# Dark Matter Working Group

A unified community: Dark Matter program definition

Scientific roadmap Timeline

Experimental program R&D

### Facilities requirement

individual experiments will send their response to DEDC/Facility

### Unified Community

Strong community in strong position 4 S4 approved ≈\$9M out ≈\$21M in Physics

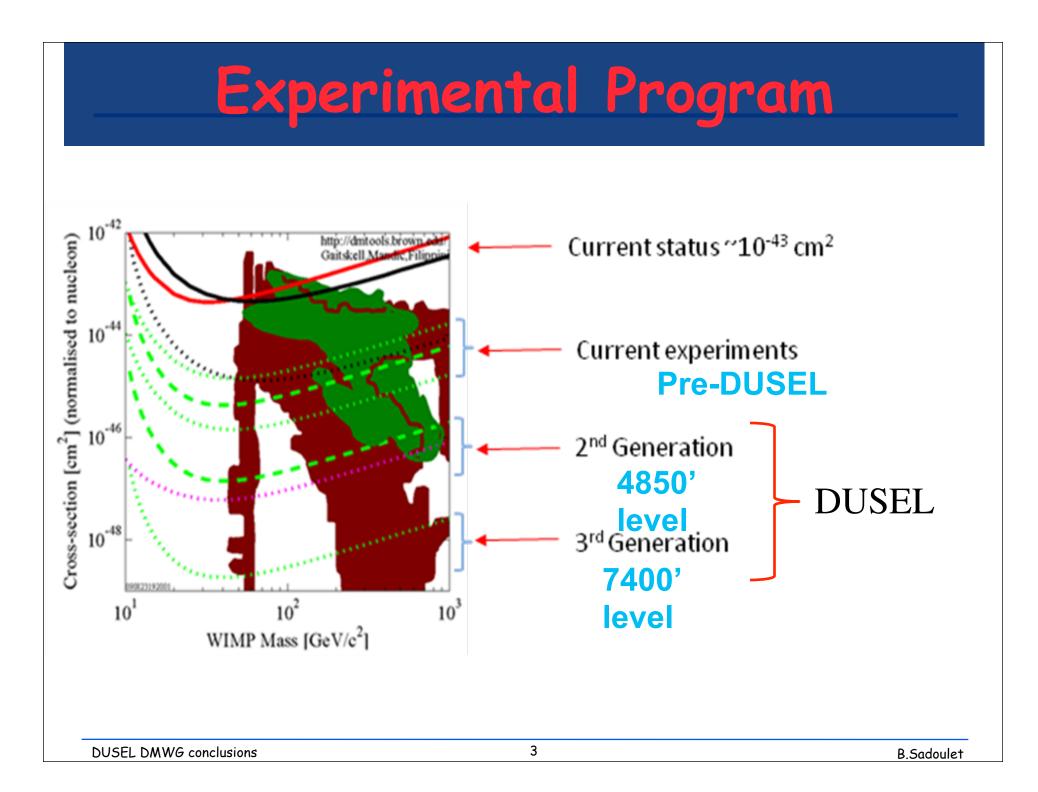
- + CLEAN: study with other resources

### One of the most important questions in science

e.g. Science Magazine ranking "Composition of the Universe" 1/179 If timely, DUSEL can be a world leader: one of the key justifications

### Intensely competitive

### Main decision of this meeting:


A proactive & unified input into the MREFC definition We would like to go to the MREFC defining team as a unified community

with a common roadmap with solid justifications:

Science (strong consensus)

Technical/engineering (built on the pre-DUSEL program and the S4 studies)

Financial -> Envelope (built on the pre-DUSEL program and the S4 studies)



# Why 22 Experiments?

#### Science

Several targets: A dependence, spin dependence => ≥3 Mass measurement Cross check of a discovery

### Mitigate technical risk

Unexpected background Instrumental difficulties and background rejection surprises Cost drift / significant descoping

### DUSEL Initial Suite fits into wider context

Pre-DUSEL program Push science frontier ≈10<sup>-46</sup> cm<sup>2</sup> Demonstrate technologies for DUSEL: key in choice of specific expts.

International competition/collaboration Strong international participation at DUSEL Coordination of large detectors worldwide

Future DUSEL program e.g. directional, larger statistics, new ideas Need for strong R&D

DUSEL DMWG conclusions

### **Documents to MREFC team**

#### **Overall Dark Matter Program**

≈ 20 pages Scientific goals: Dark Matter Scientific justification of the program variety of targets, technologies, deployment dates

Existing techniques, summary R&D Required demonstration

Requirements from the facility Common and summary of specific

Range of costs and proposed envelope Rigorous

The MREFC defining team would welcome such input

First draft by January 2010 Final by July 2010

### S4 expt specific

detailed documents as specified in S4 Cooperative agreement with NSF as close as PDF as possible CLEAN will also provide these documents

### **DUSEL Dark Matter Experiments**

| Experiment | Mass<br>Target                            | Sensitivity<br>Scalar cm <sup>2</sup> | Location<br>Install.<br>Date | Strengths                                                              | Challenges<br>R&D                                      | Estimated<br>Costs |
|------------|-------------------------------------------|---------------------------------------|------------------------------|------------------------------------------------------------------------|--------------------------------------------------------|--------------------|
| COUPP      | nx500kg<br>CF3I<br>bubble ch.             | dependent on $\alpha$ contamination   | 4850 ft<br>2015              | γ rejection<br>Cheap<br>SD target                                      | α<br>Threshold<br>detector                             | n x\$1M            |
| LZD        | 5-20t<br>Xe<br>dual phase                 | 10 <sup>-48</sup>                     | 4850 ft<br>2015              | 3D imaging<br>Self shielding<br>Scalable                               | Liquid purity<br>HV                                    | \$32-48M           |
| Max        | 5t Ar<br>2.5t Xe<br><sup>dual phase</sup> | 10 <sup>-47</sup>                     | 4850 f†<br>2015<br>-> 7400f† | 3D imaging<br>Self Shielding<br>QUPID<br>Pulse shape<br>rejection (Ar) | Liquid purity<br>HV<br><sup>39</sup> Ar depletion      | \$16M+<br>\$18M    |
| GEODM      | 1.5 t Ge<br>phonons<br>+ionization        | 2 10 <sup>-47</sup>                   | 7400 ft<br>2017              | Rejection +<br>Background<br>demonstrated<br>3D imaging                | Cost/yield<br>for large #<br>of detectors<br>high Ø Ge | \$50M              |
| CLEAN      | 50 t Ar<br>single<br>phase                | few 10 <sup>-47</sup>                 | 7400 ft<br>2017              | Pulse shape<br>rejection<br>n self shielding<br>Scalable               | Rn contamin.<br>Liquid purity                          | \$60-80 <b>M</b>   |
| DUSEL DMWG | conclusions                               |                                       | 6                            |                                                                        |                                                        | B.Sadoulet         |



|                             | 200 | 8 | 200 | 9 | 201 | 10 | 20' | 11 | 20 | 12  | 20' | 13  | 201 | 14  | 201 | 15 | 201 | 16 | 20 | 17 | 201 | 18 | 201 | 19 | 202 | 20 | 202 | 21 |
|-----------------------------|-----|---|-----|---|-----|----|-----|----|----|-----|-----|-----|-----|-----|-----|----|-----|----|----|----|-----|----|-----|----|-----|----|-----|----|
| DUSEL Start<br>Construction |     |   |     |   |     |    |     |    |    |     |     |     |     |     |     |    |     |    |    |    |     |    |     |    |     |    |     |    |
| 4850 ft available           |     |   |     |   |     |    |     |    |    |     |     |     |     |     |     |    |     |    |    |    |     |    |     |    |     |    |     |    |
| 7400ft available            |     |   |     |   |     |    |     |    |    |     |     |     |     |     |     |    |     |    |    |    |     |    |     |    |     |    |     |    |
| COUPP                       |     |   |     |   |     |    |     |    |    |     |     |     |     |     |     |    |     |    |    |    |     |    |     |    |     |    |     |    |
| Z-DUSEL                     |     |   |     |   | CD1 |    | CD2 |    |    | CD3 |     |     |     |     |     |    |     |    |    |    |     |    |     |    |     |    |     |    |
| MAX                         |     |   |     |   |     |    |     |    |    |     |     |     |     |     |     | Xe |     |    |    |    |     |    |     |    |     |    |     | +  |
|                             |     |   |     |   |     |    |     |    |    |     |     |     |     |     |     | Ar |     |    |    |    |     |    |     |    |     |    |     |    |
| GEODM                       |     |   |     |   |     |    |     |    |    | CD1 |     | CD2 |     | CD3 |     |    |     |    |    |    |     |    |     |    |     |    |     | ╞  |
|                             |     |   |     |   |     |    |     |    |    | -   |     |     |     |     |     |    |     |    |    |    |     |    |     |    |     |    |     |    |
|                             |     |   |     |   |     |    |     |    |    |     |     |     |     |     |     |    |     |    |    |    |     |    |     |    |     |    |     |    |

#### 2 phases based on depth Desired timeline shorter than facility first estimates

Pressure of the science Technical readiness International competition

### **DUSEL Dark Matter Experiments**

| Experiment | Mass<br>Target                            | Sensitivity<br>Scalar cm <sup>2</sup> | Location<br>Install.<br>Date | Strengths                                                              | Challenges<br>R&D                                      | Estimated<br>Costs |
|------------|-------------------------------------------|---------------------------------------|------------------------------|------------------------------------------------------------------------|--------------------------------------------------------|--------------------|
| COUPP      | nx500kg<br>CF3I<br>bubble ch.             | dependent on $\alpha$ contamination   | 4850 ft<br>2015              | γ rejection<br>Cheap<br>SD target                                      | α<br>Threshold<br>detector                             | n x\$1M            |
| LZD        | 5-20t<br>Xe<br>dual phase                 | 10 <sup>-48</sup>                     | 4850 ft<br>2015              | 3D imaging<br>Self shielding<br>Scalable                               | Liquid purity<br>HV                                    | \$32-48M           |
| Max        | 5t Ar<br>2.5t Xe<br><sup>dual phase</sup> | 10 <sup>-47</sup>                     | 4850 ft<br>2015<br>-> 7400ft | 3D imaging<br>Self Shielding<br>QUPID<br>Pulse shape<br>rejection (Ar) | Liquid purity<br>HV<br><sup>39</sup> Ar depletion      | \$16M+<br>\$18M    |
| GEODM      | 1.5 t Ge<br>phonons<br>+ionization        | 2 10 <sup>-47</sup>                   | 7400 ft<br>2017              | Rejection +<br>Background<br>demonstrated<br>3D imaging                | Cost/yield<br>for large #<br>of detectors<br>high Ø Ge | \$50M              |
| CLEAN      | 50 t Ar<br>single<br>phase                | few 10 <sup>-47</sup>                 | 7400 ft<br>2017              | Pulse shape<br>rejection<br>n self shielding<br>Scalable               | Rn contamin.<br>Liquid purity                          | \$60-80M           |
| DUSEL DMWG | conclusions                               |                                       | 8                            |                                                                        |                                                        | B.Sadoulet         |

### Dimensions

|               |                              | <b>N</b> · · ·                       |                            | 2     |                                                 |                   |
|---------------|------------------------------|--------------------------------------|----------------------------|-------|-------------------------------------------------|-------------------|
| Experiment    | Location<br>Install.<br>Date | Dimensions                           | Shield                     | Crane | Access                                          | Hoist<br>capacity |
| COUPP         | 4850 ft<br>2015              | 1/2 standard<br>L= 35m<br>wxh=20x20m | Water                      | 20†   | 24/7/365<br>in emergency                        | 20†               |
| LZD           | 4850 ft<br>2015              | 1/2 standard<br>L= 35m<br>wxh=20x20m | Water<br>12mØ              | 20†   | 24/7/365<br>in emergency                        | 20†               |
| Max           | 4850 ft<br>2015<br>-> 7400ft | 1 standard<br>L= 75m<br>wxh=20x20m   | Water<br>Water<br>15 mØ    | 20†   | 24/7/365<br>in emergency                        | 20†               |
| GEODM         | 7400 ft<br>2017              | 1/2 standard<br>L= 35m<br>wxh=20x20m | Pb/CH4<br>or<br>Water 10mØ | 20†   | 24/7/365<br>in emergency<br>no long<br>shutdown | 20t<br>4m×4m      |
| CLEAN         | 7400 ft<br>2017              | 1/2 standard<br>L= 35m<br>wxh=20x20m | Water<br>12m Ø             | 20†   | 24/7/365<br>in emergency                        | 20†               |
| DUSEL DMWG co | nclusions                    |                                      | 9                          |       |                                                 | B.Sadoulet        |

### Facility requirements

| Experiment | Shield                | Main<br>Safety<br>Issues                                  | Air Ventilation<br>Cleanliness<br>Rn                | Electric<br>power<br>/Cooling | Communications                                   | Special<br>requirements       |
|------------|-----------------------|-----------------------------------------------------------|-----------------------------------------------------|-------------------------------|--------------------------------------------------|-------------------------------|
| COUPP      | Water                 | mild toxicity<br>CF3I (5m³)                               | Class 10000<br>100 assembly<br>100Bq/m <sup>3</sup> | 100kW<br>25kW UPS             | Gb internet<br>GPS time<br>Environmental<br>data | Blast warning                 |
| LZD        | Water<br>Liquid<br>Sc | 7m <sup>3</sup> liq Xe<br>Mix Xe water<br>40 t liq. Scint | Class 10000<br>100 assembly<br>100Bq/m <sup>3</sup> | 100kW<br>25kW UPS             | Gb internet<br>GPS time<br>Environmental<br>data | Blast warning                 |
| Max        | Water<br>Liquid<br>Sc | 5m³ liq. Ar<br>1m³ liq. Xe<br>Mix cryo water              | Class 10000<br>100 assembly<br>100Bq/m <sup>3</sup> | 100kW<br>25kW UPS             | Gb internet<br>GPS time<br>Environmental<br>data | Blast warning                 |
| GEODM      | Pb/CH4<br>or<br>Water | none signific.<br>cryogenic<br>liquid=small               | Class 10000<br>100 assembly<br>100Bq/m <sup>3</sup> | 100kW<br>25kW UPS             | Gb internet<br>GPS time<br>Environmental<br>data | RF shielding<br>Blast warning |
| CLEAN      | Water                 | 70 m <sup>3</sup> Ar<br>Mix Ar water                      | Class 10000<br>100 assembly<br>100Bq/m <sup>3</sup> | 100kW<br>25kW UPS             | Gb internet<br>GPS time<br>Environmental<br>data | Blast warning                 |
| DUSEL DMWG | conclusions           |                                                           | 10                                                  |                               |                                                  | B.Sadoulet                    |

# **Facility Drivers**

### Cryogenic liquids 5-70m3

emergency ventilation fast liquid transfer to cryogenic vessel gas exhaust or capture (Xe, depleted Ar)

#### Rn

100Bq/m<sup>3</sup> for the halls Pipe from the surface? 100mBq/m<sup>3</sup> for detector assembly / clean room Common Rn scrubber? What flow rate?

#### UPS

how long? >10 minutes Diesel Generator

### Cooling

Maintain comfortable temperature ≈22C Temperature stability mild to be determined Water cooling (e.g. electronics, cryocoolers), chilled water

#### Vibration

Blast warning, potential rock bursts/earthquakes need estimate of acceleration

### **Facility Drivers**

**Common Water purification plant** 

flow rate to be determined SK, SNO type purity

# Common liquid nitrogen production plant+ storage vessel

few m3/day, to be refined

#### Access

Yates 4x4m 20 tons adequate, but worries about timing (2017 late) Winze 7400 similar Dust environment for component transport, cleaning

### Contacts

| Experiment             | PI/<br>Spokesperson       | Engineer          | E&O        |
|------------------------|---------------------------|-------------------|------------|
| COUPP                  | J. Collar                 | R. Rucinski       | TBD        |
| LZD                    | T. Shutt/<br>R. Gaitskell | H. von der Lippe  | TBD        |
| Max                    | C. Galbiati               | R. Parsells       | TBD        |
| GEODM                  | S. Golwala                | TBD/SLAC          | R. Winheld |
| CLEAN                  | A. Hime /<br>D. McKinsey  | J. Oertel<br>LANL | TBD        |
| DUSEL DMWG conclusions |                           | 13                | B.Sadoulet |