DIANA

DIAN

Dakota Ion Accelerator for Nuclear Astrophysics

Science
Project
Equipment
Status

Scientific Questions

DIAN

Stellar Neutrino Sources

in the sun & massive stars

Origin of the Elements In early & present Universe

Why going underground?

ENERGY E

5"x5" Nal Detector 10⁴ **Environmental Radioactivity** 10³ Surface **Gran Sasso** 10^{2} **Cosmic Rays** 10 1 10 -2 (n, γ) Reactions 10 -3 10 No and condition 10 10 2 4 10 12 8 6 γ-Energy (MeV)

For low Q-value reaction: Passive shielding (Pb) is more effective when the muon flux is reduced

Slide from Alberto Lemut, LUNA collaboration

Neutrino production & solar metallicity

DIAN

- CNO--1 - CNO--2 - CNO--3 - CNO--3 - CNO--4 - CNO--4 - CNO--3 - CNO--4 - CNO--3 - CNO--3 - CNO--4 - CNO--3 - CNO--3 - CNO--3 - CNO--3 - CNO--4 - CNO--4 - CNO--3 - CNO--4 - CNO

> Pioneering work at LUNA New technology necessary for further improvement

Measurement of nuclear reactions at (near) stellar energies with 5%-10% accuracy

3He(α , γ)⁷Be and 14 N(p, γ) 15 O

LUNA experiments are close to stellar energy range, theory based extrapolations suffer from model uncertainties.

New generation accelerators with high beam intensity in a background free environment are necessary to reach the stellar energy range.

Neutron Sources

DIANA

How strong is ²²Ne(α ,n) ? ²⁵Mg(α ,n)

The impact of neutron production

NACRE lower limit

NACRE upper limit

mass number

mass number

Strong, molecular ¹²C+¹²C resonance causes enormous enhancement of S-factor and reaction rate at stellar burning conditions

standard potential modellow energy resonances

Caughlan & Fowler ADND 1988 Gasques et al. PRC 2005 Spillane et al. PRL 2007 Zickefoose et al. Capri 2009

□ Change of time scale for carbon burning phase

Change of internal structure of pre-SN stars

Decrease for ignition conditions for type Ia SN

Explanation for fusion triggered superbursts

Project Design & Development low energy accelerator with high proton/alpha beam intensity medium energy accelerator for alpha and heavy ion beams gas target and solid target production facilities detector design for active background rejection & event identification passive shielding for room background rejection & beam induced background shielding

DIANA - Accelerator & Ion Source

- A compact, high intensity low energy (50keV - 400keV) accelerator under development
 - CLAIRE (High current DC accelerator)

- 2. A versatile high intensity heavy ion accelerator for medium energies (.3 to 3MeV) in planning
 - Dynamitron type with ECR source

- 3. Ion sources for both accelerators
 - high intensity 1+ ECR (up to 100mA)
 - Medium intensity n+ ECR (.5mA)

Equipment Development

by university consortium

- Target systems
- **Detector arrays**
- Shielding \triangleright

Neutron Detectors

> Test design completed with ³He tubes on loan.

> Several ${}^{18}O, {}^{26}Mg(\alpha, n)$ reactions measured for general performance and internal background test!

Underground detector tests planned for DUSEL and WIPP environment!

Gamma Detectors

MC simulations of design for optimizing the segmentation of Ge crystals

Accelerator Lab Module 20m x 12m x 50 m

One Standard Experimental Cavities of 50x20x15m³ are currently envisioned for the **4850 ft** level.

- Low energy accelerator: CLAIRE: 10x8x5m³
- High Energy Accelerator: 30x20x5m³, space for SF₆ (if needed)
- Experimental hall: 20x15x5 m³ with additional space of 5x10x3 m³ for housing the necessary power supply units for magnetic and electric beam optics systems.
- Control area, Counting area: 8x8x3 m³
- Power supplies: 5x10x3m³
- SF6 storage, Cooling water, Cryogenic equipment/cryogenics 10x10x5 m³.

Above ground areas

- Machine shop area
- Above ground office space and counting areas
- Laboratory space for general use (experiment preparation, detector testing and target preparation)

Infrastructure for Accelerator and Experimental halls

- Overhead crane systems for transporting and positioning heavy equipment
- De-ionized cooling water
- Air conditioning
- Electrical power requirements 200kW (CLAIRE)
- Electrical power requirements, Medium Energy Accelerator (TBA, Engineering and R&D item)

Auxiliary Equipment

- windowless re-circulating gas target (gas jet and gas cell)
- evaporator and target laboratory (a serious shortcoming at LUNA)
- a Ge-Nal or Ge-BGO detector array
- Segmented Ge or Ge strip detectors,
- a number of Si strip detector systems
- heavy ion recoil separator

Dakota Ion Accelerators for Nuclear Astrophysics is a collaboration between the following institutions:

