slope
(temperature) of TH independent of E. The mean value
of the energy of the oscillator is:

ε = TH

[
1− E/TH

exp (E/TH)− 1

]
. (5)

Thus in the limit that E →∞: ε→ TH, i.e. no temper-
ature other that TH is admitted.

Similarly, consider a vapor of N � 1 non-interacting
particles of mass m coupled to H. The microcanonical
level density of the vapor with kinetic energy ε is

ρvapor(ε) =
V N

N !
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)
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, (6)

where V is is the volume. The microcanonical partition
of the total system is

ρtotal(E, ε) = ρH(E − ε)ρvapor(ε)

=
V N
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e
E−mN−ε

TH . (7)

The distribution of the vapor is exactly canonical up to
εmax = E, if the particles are independently present, or
εmax = E −mN , if the particles are generated by H. In
either case, the temperature of the vapor is always TH.

At fixed N the maximum of ρtotal(E, ε) with respect
to ε gives the most probable kinetic energy per particle:

∂ρtotal(E, ε)
∂ε

=
3N

2ε
− 1

TH
= 0 ⇒ ε

N
=

3
2
TH , (8)

provided that E ≥ mN + 3
2NTH. For mN < E < mN +

3
2NTH, the most probable value of the kinetic energy per
particle is ε

N = E
N − m < 3

2TH; for E ≤ mN , ε
N = 0.

TH is the sole temperature characterizing the distribution
up to the microcanonical cut-off, which may be above or
below the maximum of the distribution, since the form
of ρtotal(E, ε) is independent of E.
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