MAX

Multi-ton Argon and Xenon

Cristiano Galbiati Princeton University

DUSEL Workshop Lead, SD

Oct 2, 2009

MAX - Multi-ton Argon & Xenon

UMass Amherst Arizona State University Augustana College **Black Hills State University Coimbra University Columbia University** Fermilab University of Houston INAF LNGS MIT

University of Münster University of Notre Dame **Princeton University Rice University** Shanghai Jiao Tong University **Temple University** UCLA University of Virginia Waseda University University of Zürich

Arizona State University, USA Prof. Ricardo Alarcon, Septimiu Balascuta

Augustana College, USA Prof. Drew Alton

Black Hills State University, USA Prof. Dan Durben, Prof. Kara Keeter, Prof. Michael Zehfus

Columbia University, USA Prof. Elena Aprile, Bin Choi, Dr. Karl-Ludwig Giboni, Dr. Tom Haruyama, Dr. Rafael Lang, Kyungeun Elizabeth Lim, Dr. Antonio Jesus Melgarejo, Guillaume Plante, Dr. Gordon Tajiri

Fermi National Accelerator Laboratory, USA Dr. Steve Brice, Dr. Aaron Chou, Pierre Gratia, Dr. Jeter Hall, Dr. Stephen Pordes, Dr. Andrew Sonnenschein

Instituto Nazionale di Astrofisica (INAF) Gianmarco Bruno, Dr. Walter Fulgione

Laboratori Nazionali del Gran Sasso (LNGS), Italy Dr. Francesco Arneodo, Serena Fattori

Massachusetts Institute of Technology, USA Prof. Jocelyn Monroe

Princeton University, USA Jason Brodsky, Huajie Cao, Alvaro Chavarria, Ernst de Haas, Prof. Cristiano Galbiati, Augusto Goretti, Andrea Ianni, Tristen Hohman, Ben Loer, Prof. Peter Meyers, Pablo Mosteiro, David Montanari, Allan Nelson, Eng. Robert Parsells, Richard Saldanha, Eng. William Sands, Jingke Xu

Rice University, USA Prof. Uwe Oberlack, Yuan Mei, Dr. Petr Shagin

Shanghai Jiao Tong University, PRC Prof. Xiangdong Ji, Prof. Kaixuan Ni, Yuehuan Wei, Xiang Xiao.

Temple University, USA Prof. Susan Jansen-Varnum, Christy Martin, Prof. Jeff Martoff, John Tatarowicz

University of California at Los Angeles, USA Daniel Aharoni, Prof. Katsushi Arisaka, Ethan Brown, Prof. David Cline, Yixiong Meng, Dr. Emilija Pantic, Prof. Peter F. Smith, Artin Teymourian, Chi Wai Lam, Dr. Hanguo Wang

University of Coimbra, Portugal Dr. Joao Cardoso, Lúis Carlos Costa Coelho, Prof. Joaquim Marques Ferreira dos Santos, Prof. José António Matias Lopes, Dr. Sonja Orrigo, Antonio Ribeiro

University of Houston, USA Prof. Ed Hungerford and Prof. Lawrence Pinsky

University of Massachusetts at Amherst, USA Prof. Andrea Pocar

University of Muenster, Germany Dr. Marcus Beck, Dr. Volker Hannen, Karen Hugenberg, Dr. Hans-Werner Ortjoahnn, Prof. Christian Weinheimer

University of Notre Dame, USA Prof. Philippe Collon, Daniel Robertson, Christopher Schmitt

University of Virginia, USA Prof. Kevin Lehmann

University of Zürich, Switzerland Ali Askin, Prof. Laura Baudis, Dr. Alfredo Ferella, Marijke Haffke, Alexander Kish, Dr. Roberto Santorelli, Dr. Eirini Tziaferi

Waseda University, Japan Prof. Tadayoshi Doke, Prof. Nobuyuki Hasebe, Mitsuteru Mimura, Dr. Mitsuhiro Miyajima, Dr. Shinichi Sasaki, Dr. Satoshi Suzuki, Prof. Shoji Torii

Representing MAX

- D.Alton (Augie)
- E.Aprile (Columbia)
- D. Cline (UCLA)
- D. Durben (BHSU)
- C. Galbiati (Princeton)
- E. Hungerford (Houston)
- K. Keeter (BHSU)

- J. Martoff (Temple)
- P. Meyers (Princeton)
- U. Oberlack (Rice)
- B. Parsells (Princeton)
- A. Pocar (UMass)
- H.Wang (UCLA)
- M. Zehfus (BHSU)

5 ton DAr TPC

2.5 ton XeTPC

Compelling Case for Cooperation

- Cooperative effort of XENON and DarkSide Collaborations
- Ar and Xe two enticing targets, easily scalable
- Strong commonalities to be exploited
 - Extremely low background photosensors (QUPIDs) designed for LAr and LXe temperatures
 - Common "two-phase technology" for detection of scintillation and ionization
 - Common scheme for cryocooling, mechanics, shielding, etc.
 - Common engineering and design results in significant savings with

The Physics of MAX

- Discovery potential
- Confirmation in twin targets: Xe and Ar
- Confirmation of A² dependence of cross section
- Measurement of the mass of the WIMP by comparison of recoil spectra in different targets
- Indication on spin-dependent or spinindependent nature of interactions

Cross Section Sensitivity

Mass Measurement

FIG. 8: 1σ and 2σ uncertainties in determining WIMP mass and cross-section by Xe target in XAX in 10 ton-years of data taking. WIMP masses 20, 50, 100, 200, 500 GeV, and cross sections of (a) 10^{-8} pb, (b) 10^{-9} pb are assumed. Above 100 GeV/ c^2 WIMP mass, there is degeneracy between mass and cross section, resulting in the 45° slope in this figure.

K.Arisaka et al., Astroparticle Physics 31 (2009) 63–74

The Technology Case

- Superior 3" QUPID photosensors
 - no background detected in best Ge
 - 6" and 8" QUPIDs under study
- Bialkali-LT photocathode for >35% QE at liquid xenon and argon temperature on 3"/6"/8" photosensors
- 4π optical coverage optimal light yield
- Strong fiducialization for xenon target
- β/γ background free by pulse shaping in Argon
- Depleted Argon from underground sources

Noble Liquid Detectors

- Target = Detector
- Excellent scintillation detectors
 - 40 photons/keV (Ar, 128 nm), 46 photons/ keV (Xe, 178 nm)
- Excellent ionization detectors
 - 40 electrons/keV (Ar), 64 electrons/keV (Xe)
- Photons and electrons not self-absorbed: long e drift distance
- Large multi-ton detectors possible and "cheap"
- Background discrimination possible

primary scintillation photons emitted and detected

ionized electrons drifted to gas region

secondary photons emitted by multiplication in gas region

Discrimination in Xenon

- Fiducialization reduces the background from construction and external materials in the fiducial region
- Difference in ratio of the prompt scintillation (S1) to the drift time-delayed ionization (S2) with strongly dependent upon recombination of ionizing tracks, which in turn depends on ionization density
 Rejection ~ 10²-10³

• Precise determination of events location in 3D

• I-5 mm x-y, < I mm z

 Additional rejection for multiple neutron recoils and γ background

Discrimination in Argon

- Pulse shape discrimination of primary scintillation (S) based on the very large difference in decay times between singlet (≈ 7 ns) and triplet (1.5 µs) components of the emitted UV light Minimum ionizing: triplet/singlet ~ 3/1 Nuclear recoils: triplet/singlet ~ 1/3 Theoretical Identification Power exceeds 10⁸ for > 60 photoelectrons (Coakley & McKinsey; Boulay & Hime)
- Difference in ratio of the prompt scintillation (SI) to the drift time-delayed ionization (S2)
- Precise determination of events location in 3D

3" QUPID (Quartz Photon Intensifying Detector)

Invented by K. Arisaka & H. Wang in 2007 (US patent pending)

Katsushi Arisaka, UCLA

1, 2 and 3 PE Distribution with 2m cable

Comparison of Low-radioactive Photon Detectors from Hamamatsu

Spectrum of QUPIDs and Background (4 QUPIDs x 1 month data)

Princeton Prototype Plant for Industrial Scale Production: Achieved 0.5 kg/day (depletion >25) News: NSF funding (NSF PHY-0811186), goal ~10 kg/day in 2010

Princeton Prototype Plant for Industrial Scale Production: Achieved 0.5 kg/day (depletion >25) News: NSF funding (NSF PHY-0811186), goal ~10 kg/day in 2010

Princeton Prototype Plant for Industrial Scale Production: Achieved 0.5 kg/day (depletion >25) News: NSF funding (NSF PHY-0811186), goal ~10 kg/day in 2010

Component	Characteristics	Component	Characteristics		
Active Liquid Volume Height	90 cm	3" QUPIDs, Top	169		
Gas Height	5 cm	3" QUPIDs, Bottom	169		
Drift Electric Field	1 k///cm	3" QUPIDs, Side	630		
Extraction Field	5 kV/cm	Mean Photocathode Coverage	60%		
Active Volume Diameter	100 cm	Active Xenon Mass	2.4 tons		
Cryostat, Height	200 cm	Passive Xenon Mass	0.6 tons		
Cryostat, Diameter	180 cm	Cryostat OFHC Cu Mass	6.8 tons		
Cooling Power	300 W	Mass of Detector, Full	10 tons		
TARLE V. Venen TRC, detector dimensions and other revenueters					

TABLE V: Xenon TPC: detector dimensions and other parameters

Source	Quantity	238 U, 232 Th	n	$n \; {\rm after} \; {\rm cuts}$	eta/γ before cuts
		[Bq, total]	[nyr]	$[(1 \operatorname{ton} \cdot \operatorname{yr})^{-1}]$	$[events/(kg\cdot keV \cdot d)]$
Water tank steel	100 ton	1200, 400	10 ⁵	≪0.1	$\ll 10^{-6}$
Water	2500 ton	0.25, 0.1	3×10^5	≪0.1	$\ll 10^{-6}$
Reentrant tube	25 ton	300, 48	1.3×10^{4}	≪0.1	$\ll 10^{-6}$
Cryostat OFHC	6.8 ton	<0.1, <0.1	<15	<0.1	$\ll 10^{-6}$
3" QUPIDs	968	<0.5, <0.4	<45	<0.2	$<5 \times 10^{-6}$

TABLE VI: Background sources and background budget for the Xe TPC. The sixth column reports the β/γ background before removal with S2/S1 discrimination.

Component	Characteristics	Component	Characteristics
Active Liquid Volume Height	180 cm	3" QUPIDs, Top	745
Gas Height	5 cm	8" R5912-MOD02 PMTs, Bottom	109
Drift Electric Field	800 V/cm	8" R5912-MOD02 PMTs, Side	363
Extraction Field	$3.8\mathrm{kV/cm}$	Mean Photocathode Coverage	60%
Active Volume Diameter, Top	162 cm	Depleted Argon Mass	5 tons
Active Volume Diameter, Bottom	152 cm	Acrylic Mass	10 tons
Acrylic Minimum Thickness	40 cm	Cryostat Steel Mass	20 tons
Cryostat, Height	380 cm	Cooling Argon Mass	${\sim}10{ m tons}$
Cryostat, Diameter	366 cm	Mass of Detector, Full	55 tons
Cooling Power	440 W		

TABLE III: Depleted argon TPC: detector dimensions and other parameters

Source	Quantity	238 U, 232 Th	n	n after cuts	β/γ before cuts
		[Bq, total]	$[n/{ m yr}]$	$[(12 \operatorname{ton} \cdot \operatorname{yr})^{-1}]$	$[ev/(kg\cdot keV \cdot d)]$
Water tank steel	100 ton	1200, 400	10 ⁵	≪0.1	$\ll 10^{-5}$
Water	2500 ton	0.25, 0.1*	2.5×10^5	≪0.1	$\ll 10^{-5}$
Reentrant tube steel	25 ton	300, 48	1.3×10^4	≪0.1	2×10^{-5}
Cryostat steel	20 ton	240, 40	2×10^4	≪0.1	0.2
Vessel acrylic	10 ton	0.1, 0.04	2	≪0.1	0.04
³⁹ Ar	5 ton DAr	250**	-	-	10
8" PMTs	472	190, 85	10^{5}	0.3	3
3" QUPIDs	745	<0.4, <0.3	<35	≪0.1	<0.07

TABLE IV: Background sources and background budget for the DAr TPC. The fifth column reports the β/γ background before any cuts (pulse shape discrimination, S2/S1, multiple deposition cuts). *Low energy neutrons from radioactivity in the water do not contribute significantly to the background – the $2.5 \times 10^5 n/yr$ are high-energy cosmogenics. **Beta decays of 39 Ar.

Phase 2

- I0 ton fiducial Xenon
- 50 ton fiducial Argon
- WIMP Dark matter reach extended to <10⁻⁴⁸ cm²

The XENON100 Experiment @ LNGS

USA, Switzerland, Italy, Portugal, Germany, France, Japan, China

- > 170 kg of ultra pure LXe: 70 kg as active target and 100 kg as 4pi LXe scintillation veto
- > 200W Pulse Tube Refrigerator for Xe liquefaction: excellent operating temperature stability (<0.1C)
- > 30 cm drift gap TPC with two PMT arrays to detect both charge and light signals
- > 242 x 1 inch square PMTs with < 1mBq/PMT in U/Th) and high QE (25- 33 %) at 178 nm
- > 3D event localization with a few millimeter resolution in X-Y and sub-millimeter in Z
- ~100 x less background than XENON10: low activity materials; LXe veto; improved passive shield

XENON100 Status and Schedule

- Detector filled with low-Kr Xe and operational underground
- Taking Gamma calibration data. Neutron calibration in Nov09
- Light Yield has reached a maximum value of ~4.5 pe/keVee
- Purity allows drift of ionization electrons across entire gap
- Initial background data show a level consistent with predicted
- Schedule: Start DM search before end of 2009.
- Take DM data for > 6 months in 2010

Continuation of the XENON100 Program

WARP 140-kg Detector

The WARP 140-kg detector, currently under commissioning at LNGS 140 kg active target 4π active neutron veto (9 tons Liquid Argon, 300 PMTs) Active control on nuclide-recoil background, owing to unique feature (LAr active veto) Achieved I.5 p.e./kevee Problem with malfunctioning HV connetor Drained Aug 2009 Restart Dec 2009 Extrapolated threshold 65 keV_r Extrapolated sensitivity 10⁻⁴⁴ cm² Cryostat designed to allocate a possible 1400 kg detector

DarkSide

First depleted argon detector

QUPIDs Low background Two discriminations 25 keV_r threshold 10⁻⁴⁵ cm²

Cooperative effort between two collaborations: XENON and DarkSide Strong international participation

Yes, we can!

Effort open to community Proposal to be shared on MAX websites at all participating institutions FNAL site already up! Grab a copy of the proposal at: <u>www.fnal.gov/pub/MAX</u> Cooperative effort between two collaborations: XENON and DarkSide Strong international participation

Yes, we can! ... resolve our differences and work together

Effort open to community Proposal to be shared on MAX websites at all participating institutions FNAL site already up! Grab a copy of the proposal at: www.fnal.gov/pub/MAX

Like the jelly beans in this jar, the Universe is mostly dark: 96 percent consists of dark energy (about 70%) and dark matter (about 26%). Only about four percent (the same proportion as the lightly colored jelly beans) of the Universe - including the stars, planets and us is made of familiar atomic matter.

The End

