

<u>FIG. 13. Horizontal distribution of womts</u> in the energy range 2-16 keVes for the science run dataset. The reconstructed location of the 7 events in the acceptance region is indicated. This pole confirms the photomultipliers as the dominant source of γ-ray background.

Demonstrated High Capacity Purification

- Standard gas-phase commercial getter + custom heat exchanger system
- >96% efficient heat exchanger at 0.4 tons/day
- 2 m drift length in 60 kg Xe, achieved with unprecedented speed
- Method scalable to multi-ton Xe/day processing

• R&D: knowledge of impurities, analytical capability, liquid-phase

Light collection at large scales

- PTFE walls: extraordinarily reflective at 175 nm (7eV)
 - Should be verified independently.
- Rayleigh scattering not yet dominant
 - Light collection independent of size (with low absorption) well past 100 tons.
- We predict > 70% light collection with top/bottom PMT coverage.

Shielding

- 4 m water shield + 4850 ft depth adequate up to at least 20 ton scale.
- Liquid scintillator shield: primary option beyond S4 baseline.
 - Being developed for LZS (1.5 ton): gammas reduced by 50, neutrons by >10.
 - Cold scintillator: maximum efficiency, safety.
- Titanium cryostat material
 - Significant new construction material for low background experiments
 - No measured contamination at limits of Oroville capability (< ~0.2 mBq/kg)

Internal backgrounds

- Noble gasses *significantly* easier to purity than water, scintillator: Borexino, SNO.
 - Goals less stringent than achieved in Borexino, SNO.
 - Primary internal backgrounds: Rn + daughters, Kr, Ar.
 - Vacuum vessel much better platform for controlling gaseous impurities.
- ⁸⁵Kr
 - Conservative goal for 20 tons scale: 10⁻¹⁴ Kr/Xe.
 - First attempt chromatographic system: 2 kg/day, < ~2 ppt
 - 20 tons: Simple scaling of column, increased concentration measurement.
- Rn: require \sim mBq in detector. Compare: μ Bq SNO, Borexino.
- Other gasses: ³H, ¹⁴C.
 - Requirements less than for charge drift.
- Solids, ions: readily filtered, chemically removed.

Other physics

- Reasonable sensitivity to neutrinoless $\beta\beta$ decay of ^{136}Xe
 - With current PMT backgrounds: $t_{1/2} = 1.3 \times 10^{26}$ yr.
 - With 1 mBq/PMT: $t_{1/2} = 3.5 \times 10^{26}$ yr, $m_{nu}=66$ (170) meV QRPA(NSM).
- At 20 tons, begin to measure coherent neutrino scattering:
 - ⁸B solar neutrinos
 - Atmospheric neutrinos
 - Diffuse cosmic supernova background
- pp solar neutrinos: well-defined target mass, background-free for energies below ~50 keV.

Baseline LZD Design

- S4 proposal 20 ton version fully analyzed
- Water shield deployment method based on LUX developments
- In hand PMTs, Ti, other materials
 - Expect factor of several improvement
- Conservative background discrimination: 99.5%
 - Zeplin III result: x10 better discrimination
- Light collection from XENON10
 - LUX 0.1: 8 pe/keVeezf factor of ~1.8 better.
- No liquid scintillator shield
 - Additional gamma reduction by 10-100, neutron reduction > 10.
- Custom DAQ electronics under development by LUX
- Most internal backgrounds well below state-of the art
 - Rn levels well below current limits
 - Kr just beyond current capability

Development program

• Bread and Butter design /

development:

- Large-scale vessels, tank mechanics, infrastructure -> PDR
- Internals: 2m Ø grid structures
- Cryogenics
- Control systems
- Kr removal at larger scale
- Rn emanation, Rn in water, Rn plateout
- Liquid scintillator
- Key Developments to reduce risk:
 - Internal sources
 - PMTs: 3" tubes, with reduced activity
 - Xe procurement. Buyback scheme, procurement schedule.
 - High voltage feedthrough

- Safety Development
 - Xe storage and emergency recovery.
 - Cryogenic Safety
 - Ice Shield
- R&D to reduce risk
 - Impurity analytical techniques, trapping cross section measurements
 - Liquid-phase purification
 - Cold liquid scintillator
 - Full optical characterization
- R&D to increase reach
 - Active / ultra-low mass internal structures:
 - Full mapping of discrimination vs field; possibly very high field design.
 - Advanced readout

S4 funding, also seeking DOE. International component.

Development highlights

- Safety
 - LUX serves as significant test bed
 - LLNL + LBNL engineering
 - LZS: enhanced cryogen volume
- Purification (already discussed)
- PMTs
 - LUX 350: 2" Hamamatsu R8778
 - U/Th 9/3 mBq/PMT, QE 35%
 - $-\ LZS$ and L-D
 - DUSEL R&D for 3" PMTs for LXe: Hamamatsu R11065mod
 - Tested QE/LXe operation same as R8778
 - Background factor 2 better than R8778
 - Goal: reduce to $\sim 1/1 \text{ mBq/PMT}$
 - XMASS/Suzuki (2008) achieved 2" R8778mod <0.7/<1.0 mBq/PMT

Roadmap

• LUX

- Above ground integration: starting Oct 2009.
- Underground running: summer 2009 end 2011.

• LZS, 1.5 tons.

- Proposals now, for July 2010 start.
- Underground operations 2012 2014.

• LZD:

- Goal: FDR so that funding alligned with DUSEL
 - Seeking additional DOE support to assist with this goal
- CDR + elements of PDR: April 2010
 - The LZ S4 proposal was at CDR level.
- MREFC submission to NSB: Dec 2010. Substantial completion of PDR.
- PDR: June 2011
- FDR: Oct 2012