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DUSEL Fiber-Optic

Research Questions

Geosciences

 How do rock masses deform as a function of spatial scale
over long times?

* How does the static deformation field measured by strain
sensors relate to microseismicity?

 How are the deformation field and fracture flow coupled?

Geoengineering
« Large cavity engineering

« General mine monitoring, and safety — How is the mine
“breathing?



Technology Objectives DUSEL Fiber-Optic

« Determine rock properties that control rock
deformation over multiple scales of length and time

* Advance the technology of characterizing rock
deformation

* Perform long-term (decadal) structural health
monitoring (SHM) of DUSEL.

 Integrate deformation sensors with other physical
and chemical fiber-optic sensors into a laboratory-
wide environmental and safety monitoring system



Fiber-Optic Sensor Principles DUSEL Fiber-Optic
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Micron Optics 0S3600 FBG DUSEL Fiber-Optic
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Observations DUSEL Fiber-Optic

Data collection is just beginning.
A triplet of 1-meter FBG tube

| . strain gages in Cartesian
p1010038Jpg directions on an east-west wall
b of powder room next to DUGL

station on 4100L was installed

July 29, 2009 and a datalogger
was installed Sept. 30, 2009.

Develop and benchmark anchoring and
clamping techniques to validate
measurements as rock mass behavior.



Tunneling-Induced

DUSEL Fiber-Optic
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Create 3-D network of DST cable--
equivalent to 100s of extensometers DUSEL Fiber-Optic
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Simultaneously measure deformation ;5 Fiber-Optic

and fluid-flow

Do critically-stressed Fiber-Optic Sensor
fractures dominate fluid Network
flow?
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Synergistic Measurements DUSEL Fiber-Optic

e Tiltmeter arrays: Fiber-optic strain measurements are complemented
by borehole tiltmeter and long-baseline (100-m) water-level
tiltmeters.

e Seismic arrays: FBG strain sensors sampling rate can go up to 1 kHz
and be related to measurements by microseismicity arrays.

e Stress measurements: Fiber-optic strain measurements are

complemented by in situ stress measurements to model rock-mass
behavior.

* LIDAR: Fracture and anisotropy analysis over scales of 100s of meters
can provide rock-property inputs to models



Future Work — Load a small room

. T 62y QDT 52 QDT 52 QDT 52
TN O. ) AT~ O ) AT C. ) AT A O. ) A
8% a0 Qe iaploq? QedSpl o e i3 % a2 (g
G500 S0 ST G008 0! ST G500 SO ST G520 S
,@..'U,(Z%%-aq.%,U'U.(Zm%-a@_%p.'o.[ZQz)%-aQ%n'o.an?' -

0 0! D.co-: .O'IQ PQ O O 0 : vﬂ@_o Q
E O? 2 0\212 Q\%D '0?_%'6 7 '.42‘,@(.7 T f)
520 0009 550

(] GDQODGOQQUDDS

o d VoS R7oqd )

'Oﬂéfgg(?od.gé‘o-g“é-g@&oy g
Qg_'o_.QOQbZ@-A.G.%U S

'\-’] .G. 'r7~'".

-0 %}:6_0‘-@ LY 0

O’ RN

DUSEL Fiber-Optic




Future Work — Monitor a large DUSEL Fiber-Optic

room

Install fiber-optic L000as '-"
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behind drifting to LUX/ i
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impeding the work i |
schedule). Combine
with geological
mapping and LIDAR to
model results in terms
of rock properties of
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Future Work — Monitor the cable bolts puseL Fiver-optic

in water Cherenkov cavities
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