B.T.Fleming October 2, 2009 Homestake Workshop

Liquid Argon TPC for LBNE •LArTPC technique, sensitivity, and challenges •Integrated plan to get to LBNE scale detectors •Progress on designs for LBNE detectors

LArTPC technique

Passing charged particles ionize Argon – 55k ionization electrons/cm

Electric field drifts electrons meters to wire chamber planes

Induction/Collection planes image charge, record dE/dx

ArgoNeuT induction and collection planes

Detector Capability...

Unique Detectors precision measurements in neutrino physics appear scalable to large volumes

•Neutrino oscillation physics: ~6 times more sensitive than WC technology translates into smaller volumes for same physics reach

- •Proton decay searches
 - sensitive to p k
 - Extend sensitivity beyond SK limits with detectors larger than 5kton
- •Supernova and solar neutrinos

Neutrino Oscillation Physics: 80-90% efficient for $_{e}$ detection, nearly eliminate backgrounds \rightarrow from neutral current pion production

Translates into x6 reach in electron neutrino appearance searches and therefore **CP** Violation

Supernova neutrino reactions in WC and LAr are sizable and complementary in reaction type and signal shape

$$\begin{split} & \mathsf{H_2O} \\ & \overline{\nu}_e + p \to n + e^+ & (88\%/89\%) \,, \\ & \nu_e + e^- \to \nu_e + e^- & (1.5\%/1.5\%) \,, \\ & \overline{\nu}_e + e^- \to \overline{\nu}_e + e^- & (<1\%/<1\%) \,, \\ & \nu_x + e^- \to \nu_x + e^- & (1\%/1\%) \,, \\ & \nu_e + ^{16}O \to e^- + ^{16}F & (2.5\%/<1\%) \,, \\ & \overline{\nu}_e + ^{16}O \to e^+ + ^{16}N & (1.5\%/1\%) \,, an \\ & \nu_x + ^{16}O \to \nu_x + O^*/N^* + \gamma \, (5\%/6\%) \,, \end{split}$$

<u>100 kt H₂O,</u> SN@10 kpc			
Interaction	Rates (x10 ⁴)		
$\overline{\nu}_e + p \rightarrow n + e^+$	2.3		
$v + e \rightarrow v + e$	0.1		
$v_x + {}^{16}O \rightarrow {}^{16}O + v_x$	0.05		
$v_x + {}^{16}O \rightarrow {}^{16}F + e$	• 0.2		

SuperNoVA relic searches also possible...

100 kt of LAr, SN @ 10 kpc

Interaction	Rates (×10 ⁴)	
v _e CC (⁴⁰ Ar, ⁴⁰ K*)	2.5	
v _x NC (⁴⁰ Ar*)	3.0	
ν _x ES	0.1	
anti–v _e CC (⁴⁰ Ar, ⁴⁰ Cl*)	0.054	

A. Bueno NP2008, via K.Scholberg

Main challenges for massive LArTPCs

•Purification Issues: large, industrial vessels

- Test stand measurements
- Purification techniques for non-evacuatable vessels
- Purity in full scale experiment
- •Cold, Low Noise Electronics and signal multiplexing
 - Test stand measurements
 - Plan for R&D towards cold electronics
- •Vessels: design, materials, insulation
 - Learn as we go in designing MicroBooNE
- •Vessel siting underground: safety, installation ...
- Understanding costs of these detectors

History of LarTPC development

Early work by Chen, Radeka, Willis, and others in the US in the late 70s.

Early and continuing work by Rubbia and others within the ICARUS collaboration Over the last 30+ years → first cosmic ray tracks in a large volume T300 – 300 ton ICARUS surface test in Pavia in 2001

Current programs

ICARUS readying for beam in Gran Sasso, considering nextgeneration efforts: DoubleLAr, Modular...

GLACIER effort in the LAGUNA collaboration in Europe: GLACIER: Combination of charge and light collection, single large drift area

KEK-ETHZ collaboration to develop larger detectors for T2KK

While there are big challenges to scaling these detectors to Large sizes – worldwide interest in doing so.

US Program \rightarrow

Liquid-Argon Time Projection Chambers Status of R&D Program in the US

Bo

TPCs in the United States:

Location: Yale University Active volume: 0.00002 kton Year of first tracks: 2007

Location: Fermilab Active volume: 0.00002 kton Year of first tracks: 2008

ArgoNeuT

Location: Fermilab Active volume: 0.0003 kton Year of first tracks: 2008 First neutrinos: June 2009

MicroBooNE

Location: Fermilab Active volume: 0.1 kton Start of construction: 2010

Test stands to improve liquid-argon technology:

Luke

Location: Fermilab Purpose: materials test station Operational: since 2008

LAPD

Location: Fermilab Purpose: LAr purity demo Operational: 2010

Luke: Materials Test Stand at FNAL Test materials in Argon and purification techniques for clean LAr

BNL 4-ch Amp

ArgoNeuT Bias Board

Cables/Cable-Tie Bundle

Lifetime & Imps vs Time for Different Samples

Luke: Materials Test Stand at FNAL Test materials in Argon and purification techniques for clean LAr

seconds/arb

BNL 4-ch Amp ArgoNeuT Bias Board

Cables/Cable-Tie Bundle

Material	Sample	Effect of Material on		Comments	
	Surface	Electron Drift Lifetime (LT)			
	Area	94 K	$\approx 120 \text{ K}$	$\approx 225 \text{ K Vapor}$	-
	(cm^2)	liquid	vapor		
Red-X	100	None	None	LT Reduced from	H ₂ O concentration
Corona Dope ^a				8 to 1 ms;	not monitored.
				recovery observed.	
Deactivated	200	None	Not	LT reduced from	H ₂ O concentration
Rosin Flux ^b			Tested	8 to 1.5 ms	not monitored.
				recovery observed	
FR4	1000	None	Not	LT reduced from	Outgassed enough H ₂ O
			Tested	8 to < 1 ms	at 225 K to saturate
					sintered metal return.
Taconic ^e	600	None	Not	LT reduced.	Sample outgases water
			Tested		at 225 K.
Hitachi	300	None	Not	LT reduced;	Sample outgases water
$BE 67G^d$			Tested	recovery observed	at 225K; outgassing
				-	reduced over time.
TacPreg ^e	200	None	None	LT reduced;	Sample outgases water
				recovery observed	at 225 K; outgassing
					reduced over time.
FR4, y-plane	225	None	None	LT reduced from	Sample outgases water
wire endpoint				8 to 3 ms	at 225 K.
for uBooNE					
FR4, y-plane	225	None	None	None	Sample was evacuated
wire cover					in airlock prior to
for uBooNE					testing
Devcon 5-min	100	None	None	LT reduced from	Sample outgases water
epoxy				10 to 6 ms; some	at 225 K.
				recovery observed	

LAPD

Location: Fermilab Purpose: LAr purity demo

Achieve purity in an un-evacuable vessel

- Small test stands at FNAL
- 20 ton purity demonstrator: LAPD (underway)
- MicroBooNE R&D program

Flush tank with clean Argon gas
Monitor level of O₂ in tank as it is f ushed
2.6 volume changes to reach 100ppm O₂

ArgoNeuT Operational Physics: Measure neutrino-argon cross sections

Installation and Commissioning Underground

Data run began mid-September – expect ~20k neutrino and anti-neutrino events by March

0.3 ton TPC using MINOS to catch muons

MicroBooNE

Construction begins 2010

Physics: Investigate low-energy neutrino interactions

MicroBooNE R&D Cold electronics

- Implementation of cold electronics in Gar
- Development and testing of cold electronics in Lar
- Purity: Test of Gar purge in large, fully instrumented vessel
- •TPC design and wire stringing •Data!
- Measure physics xsecs and sensitivities
- Test ease of surface running
- •Develop tools for Analysis

Measure low energy neutrino Interactions: MiniBooNE low energy excess

- •Suite of low
- energy cross
- section mmnts.

MicroBooNE Physics

Fermilab Stage 1 approval in 2008

CD-0 from DOE this week

```
Partial funding through
NSF MRI and proposals
      (1.5M total)
```

Liquid-Argon Time Projection Chambers Outlook of R&D Program in the US

outook of Hab Frogrammin			Active Volume
Yale TPC & Bo Yale TPC: Dismantled Bo: Operational	B		0.00002 kton
			15 x 💙
ArgoNeuT Operational Physics: Measure peutrino-amon cross sections	(0	0.0003 kton
Thy boot modeline hour no agent cross sections			330 x
MicroBooNE Construction begins 2010 Physics: Investigate low-energy neutrino interactions	C	Ð	0.1 kton
Thysics intestigate for chargy reading includio			4x50x
LAr TPC for LBNE R&D in progress Physics: Measure neutrino oscillations at 1,000+ km			20 kton
Final goal Replicate proven technology Physics: Search for CP violation in neutrino sector			N x 20 kton

For DUSEL, developing conceptual designs for 3-6 x 20Kton modules

LANNDD 20kton concept

Membrane Cryostat: •Externally supported by cavern walls •Un-evauable •Passive insulation

Inner containment vessel corrugated Stainless Steel or Invar, Inner wall dimensions are fixed. Green is 3/4 inch plywood backing. Red is capping material for foamglas insulation. Dark gray is 1 meter thickness of foam glass insulation which is also used as secondary containment of LAr.

Outer blue is reinforced concrete, 0.5 meter at base to support hydroststic head and vessel pressure loads...

Vertical concrete fills gaps so that vessel walls are supported by native rtock.

Pilot underground cavern For LNG storage:Daejeon, Korea

Geostock Prototype for LNG storage

Cavern requirements

- •Standard lab module 100m long houses detector
- •10m pit for secondary containment (standard)
- •Environmental req. similar to FNAL lab space
- •Assuming equivalence with FNAL design standards (ODH)

^{#6} Winze

Cryostat Design: "Warm" vs "Cold" Electronics

Conceptual Design assumes cold electronics

TPC design parameters: The same for both conceptual designs for cryostats

A Modular Wire Frame Design to Accommodate Cold Electronics

Status of developing conceptual design for CD-1

- Detector design parameters
 - 2.5m drift distance

٠

- Fiducial mass = 1/6 of 100kt Water Cherenkov
 - 16.7kt (LAr20)

- 2 3 wire planes, wire spacing = 3 5 mm
- Cold electronics
- Engineering firms will provide conceptual designs for:
 - Cavern excavation —
 - Modular & membrane style cryostats
 - Installation for both depth options: 300 ft and 4850 ft -
 - Cryogenics plant above/below ground
 - Underground cryogen safety mitigation
 - Contract negotiations underway

Issues related to argon purity, TPC design, neutrino interactions: Answered along the way with program scaling from small to large

Brief Summary Lots of progress towards conceptual design for Final goal: LAr20 and beyond

Final goal: Detectors at DUSEL for broad physics program Neutrino oscillations, Nucleon decay, Astrophysics

Continuing progress on test stands and experiments needed to develop LAr technology to get there

Poster given to Governor Rounds on his recent trip to Fermilab

Particle Signatures

Fermilab

Backup Slides

Impressive physics reach for CP Violation search

Concept for supply of cryogenics underground: implementation that minimzies cost, safety risk, technical risks (ie: purity)

