2009/10 Lead Workshop Deliverables for GEODM

S. Golwala (Caltech) 2009/10/03

Experiment Location

- Space constraints:
 - Conceptual design of 7400 ft level (Marks 081219) gives 20m x 20m x 75m labs
 - Scaling of SuperCDMS SNOLAB design by target mass fits this envelope

Experiment Location

- Entry/Exit access
 - Construction
 - Pb/poly option
 - Most challenging single component may be vacuum shell for detector volume if large volume of poly and lead inside; likely will require underground assembly (welding)
 - Pb mass not a challenge in size: ~2 m dimension, ~20-30 cm thickness; but is a challenge in cost: \$6M based on scaling from SNOLAB (20 tons, 10 x \$0.6M).
 - Water shield option
 - Substantially larger water tank pieces, but not similar to other water shields
 - No cryogen-water safety problem.
 - Operations
 - Non-issue: have demonstrated remote operation in Soudan with non-optimal system
 - Safety
 - <u>GEODM will use a dry cryogenic system</u>. Small amounts (100-200L) LN and LHe may be needed for cold traps, radon purge, etc.,
 - Vacuum loss is worst imaginable failure mode
 - Proper system monitoring gives substantial warning (cryogenic plugs do not form quickly); explosive failure only if monitoring ignored or vacuum system design is poor
 - Active neutron veto: plastic or liquid scintillator between 77K and 300K
 - These could pose new challenges, but volumes are small.

3

Facility Requirements

- Need to be confirmed in detail during S4 phase; preliminary list:
 - Clean areas
 - Class 10000 for cavern containing experimental apparatus
 - Class 100 locally (tent) for work on open cryostat or open water-chamber
 - Class 100 detector payload assembly room
 - Anteroom for gowning, cleaning
 - Ventilation:
 - HEPA filtered fresh or old air to meet cleanliness, radon requirements
 - venting for small amounts of LN, LHe exhaust
 - Radon background:
 - Hall: 100 Bq/m³ or better (above-ground radon levels)
 - Access to lower radon content air during detector access in payload assembly room and access tent: < 100 mBq/m³ can in principle be achieved with radon scrubber systems at moderate cost (few x \$100k)

Facility Requirements

- Need to be confirmed in detail during S4 phase; preliminary list:
 - Hazardous materials:
 - 100-200L each of LN and LHe
 - standard lab solvents
 - high-pressure N_2 and He gases
 - shield: hazards either from
 - water tank
 - lead + active neutron veto material
 - RF-tight cavern or enclosure with highly filtered power for electronics
 - Electrical power:
 - 100 kW (pulse tube compressors, dilution unit circulation pumps, electronics/DAQ, HEPA filtering of class 100 regions, radon scrubber operation)
 - UPS for ~25 kW to maintain experiment temperature during switchover to second feed or generator in case of power outage

Facility Requirements

- Need to be confirmed in detail during S4 phase; preliminary list:
 - Hoist capacity:
 - driven by Pb shield: 20 tons total mass
 - large vacuum vessel (3m x 3m) would be more easily transported in larger hoist
 - In-lab crane capacity: similar
 - 24/7/365 emergency access
 - High-speed network (Gb ethernet) for remote access, data transfer
 - Occupancy: 15 peak, 2 steady

- 2010: Envelope of DUSEL needs established
 - Largest challenge: choice bet. shield designs, incl. active neutron veto, to set expt. envelope
 - Consider this CDI/CDR for cryostat, shield, and lab interface
- 2012: Baseline detector design established
 - CDI/CDR for detector design and associated subsystems (detectors, cold hardware, electronics)
 - CD2/PDR for cryostat, shield, lab interface
- 2013: Baseline detector cost established
 - CD2/PDR for detector design and assoc. subsystems
 - CD3/FDR for cryostat, shield, lab interface: begin procurement of long lead items (< 25% total expt. construction cost)
- 2014: CD3/FDR for detector design: begin detector construction
 - Start of substantial construction spending

R&D Needs

- R&D to make choice on shield design (base funds, starts now):
 - Pb/poly between 77K and 300K + active neutron veto
 - Water shield + vastly reduced Pb/poly to shield against fridge and water-chamber only
- Detectors (DUSEL R&D, S4)
 - Design
 - Ø7.5 cm x 2.5 cm iZIP <u>probably</u> already has sufficient rejection assuming surface-event backgrounds <u>unchanged</u> and <u>already proven</u> improvement in gamma backgrounds
 - Need to demonstrate multiplicative nature of independent rejection methods underground (SNOLAB test facility, 2010)
 - Need to scale up mass to $\emptyset 10 \text{ cm x } 3.5 \text{ cm } (1.5 \text{ kg})$ for SNOLAB
 - GEODM goal = \emptyset 15 cm x 5 cm (5.1 kg). Need to confirm bulk event rejection is ok.
 - Production
 - Goal: $300 \times \emptyset 15$ cm x 5 cm (5.1 kg). Challenges:
 - Substrate acquisition (dislocation-free Ge): demonstrated at Ø3 cm, developing vendors for Ø15 cm
 - Photolith on large detector diameter/thickness
 - Substrate, fab, and testing rate and cost scalable from SNOLAB (100 detectors → 300 detectors)
 - Fallback: 1300 x 10 cm x 2.5 cm (1.1 kg)
 - ▶ First tests of ∅10 cm Ortec within months for SuperCDMS SNOLAB
 - Photolith likely to be demonstrated in coming year for SuperCDMS SNOLAB
 - Substrate, fab, and testing rate/cost are most significant challenges (scaling 100 detectors → 1300 detectors requires new paradigm)

Points of Contact

- Spokesperson: S. Golwala (Caltech)
- Project engineer: in process
 - Working toward significant SLAC involvement, including project mgmt and eng.
 - Fallback is LBNL at restricted level of effort during S4 phase + scaling from SNOLAB design (FNAL) leading into more effort during CD2 → CD3 phase.
 - Key point: project engineering is not the major risk with this kind of detector!
 - We have executed smaller-scale designs twice before, once well (CDMS I), once not so well (CDMS II). The key difference was <u>scientist involvement</u>, not engineering resources.
 - We are developing x10 smaller volume (x2 smaller length) design for SNOLAB with both engineering and scientist involvement at FNAL now.
 - Water shield may be a new challenge, but it is becoming well understood inside community.
 - Dominant cost/schedule risk is detector production/testing cost/time, where we have a long history of deep engineering and scientist involvement. Focus of S4 effort.