How A "Surface" Array At DUSEL Can Help

in the dark matter detection
2. in neutrino experiments

Xinhua Bai, SDSM&T

STATE OF

o on DUSEL SCIENCE and

Contents

Cosmic rays: what we know and what we don

- Uncertainties associated with CRs
 - Interactions (underground background estimation and "control")
 - Neutrinos
 - Long term modulations
 - Non-isotropy in cosmic ray arrival directions (dark matter distribution, the position and moving direction of the Earth)
- One easy solution EAS array on the surface

Cosmic Rays, EAS & EAS Array

- CRs were discovered ~100 years ago
- 2. Many discoveries were made in CR experiments

CRS: Knowns & Unknowns & TBC

Energies and rates of the cosmic-ray particles

- 1. HE CRs are **NOT** DM (mainly ions)
- Covers huge energy range 2.
- Power law spectrum 3.
- Knee 4.
- 5. Ankle
- Compositions at high energies •
- The source for high energy CRs •
- Long term correlation with • astrophysical phenomena
- Interactions at high energies
- Cut-off at the end?

Development of the MREFC

4

CR µ contamination in dark mater detection

Development of the MREFC

$p^2 l_{\mu}(p)~(~cm^{~2}\,s^{-}lsr^{-1}(GeV/c)^2$ The p-p total cross-section b) 10⁻¹ 180 Cosmic ray $\gamma = 2.2$ (best fit) data $+-1\sigma$ 160 10^{-2} ····· γ = 1.0 140 * EAS-TOP, 1995 120 Baksan, 1992 Baksan, 1990 σ_{tot} (mb) 1 - π.K-muons 10^{-3} KGF, 1990 [X=0] 2 - π,K-muons + PM (QGSM) KGF, 1990 X=9×10-4 100 3 - π,K-muons + PM (RQPM) KGF, 1964 4 - π.K-muons + PM (VFGS) 10³ 10⁴ 10⁵ 80 (log s)^γ Muon Momentum (GeV/c) 101 60 [GeV²/cm²/s/sr] $\sigma_{p\overline{p}}$ TEVATRON prompt 40 ZHVa CONVER σ_{op} UA4 UA5 LHC ISR 20 10^{-1} n 1111 10^{2} 103 10^{4} 105 10^{-2} 10 √s (GeV) 10^{-3} James L. Pinfold, IVECHRI 2006, 14 dΕ ZHVé dФ FIG 10-4 ЕЗ 10^{-5} 102 103 104 105 106 107 108 109 Workshop on DUSEL SCIENCE and E [GeV]

Uncertainties: CR Interactions, HE µ production

10/3/09

Development of the MREFC

Uncertainties: µ interactions (propagation)

Fig. 37. Photon-nucleon cross sections, as described in the text: Kokoulin [43], W. Rhode [44], BB 1981 [45], ZEUS 94 [46], ALLM 91 and 97 [47], Butkevich [48]. Curves 5-7 are calculated according to $\sigma_{\gamma N} = \lim_{Q^2 \to 0} \frac{4\pi^2 \alpha F_2^N}{Q^2}$

Fig. 38. Photonuclear energy losses (divided by energy), according to formulae from Section 9.3. Higher lines for the parameterizations 1-4 include the hard component [49], higher lines for 5-7 calculate shadowing effects as in Section 9.3.3, lower as in Section 9.3.2

The DM density in the neighborhood of our solar system is expected to be $\rho_{DM} \sim 0.3 \text{ GeV cm}^{-3}$.

Charged current neutrino cross section as a function of energy (in GeV): quasi-elastic

Single pion ------Deep inelastic ------ 1 b = 10⁻²⁸ m² 1 pb = 10⁻⁴⁰ m²

Workshop on DUSEL SCIENCE and Development of the MREFC

Uncertainties: neutrinos (2)

$$\frac{d^2 \Phi_{\nu\mu}}{d\Omega \, dE_{\nu}} \simeq 0.0286 E_{\nu}^{-2.7} \left(\frac{1}{1 + \frac{6E_{\nu} \cos{(\theta)}}{115 \text{ GeV}}} + \frac{0.213}{1 + \frac{1.44E_{\nu} \cos{(\theta)}}{850 \text{ GeV}}} \right) (\text{cm}^{-2} \,\text{s}^{-1} \,\text{sr}^{-1} \,\text{GeV}^{-1}),$$

- Fold it with the neutrino cross section → interaction rate is ~1 events/ton/year (on ¹⁶O)
- 2. Mainly by quasi-elastic nuclear scattering.
- 3. There is no good way to reject this background.

Uncertainties: neutrinos (3)

\Box CC- v_{μ} interactions

I NC-v and CC-v_e/v_{τ} interactions

10/3/09

Long term behavior(1): Seasonal modulation in MACRO

atmosphere attenuation lengths for pions and nucleons

10/3/09

Workshop on DUSEL SCIENCE and Development of the MREFC

11

Long term behavior(2): Seasonal modulation in IceCube

Workshop on DUSEL SCIENCE and Development of the MREFC

Long term behavior(3): Nuclear decay rates

Long term behavior(4): Seasonal modulation in DAMA

No comments

average 1400 m rock coverage

Workshop on DUSEL SCIENCE and Development of the MREFC

Uncertainties: CR Large scale anisotropy

Some Possible Causes (Dark Matter):

- Uneven distribution of CR sources
- Discreteness of SNRs and stellar winds
- Magnetic field structures
- CR transport parameters
- Compton-Getting (CG) effect
- Heliospheric magnetotail: tail-in enhancement
- Related to Dark Matter ????

Uncertainties: Large scale anisotropy by Tibet Array (surface array)

Science Vol. 314. no. 5798, pp. 439 - 443

More from IceCube (high energy muons)

IceCube & Tibet Array

Workshop on DUSEL SCIENCE and Development of the MREFC

Ozone hole can also trick ...

Fig. 3. Ozone concentration over the southern hemisphere on September 20th 2002 (left) and September 25th 2002 (right) [10].

Workshop on DUSEL SCIENCE and Development of the MREFC

How big the effect might be

Workshop on DUSEL SCIENCE and

10/3/09

&

Hard DM scientists' life made easier

~100% trigger efficiency at the surface

Study the CR related signals in deep underground

J.Oehlschlaeger, R.Engel, FZKarlsruhe

Available techniques

To be better ...

